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Computing the distinct features from input data, before the classification, is a part of complexity to the methods of automatic
modulation classification (AMC) which deals with modulation classification and is a pattern recognition problem. However, the
algorithms that focus onmultilevel quadrature amplitudemodulation (M-QAM) which underneath different channel scenarios is well
detailed. A search of the literature revealed that few studies were performed on the classification of high-order M-QAM modulation
schemes such as 128-QAM, 256-QAM, 512-QAM, and 1024-QAM.)is work focuses on the investigation of the powerful capability of
the natural logarithmic properties and the possibility of extracting higher order cumulant’s (HOC) features from input data received
raw.)e HOC signals were extracted under the additive white Gaussian noise (AWGN) channel with four effective parameters which
were defined to distinguish the types of modulation from the set: 4-QAM∼1024-QAM. )is approach makes the classifier more
intelligent and improves the success rate of classification.)e simulation results manifest that a very good classification rate is achieved
at a low SNR of 5 dB, which was performed under conditions of statistical noisy channel models. )is shows the potential of the
logarithmic classifier model for the application ofM-QAM signal classification. furthermore, most results were promising and showed
that the logarithmic classifier works well under both AWGN and different fading channels, as well as it can achieve a reliable
recognition rate even at a lower signal-to-noise ratio (less than zero). It can be considered as an integrated automatic modulation
classification (AMC) system in order to identify the higher order ofM-QAMsignals that has a unique logarithmic classifier to represent
higher versatility. Hence, it has a superior performance in all previous works in automatic modulation identification systems.

1. Introduction

Efficacious information transmission can be realized very
clearly in trendy communication systems, and the trans-
mitted signals are typically modulated by using various
modulation ways. Modulation recognition is an in-
termediate way that must usually be achieved before signal
demodulation and information detection, and it represents
the substantial feature in modern radio systems to give
knowledge on modulation signals rather than signal de-
modulation and can be used in decoding both civilian and
military applications such as cognitive radio, signal iden-
tification, menace assessment, spectrum senses, and man-
agement, which allows to more efficiently use the available
spectrum and increase the speed of data transfer. Further-
more, the unknown signal classification is a decisive weapon
in electronic warfare scenarios. )e electronic support
management system plays a paramount role as a source of

information is required to conduct electronic counter re-
pression, threat analysis, warning, and target acquisition.

Particular recognition to modulation is the identification
of types of the transmitted signals that lie in noncooperative
channel environment groups which are significant for fol-
lowing up the signal demodulation and data extraction, and
this was considered as the major turn to automatic modu-
lation classification (AMC) which became an attractive
subject for researchers, yet there is a major challenging for
engineers who deal with the design of software-defined radio
systems (SDRSs) and transmission deviation. )e imple-
mentation of sophisticated information services and systems
to military applications under a congested electromagnetic
spectrum is a major concern issue to communication engi-
neers. Friendly signals must be safely transmitted and re-
ceived, whilst enemy signals should be found and jammed [1].

)e first base of AMC theory is provided in [2], the
essential ideas proposed at Stanford University in domestic
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project and was documented since 1969, and nowadays, the
AMC is extensively used and well known for communica-
tion engineers as a significant part in the internal design of
intelligent radio systems [3, 4].

Currently, digital modulation identification algorithms can
be split into two techniques: a maximum likelihood hypothesis
method which is based on decision theory [5] and statistical
pattern recognition which relies upon the feature extraction
ideas [6, 7], in uncooperative channel environment. )e al-
gorithms of the pattern recognition technique are usually used
in practical application, and that is due to the absence of prior
knowledge from received modulation signals [8]. )e dis-
crimination method has particularly beneficial features for
pattern recognition which are initially extracted from the
vectors of data and the identification of the signal modulation
mode that was completed upon the coverage between char-
acteristic parameters and limits of the extracted features which
was considered as the knownmode of the modulation type [9].

In the last five years, a new modulation classification
technique has been proposed at the same time with the evo-
lution of the automatic digital signal modulation recognition
algorithms research, and this new modulation offers a new
trend of complicated signal sets and higher order modulation
signals. )e most commonly used features are high-order
cumulants (HOC) and high-order moment (HOM) [10]. )e
HOC-based techniques show superior performance to classify
the digital modulation signals at a low signal-to-noise ratio
(SNR); these algorithms were documented in literature
[11–13]. Nevertheless, they were not appropriate to classify
higher-order M-QAM modulation formats. Constellation
shape varies from one modulation signal type to another in
order to be considered as a robust signature.

