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Community detection is an important task in network analysis, in which we aim to find a network partitioning that groups
together vertices with similar community-level connectivity patterns. Bipartite networks are a common type of network in
which there are two types of vertices, and only vertices of different types can be connected. While there are a range of powerful
and flexible methods for dividing a bipartite network into a specified number of communities, it is an open question how to
determine exactly how many communities one should use, and estimating the numbers of pure-type communities in a
bipartite network has not been completed. In our paper, we propose a method named as “biCNEQ” (bipartite network
communities number estimation based on quality of filtering coefficient), which ensures that communities are all pure type,
for estimating the number of communities in a bipartite network. +is paper makes the following contributions: (1) we show
how a unipartite weighted network, which we call similarity network, can be projected from a bipartite network using a
measure of correlation; (2) we reveal the relation between the similarity correlation and community’s edges in the vertices of a
unipartite network; (3) we design a measure of the filtering quality named QFC (quality of filtering coefficient) to filter the
similarity network and construct a binary network, which we call approximation network; and (4) the number of com-
munities in each type of unipartite networks is estimated using Riolo’s method with the approximation network as input.
Finally, the proposed biCNEQ is demonstrated by both synthetic bipartite networks and a real-world network, and the results
show that it can determine the correct number of communities and perform better than two classical one-mode
projection methods.

1. Introduction

+e bipartite network is a network whose vertices can be
divided into two types a and b, where every edge connects a
vertex of type-a to one of type-b, and there are no edges
connecting vertices of the same type. +ere are many ex-
amples of bipartite networks, such as those described in
[1–3]. Regarding unipartite networks, a common task is to
find groups or communities of vertices that connect to the
rest of the network in similar ways. Finding this underlying
group structure is of significant, which can, for example,
divide a heterogeneous network into homogeneous sub-
graphs for subsequent analysis or modeling [4].

Beginning from Newman’s [5] study, community de-
tection has attracted considerable attention from

researchers [6], aiming to identify good ways to divide up a
network into communities. A range of powerful and
flexible methods for dividing a bipartite network into a
specified number of communities have been proposed in
recent years [4, 7, 8]. However, most of them have one key
shortcoming; that is, they require us to know the number
of communities of a network in advance. In the real world,
however, we usually do not know this number a priori, and
thus, we need to estimate it from the data. Recently, several
methods have been proposed for making such estimates
for unipartite networks [9–12] and bipartite networks
[13–16]. Barber [13] in his work introduced bipartite
modularity, a variant of the modularity proposed by
Newman and Girvan [17]. A dual-projection approach
proposed by Han et al. [14] aims to maximize the
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Newman’s one-mode modularity. +e authors of [15, 16]
maximized Barber’s bipartite modularity for bipartite
community detection. However, maximizing both mod-
ularities noted above proved to be a NP-hard problem
[6, 18]. +e bipartite network communities generated in
the previous studies are of mixed type, and so far, there is
no exploration inferring to the numbers of pure-type
communities in a bipartite network.

In our paper, we propose a method named “biCNEQ”
(bipartite network communities number estimating based
on quality of filtering coefficient), which ensures that
communities are all pure type. +e main innovations
and contributions of this study can be illuminated as
follows: (1) a percolation idea-based (PIB) method, pro-
posed by Lambiotte and Ausloos [19], is used to project
a bipartite network to unipartite correlation networks
and reveal the emergence of social communities and
music genres by filtering correlation matrices and (2) a
first principles method given by Riolo et al. [11] is used
for inferring the number of communities in a unipartite
network. +e quality of filtering coefficient (QFC) is de-
signed to select a threshold to filter the correlation matrix
in constructing a binary unipartite network. +is method
can roughly match the structural features of the correlation
and degree of the vertices of the original ones, which cannot
be done using PIB. Finally, we use Riolo et al.’s [11] method
to estimate the number of communities in each type of
unipartite networks. In addition, the proposed biCNEQ is
demonstrated by both synthetic bipartite networks and a
real-world network, and the results show that our method
performs better than two classical one-mode projection
methods.

2. Methods

Tests were performed on both synthetic bipartite networks
and a real-world bipartite network with a known community
structure.

2.1. Synthetic Networks. We construct a synthetic network
based on a degree-corrected bipartite stochastic block
model (biSBM) formulated by Larremore et al. [4]. Given
a bipartite network G with N × N adjacency matrix A

(where N � Na + Nb and Na are the vertices of type-a), we
divide the Na vertices of type a into Ka groups and the Nb

type-b vertices into Kb groups and express the matrix of
group interrelationships as a K × K matrix, where
K � Ka + Kb. Let vertex i of type ti belongs to group gi and
Tr be the type of group r, imposing the constraint ti � Tgi

,
which indicates that vertex types and group types must
match and ensures that groups will be pure type. Let the
number of edges between vertices i and j follow a Poisson
distribution with mean θiθjωgigj

and choose the nor-
malization iθiδgi,r

� 1, where θi controls the expected
degree of vertex i, ωrs is a K × K symmetric matrix of
parameters to control the number of edges between
groups r and s, and δ is the Kronecker delta. +e

probability of observing a network G with adjacency
matrix A can be written as

P(G ∣ g, θ,ω, T) � 
i<j

ti≠tj

θiθjωgigj
 

Aij

Aij!
exp −θiθjωgigj

 

�
iθ

ki

i


i<j
ti≠tj

Aij

× 
rs

Tr≠Ts

ωmrs/2
rs exp −

1
2
ωrs ,

(1)

where ki is the observed degree of vertex i and
mrs � ijAijδgi,r

δgj,s is the number of edges between groups
r and s. After taking partial derivatives with respect to ωrs on
the logarithm of equation (1), we can get the maximum
likelihood parameter as follows:

ωrs � mrs. (2)

+e maximum likelihood θi can be found via the con-
strained maximization of the logarithm of equation (1)
subject to iθiδgi,r

� 1 using Lagrange multipliers, i.e.,

θi �
ki

κgi

, (3)

where κr � smrs is the sum of the degrees in group r.
Empirically observed networks are often noisy with

missing or spurious edges. +erefore, we examine
the ability of biCNEQ to analyze a range of synthetic
networks generated by a mixed model, which is a com-
bination of planted structure ωplanted and a random net-
work model ωrandom. +e later model is used to create
various levels of uniformly random noise. We consider
two forms, as in [4], an easy and a difficult case, to il-
lustrate the biCNEQ’s performance under different
conditions.

We specify g and ωplanted and create mixed networks
using g. +en,

ω � λωplanted
+(1− λ)ωrandom

, (4)

where the mixed parameter λ takes values between 0 (all
noise) and 1 (all planted structure) and ωplanted

rs � mrs

according to equation (2). We let ωrandom
rs � κrκs/m, where m

is the total number of edges in the network.

2.1.1. An Easy Case. In the easy case, we define the mixed
matrix to have an easily identifiable community structure
which consists of four equally sized, unambiguous, and
nonoverlapping components with each made up of one type-
a and one type-b community. Let N� 60 for each type and
divide these vertices evenly across the four components,
where m1,5 � m2,6 � m3,7 � m4,8 � 150. +e symmetric entry
has the same value.We create networks usingωrandom. Finally,
we use the code, downloaded from http://www.danlarremore.
com/bipartiteSBM/makeEasyCaseNetworks.m, to generate
mixed synthetic networks of an easy case for testing with the
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specification above and with its degree distribution
unchanged.

2.1.2. A Difficult Case. In the difficult case, the mixed matrix
we define is given a less easily identifiable community
structure by creating partially overlapping communities,
ka ≠ kb, and has a broad degree distribution. We set different
sizes for the communities with 70 type-a vertices, divided
evenly into 2 communities {35, 35}, and 30 type-b vertices,
divided into 3 communities {10, 15, 5}. +en, we let m1,3 �

m2,4 � 250 and m1,5 � m2,5 � 150; θi can be obtained using
equation (3).+e symmetric entry has the same value. Finally,
we use the code, downloaded from http://www.danlarremore.
com/bipartiteSBM/makeDifficultCaseNetworks.m, to gener-
ate the mixed synthetic network of a difficult case for testing
with the specification above and degree distribution
unchanged.

2.2. Empirical Networks. +e Southern women network
collected by Davis et al. [20] contains the observed at-
tendance at 14 social events by 18 Southern women.
+is network was commonly used as a benchmark
for bipartite network community detection algorithms
[4, 13, 21, 22], much like the Zachary “karate club” that
was used for benchmarking unipartite community de-
tection algorithms.

2.3. Projection Procedure

2.3.1. Projection. Given a bipartite network with an Na × Nb

bipartite adjacency matrix B, where Na and Nb are the
number of type-a and type-b vertices, respectively. Bil � 1, if
there is an edge between type-a vertex ai and type-b vertex
bℓ; otherwise, Bil � 0.

A common way to represent and study bipartite net-
works consists of projecting them onto links of one kind of
vertex [23]. +e standard projection method simplifies the
system to a unipartite network. For instance, from a bi-
partite network of scientists and papers, one can extract a
network of scientists only, who are related by coauthorship.
However, such a projection loses a lot of information and
leads to an oversimplified and less useful representation
[6, 19, 24]. +erefore, we refine it in an alternative way
below.

We define for each type-a vertex ai the Nb vector [19]:

σi
� (. . . , 1, . . . , 0, . . . , 1, . . .), i � 1, 2, . . . , Na, (5)

where σi
ℓ � Biℓ is equal to 1 if there exists one edge between

ai and bℓ; otherwise, it is 0.+en, we calculate the correlation
between vertices ai and aj using the cosine similarity [25],
which is a symmetric correlation measure. +at is,

Cij �
σi · σj

σi| | σj| |
� cos θij, (6)

where σi · σj denotes the scalar product between σi and σj.
Besides,

σi


 �

�������



Nb

ℓ�1
σi
ℓ 

2




�

��

ki



, (7)

where ki is the degree of vertex ai. +is measure of cor-
relation, which corresponds to the cosine of the two
vectors in an Nb-dimensional space, is equal to 1 when
their entries are strictly identical and vanishes when they
have no common entries. Specifically, for each pair of type-
a vertices, Cij � 0 when ai and aj have no common edges
with any type-b vertices, and Cij will become 1 when they
have identical edges. We call the Na × Na matrix a sim-
ilarity matrix, with its element Cij, and the unipartite
weighted network with similarity matrix C is a similarity
network.

In [19], the authors revealed the emergence of social
communities and music genres by filtering similarity
matrices. However, the threshold of filtering coefficient
was selected arbitrarily by the authors, and the com-
munity structures they found were not unique. To avoid
this issue, we firstly would like to know the relation
between the similarity correlation and community
membership of vertices. We now make an analysis of
relations among edge existence, similarity correlation,
and community membership of the unipartite network
vertices.

2.3.2. Relation between Similarity Correlation and Com-
munity’s Edges. According to the definition of a commu-
nity [6, 26, 27], there are many edges within communities
but few edges between communities. Modularity [17, 28] is
the most popular function to measure the division quality
of a network. Given a particular network with an N × N

adjacency matrix A � Aij , its modularity is defined as
follows:

Q �
1
2m


ij

Aij −
kikj

2m
 δ gi, gj , (8)

where ki is the degree of vertex i, m is the number of edges,
and gi denotes the community to which vertex i is assigned.
+e δ function yields 1 if vertices i and j are in the same
community (gi �gj) and is 0 otherwise. +erefore, each
pair of vertices with an edge between them is more likely to
be in the same community than in a different community.
+is is because it will increase the value of Q if they are in
the same community but makes no contribution to Q
otherwise.

Now, we investigate whether a pair of vertices with a
higher similarity correlation is more likely to be in the same
community rather than a different community. We let the
ith row of A be the ith vertex’sN-vector σi and use the cosine
of the two vectors σi and σj in the Nb-dimensional space, to
quantify the correlation Cij between vertices i and j. It is
obvious that there are more coneighbors between a pair of
vertices with a higher correlation. Moreover, we have proven
in the previous paragraph that two ends of an edge are more
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likely to be in the same community than in a different
community. +erefore, a pair of vertices with a higher
correlation is more likely to be in the same community than
in a different community.

We test our inference on two widely used unipartite
networks, the “karate club” network of Zachary [29] and the
network of political blogs assembled by Adamic and Glance
[30]. Both the two networks have a known community
structure. We define the average similarity correlation of the
ith vertex with the vertices in the same community as
C
aver_s
i � (j,gj�gi

Cij)/ngi
and the average similarity corre-

lation of the ith vertex with the vertices of different com-
munities as C

aver_d
i � (j,gj≠gi

Cij)/(n− ngi
), where n is the

total number of vertices and ngi
denotes the vertices

number of the community vertex I belongs to. In Figure 1,
we plot the average correlation of each of the vertices with
the vertices in the same community C

aver_s
i against those in

the different communities C
aver_d
i for each vertex of the

two networks, respectively. Figures 1(a) and 1(b) show
that one vertex’s average similarity correlation with the
vertices in the same community is greater than that in
different communities.

+erefore, we form an edge between each pair of
vertices when its similarity correlation value is higher than
a given value to construct a binary network from the
similarity network of the bipartite network. We will
discuss how to select such a threshold in the following
section.

2.4. Filtering Procedure. To derive such a binary network
from the similarity network of a bipartite network,
i.e., transform the correlation values in the continuous range
[0, 1] to an edge valued 1 or 0 between a pair of vertices, we
define a filtering coefficient ϕ ∈ [0, 1] as in [19]. We filter the
similarity matrix elements using ϕ, so that Cij ∣ ϕ � 1 if
Cij > ϕ and is equal to 0 otherwise. We call the unweighted
unipartite network C ∣ ϕ, obtained by filtering the similarity
matrix, a filtering network, whose adjacency matrix C ∣ ϕ,
with one element denoted as Cij ∣ ϕ, is named a filtering
matrix.

We take the Southern women network as an example
and plot the total degree Degree(C ∣ ϕ) � ijCij ∣ ϕ of
the filtering network as a function of the filtering co-
efficient ϕ on the women similarity network and events
similarity network both projected from the Southern
women dataset. As shown in Figure 2, the total degree
Degree(C ∣ ϕ) of the filtering network C ∣ ϕ reaches a
maximum when ϕ � 0, and the number decreases or
remains unchanged with increasing ϕ, reaching a mini-
mum when ϕ � 1. We find a total degree value of 88,
which is nearest to the exact number of 89, at ϕ � 0.614 on
the women filtering network and at ϕ � 0.464 on the
events filtering network.

+is raises a question of how do we know when the
filtering is good? To answer this, we first introduce the
concept of null model. A null model is a random network
which matches the original in some of its structural features
but does not have any community structure. +e most

popular null model is known as the standard null model of
modularity [17]. It consists of a randomized version of the
original graph, where the edges are rewired at random,
under the constraint that the expected degree of each vertex
matches the degree of the vertices in the original graph. We
call the original network the real network, which is assumed
to be a unipartite unweighted network projected from a
bipartite network.

Let A be the Na × Na adjacency matrix of the real
network of type-a vertices, then jAij � ki and m � iki is
the total degree of the real network. Now, we build a null
mode R as in [17]:

Rij �
ki × kj

m
. (9)

We would like the degree of each vertex of the filtering
network to approximate the degree of the vertices in the
original graph. Firstly, we define a measure of degree dif-
ference between the filtering network and the null model,
and we call it degree difference (DD):

DD(ϕ) � 
ij

Cij ∣ ϕ−Rij 
2
. (10)

From equation (7), we know the degree of each vertex of
the filtering network approximately matches the degree of
the vertices in the original graph when DD is minimized. By
taking a derivative with respect to Cij ∣ ϕ in equation (10)
and let it equals to 0, we have


ij

Cij ∣ ϕ � 
ij

Rij � m, (11)

where ijCij ∣ ϕ is the total degree of the filtering network
and m is the edge number of the bipartite network.
Now, we define a measure of the quality of a filtering
network of a bipartite network, which we call QFC based
on equation (11):

QFC(ϕ) � 
ij

Cij ∣ ϕ−m




, (12)

where QFC(ϕ) is actually the absolute value of
ijCij ∣ ϕ−m. +at is to say, the best filtering network,
whose total degree matches or is closest to that of the original
network, occurs when the QFC reaches a minimum with
ϕ � ϕbest. We call the best filtering network the approxi-
mation network, whose adjacency matrix C ∣ (ϕ � ϕbest) is
named an approximation matrix.

Next, we perform experiments to test QFC criterion on
the Southern women network. We plot the QFC(ϕ) of the
filtering network as a function of the filtering coefficient ϕ on
the type-a similarity network and type-b similarity network
projected from the real-world bipartite networks mentioned
above. +e approximation networks can be obtained when
QFC(ϕ) reaches its minimum value at the bottom of the
curve, as shown in Figure 3.

In this procedure, we construct the QFC(ϕ) �ijCij ∣ ϕ−m
 as a function of the filtering coefficient
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ϕ ∈ [0, 1] and find the minimum value of QFC(ϕ) and the
corresponding ϕ � ϕbest. +en, we get the approximation
matrix Aappro with elements A

appro
ij � Cij ∣ (ϕ � ϕbest) of

type-a vertices.

2.5. Estimation Procedure. In the work of [11], the authors
introduced a method for estimating the number of com-
munities in a unipartite network. We can use this method to

determine the number of communities in the approximation
network of a bipartite network.

Riolo et al. [11] employed a more sophisticated ap-
proach, the degree-corrected stochastic block model, to
overcome the shortcomings of the stochastic block model
[31], which gives substantially better results for real-world
network data. With the model specified, they find the
probability P that a particular network with adjacency
matrix A � Aij  is found by the following equation:
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Figure 1: Average correlation value of each of the vertices with vertices in the same community C
aver_s
i against those in different

communities C
aver_d
i . Tests on (a) the “karate club” network with 34 vertices and (b) the “political blogs” network with 1222 vertices.
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Figure 2: Total degree Degree(C ∣ ϕ) of filtering network as a function of the filtering coefficient ϕ. (a) Total degree Degree(C ∣ ϕ) of the
events filtering network as a function of ϕ. We can get the best total degree at ϕ � 0.464. (b) Total degree Degree(C ∣ ϕ) of the women
filtering network as a function of ϕ. We can see that when ϕ � 0.614 at the red point, and the total degree is 88 with one degree lost, which is
nearest to the exact total degree of 89.
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P(A ∣ ω, θ, g, k) � 
i<j

θiθjωgigj
 

Aij

e
−θiθjωgigj

× 
i

1
2
θ2i ωgigi

 
Aii/2

e
− θ2i ωgigi

/2 

� 
i

θdi

i 
r<s

ωmrs

rs e
−nrnsωrs 

r

ωmrr

rr e
− n2rωrr/2( ),

(13)

where k is the number of groups, gi denotes the group to
which vertex i is assigned, r and s are the groups to which the
vertices belong to, and mrs is the number of edges running
between groups r and s. +e parameter θi is used to in-
dependently control the average degree of each node and
hence match any desired distribution. +e parameter ωrs is
the expected value of the adjacency matrix entry Aij for
vertices i and j belonging to groups r and s, respectively, and
they control the community structure.+e parameters above
have been discussed in detail in [31].

After integrating the parameters ω and θ, from equation
(13), we have

P(A ∣ g, k) � 
r

n
κr

r

nr − 1( !

nr + κr − 1( !
× 

r<s

mrs!

ρnrns + 1( 
mrs+1

· 
r

mrr!

(1/2)ρn2
r + 1( 

mrr+1,

(14)

where nr is the number of vertices in group r and κr is the
sum of the degrees of the vertices in group r.

We use equation (13) to derive the probability
P(g, k ∣ A):

P(g, k ∣ A) �
P(g, k)P(A ∣ g, k)

P(A)
, (15)

where

P(g, k) � (n− 2)
−k



k

r�1
nr!. (16)

+e values k and g define the “state” of a statistical
mechanical system with the probability P(g, k ∣ A). States
of this system are sampled in proportion to the proba-
bility using Markov chain Monte Carlo sampling. +en,
an estimate of the probability P(k ∣ A) of having k com-
munities given the observed network A is found using
the histogram of values of k over the Monte Carlo sample.
+en, the most likely value of k is the one for which
P(k ∣ A) is greatest. For one network, we performed 10000
Monte Carlo sweeps, each one of which include n indi-
vidual nodes moves of two types [11]. After one sweep,
the values k and g may change, if k� 5, k� 3, and k � 2
show out, respectively, 5000, 3000, and 2000 sweeps,
then fraction of community numbers P(k � 5/A) � 5000/
10000 � 0.5, P(k � 4/A) � 0.3, and P(k � 2/A) � 0.2. +us, the
most likely value of k is 5.

We set Aappro as the input to the unipartite network
communities number estimating method of Riolo et al. [11]
to estimate the number of communities in the network of
type-a vertices. +en, by transposing the affiliation matrix B
and using the same method as above, we can estimate the
number of communities in the network of type-b vertices.

Now, let us analyze the time complexity of our method
for type-a network. In the projection procedure, we take
O(N2

aNb) times to calculate cosine similarity. +en, we take
time approximately O(N2

a) to finish the filtering procedure,
mainly finding the total degree ijCij ∣ ϕ of one filtering
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Figure 3: QFC(ϕ) of filtering network as a function of the filtering coefficient ϕ. (a) QFC(ϕ) of the women filtering network. We get the
minimum QFC(ϕ) � 1 when ϕbest � 0.614 at the red point. (b) QFC(ϕ) of the events filtering network. We get the minimum QFC(ϕ) � 1
when ϕbest � 0.464 at the red point.
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matrix. Finally, we take O(Nak) to move n nodes to k
communities and O(N2

ak2) to calculate the complete
probability P(g, k ∣ A), so the estimation procedure takes
time O(N2

a). +erefore, the complete time complexity of our
method is O(N2

aNb + N2
bNa).

3. Results

In this section, we compare the partitions generated by other
one-mode projections with the performance of the proposed
biCNEQ. +ere are two types of projections, which we call
classical unweighted projection (CUP) and classical
weighted projection (CWP) in order to distinguish from our
method. An unweighted projection of a bipartite network
onto its type-a vertices is obtained by letting two type-a
vertices i and j be connected if they share any type-b
neighbor k. Each edge of a weighted projection has a weight
equal to the number of shared neighbors. Given an adja-
cency matrix B � Na × Nb, the classical weighted projection
matrix P and the classical unweighted projection matrix P

are, respectively, given by P � B2 and Pij �
1, if Pij ≥ 1,

0, if Pij � 0,


where the diagonal blocks of Na × Na and Nb × Nb

correspond to the projections onto type-a and type-b
vertices, respectively. +e matrix P is equivalent to a “two-
step” adjacency matrix, with each entry weighted by the
number of length-2 paths between each pair of vertices [4].

+en, we set P or P as the input to the unipartite network
communities number estimating method of Riolo et al.
[11]. We will demonstrate that our method performs better
than CUP and CWP in the following sections.

3.1. Synthetic Network: Ae Easy Case. As the mixed pa-
rameter λ increases, i.e., the level of noise is decreased, the
fraction of correct community numbers of the approxi-
mation network of type-a vertices and type-b vertices cal-
culated by the biCNEQ increases as a whole (blue line in
Figure 4). However, CUP and CWP only give correct
community numbers of the network in the noise-free sit-
uation (λ � 1), as the red and green lines in Figure 4. +en,
we use our method to derive the approximation networks of
synthetic mixed networks generated with λ � 0.6 and λ �

0.65 (red circles in Figure 4) and show posterior probabilities
of the number of communities in the approximation net-
work in Figure 5. As shown in Figures 4 and 5, when λ≥ 0.65,
our method can estimate the correct number ka � 4 of
communities in the type-a vertices approximation network
with the adjacent matrix Aa for this easy case. Analysis of the
type-b vertices approximation network is carried out in the
same way.

Next, we test whether the biCNEQ scales well when the
parameters of synthetic networks were set as Table 1. Firstly,
we define success estimation rate (SER) as

SER �
the runs of Monte Carlo sweeps that estimates correctly the highest average likelihood

the total runs of Monte Carlo sweeps performed
, (17)

where each run includes 50000 Monte Carlo sweeps. +e
greater the SER is, the better the biCNEQ performs. As
can be seen from Figure 6(a), our method performs re-
liably when λ≥ 0.65 and ka � kb � 4 whereas CUP and
CWP can only deal with the network when noise free. As
can be seen from Figure 6(b), the biCNEQ performs less
well when the size of communities ng grows. +e biCNEQ
performs less well when the level of noise increases, and
the number K of planted communities grows and hardly
gives right community number when K � Ka + Kb � 20
and ng � 300.

3.2. SyntheticNetwork:AeDifficultCase. For ourmethod, as
shown in Figure 7 (blue line), when the level of noise is
decreased, the fraction of correct estimates of the number of
communities of the approximation network type-a vertices
remains stable with small fluctuations while λ< 0.8. It in-
creases sharply when λ≥ 0.8. +at of type-b vertices remains
stable with small fluctuations when λ< 0.75 and increases
sharply when λ≥ 0.75. We used our method to derive the
approximation networks of synthetic mixed networks
generated with λ � 0.8 and 0.75 (see red circles in Figure 7)
and show posterior probabilities of the number of com-
munities in the approximation network in Figure 8. As seen
from Figures 7 and 8, our method can estimate the correct

number ka � 2 of communities in the type-a vertices ap-
proximation network with the adjacent matrix Aa when
λ≥ 0.8 and kb � 3 of communities in the type-b vertices
approximation network with the adjacent matrix Ab when
λ≥ 0.75 for the difficult case.

However, CUP and CWP can only correctly identify
three communities in the type-b unipartite network without
noise (λ � 1) and fail to estimate the correct community
number in testing on the type-a unipartite network, as the
red and green lines shown in Figure 7, respectively. +e
reason is the average size of type-a communities (35 nodes)
is bigger than that of type-b communities (10 nodes).
Furthermore, we found that biCNEQ performs less well
when the size of communities ng grows and fails to work
even when ng reaches 40 nodes with λ � 1 and ka � 2, kb � 3,
which is a very small network.

3.3. EmpiricalNetworks. We use our method, with a filtering
coefficient of ϕ � 0.614, as shown in Figure 3, to create the
Southern women approximation network, whose adjacency
matrix is denoted as Aw. +en, we use Aw as the input to the
method of Riolo et al. [11]. As shown in Figure 9(a), we can
estimate the correct number kw � 2 of Southern women
communities which matches the one determined in
[4, 21, 22]. Figure 9(b) shows that, for the events, ke � 3
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Figure 4: Test of biCNEQ against classical projections on synthetic networks in the easy case. Each point shows the median of the
corresponding values on 100 networks. (a) +e fraction of correct number ka � 4 of communities in the approximation network of type-a
vertices. (b) +e fraction of correct number kb � 4 of communities in the approximation network of type-b vertices.
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Figure 5: Posterior probabilities calculated for the approximation networks of the synthetic mixed networks in the easy case. +e synthetic
networks were generated with λ � 0.6 (a) and λ � 0.65 (b). Each bar shows the median of the corresponding values on 100 networks.

Table 1: Parameters set for synthetic networks.

K ng λ mrs, r � 1, . . . , Ka,

s � r + Ka

Figure 6(a) Ka � Kb � 4 100 0 to 1 with one step is 0.05 2000
Figure 6(b) Ka � Kb � 7 100, 300 0.65 to 1 with one step is 0.05 2000, 18000
Figure 6(c) Ka � Kb � 2, . . . , 10 300 0.65, 0.8, 1 18000
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Figure 6: Tests of biCNEQ on synthetic networks with parameters set as Table 1. For each network, we performed 10 runs of 50 000 Monte
Carlo sweeps each. (a) +e fraction of correct number ka � 4 of communities in the approximation network of type-a vertices found by
biCNEQ against classical projection as a function of λ. Each point shows the results from the run that finds the highest average likelihood. (b)
+e success estimation rate SER of biCNEQ tested on the approximation network of type-a of synthetic network with ng � 100 against
ng � 300 as a function of λ. (c) +e success estimation rate SER of biCNEQ tested on the approximation network of type-a of synthetic
network with different values of λ as a function of the true number of communities Ka.
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Figure 7: Test of biCNEQ against classical projections on synthetic networks in the difficult case. Each point shows the median of the
corresponding values on 100 networks. +e fraction of correct number (a) ka � 2 of communities in the approximation network of type-a
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receives the most weight but ke � 2 comes a close second.
It is interesting that the number of events groups in [21] is 2
but in [4], it is 3. However, the community numbers of
women and events calculated by both the classical projection
methods are 1 which is not plausible.

4. Conclusions

In this paper, we developed a method called biCNEQ for
inferring the number of pure-type communities into which
a bipartite network can divide. We designed a measure of

the filtering quality named QFC to select a threshold of
filtering coefficient to filter a weighted similarity network
projected from a bipartite network to obtain a binary
unipartite network. +en, we used the method of [11] to
estimate the number of communities in the approximation
network of each type of vertices. Via tests, biCNEQ gives
correct answers and performs better than the classical
unweighted and weighted projection methods on an em-
pirical network with a known community structure and
mixed synthetic networks including an easy case and a
difficult case.
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Figure 8: Posterior probabilities calculated for the approximation networks of the synthetic mixed networks in the difficult case. +e
approximation network of (a) type-a vertices generated from a synthetic mixed network with λ � 0.8 and (b) type-b vertices generated from
a synthetic mixed network with λ � 0.75. Each bar shows the median of the corresponding values on 100 networks.
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Figure 9: Posterior probabilities calculated for the unipartite approximation network for the Southern women dataset using our method.
For the approximation network of women and events, we performed 10 runs of 50, 000 Monte Carlo sweeps, respectively.
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As discussed in the last section, the performance of our
method degrades when the community size grows, espe-
cially in the difficult case synthetic network. +is short-
coming makes biCNEQ hard to scale well on the real-world
networks where there exists community structure. +e
reason for this may be due to information loss in the
projection and filtering procedure or other stages of the
proposed method. +us, in the future work, the following
two issues can be investigated: (1) an improved projection
approach to minimize the information lost in the biCNEQ
method can be developed and (2) a projection-free ap-
proach using a bipartite degree-corrected stochastic block
model and Markov chain Monte Carlo sampling may be
proposed.

Data Availability

+e community and edge data of the “karate club” net-
work and the “political blogs” network are obtained
from Newman’s web pages (http://www-personal.umich.
edu/∼mejn/dcsbm/ZacharyCorrectOutput/DegreeCorrected/
ActualComms.tsv, http://www-personal.umich.edu/∼mejn/
dcsbm/ZacharyCorrectOutput/DegreeCorrected/EdgeLists.
tsv, http://www-personal.umich.edu/∼mejn/dcsbm/PolBlogs
CorrectOutput/DegreeCorrected/ActualComms.tsv, and http://
www-personal.umich.edu/∼mejn/dcsbm/PolBlogsCorrect
Output/DegreeCorrected/EdgeLists.tsv).
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