)e constellation shape was used in the algorithms in
references [14–16] to recognize various types of higher order
modulation including 8-PSK and 16-QAM. )e recognition
of success rate probabilities is around 95%, but it still required
more SNR which may reach 4 dB. However, the constellation
shape can be classified into M-PSK and M-QAM, and at the
same time, they are sensitive to several wireless channels that
could seriously make confusions in work; these comprise
frequency offset, phase rotation, and the application of raised
cosine roll-off filters. Under this situation, the symbol rate and
frequency offset setting must be more accurate during the
periods of presentment, and at the same time, the most widely
used features are a cyclic spectrum and cyclic frequency that
could help multiple unwanted signals to be detected with each
of temporal and frequency-based overlaps [17–20].

In 2012, Dobber and his coworkers [21] suggested two
novel algorithms for the recognition of 4-QAM, 16-QAM,
64-QAM, and QAMV.29 modulation schemes; also other
[22, 23] authors suggested to use higher order cyclic
cumulants (CCs) which were obtained from received signals
as features for modulation classification. Also, this had been
put forward in [24] which presents a method to classify
a number of mixed modulation schemes with an assort-
ment of N-class problems, and this technique also
achieved a notable performance at low ranges of SNR. Due
to the development of algorithms in machine learning, the

researchers had started to design classification algorithms
based on some aspects of machine learning which improved
the classification ability and gives further pros to the clas-
sifier in terms of distinguished types of modulation signals.

Some investigations which were achieved on the behav-
iors of hidden naive Bayes (HNB) [25] and on combination of
naive Bayes (NB) and other types of classifiers to create a new
classifier named multiple classifier [26] certified that such
classifier types were highly effective compared to conventional
classifiers in terms of a small number of training iterations.

Supervised learning technique was combined with
a modified K-means algorithm that is based on four famous
optimization algorithms. )is modification presented a new
generation of the AMC technique. Likewise, artificial neural
networks (ANNs) with genetic algorithms were studied and
considered by Norouz and his coworkers [27], and also
support vector machine (SVM) classifier in [28, 29].

)e ways based on ANN and SVM show a superior
performance although there is less prior information of
signal features. However, multiple training samples and
a long training period are necessary to accomplish sufficient
learning which increases the computational complexity and
makes the processing time longer.

In the last five years, researches widely explored the new
techniques in order to reduce the required SNR and make it
more efficient of recognition capability through focusing on
robust features and classifier designs. One of the weak points
of the previous algorithms is that the nature of the decision-
tree is that it requires fixed threshold values due to the
features that had been proposed by the authors, and these
features are highly sensitive to any changes in SNR that can
make the threshold values be valid for small ranges of SNR
above to 10 dB. However, there had been no work until now
that concentrates on the recognition of higher order QAM
signals in terms of the shape of feature distribution curves.

In fact, this assumption gives a good understanding of the
behavior of systems and reflects their major trends; therefore,
under the circumstance of a channel corrupted by AWGN,
this paper derived a relationship among of the higher order
cumulant as features and threshold levels, in order to evaluate
the performance ofM-QAMmodulation recognition technique.

2. Mathematical Analyses

2.1. Logarithmic Calculation. Below are some theoretical
analyses that assumes two logarithmic functions denoted
f1(x1) and f2(x2) carrying different variable “x1, x2” but
have the same base value “n” which can be written as follows:

f1 x1(  � logn x1 ,

f1 x2(  � logn x2 ,
(1)

where the range of variables x1 ≠ x2 and the base value is
considered to be the same. )e ratio between f1(x1)
andf2(x2) can be expressed as

W x1, x2(  �
logn x1 

logn x2 
�
ln x1 /ln(n)

ln x2 /ln(n)
. (2)
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In general, the logarithmic equations can be expressed
into another equivalent form, written as

logn x1  �
ln x1 

ln(n)
. (3)

Since ln[x] is a log function, it can also be expressed as
logr[x], where “r” indicates the base value of natural log-
arithms. )erefore, also equation (2) can be calculated as

W x1, x2(  �
ln x1 /ln(n)

ln x2 /ln(n)
. (4)

Due to the equality between numerator and de-
nominator, the ln(n) part has been eliminated.)is gives the
result expressed as below:

W x1, x2(  �
ln x1 

ln x2 
, (5)

where x2 is the constant value “10” that makes w(x1, x2)

a constant as well. )e logarithmic functions are defined
based on the higher order cumulant. In Section 3, the feature
distribution curves with logarithmic properties are obtained,
and the plot depicts that the modulation scheme is less
sensitive to the variation of SNR.

3. Parameter Extraction Based on
Logarithmic Properties

3.1. Parameter Extraction Based on HOC. It is well notable
that a random variable y(t) under complex-stationary
process always has a zero mean value. )erefore, the fol-
lowing transformation formula which is based on higher
order moments can be accomplished:

C11 � cum y(n)
∗
, y(n)

∗
(  � M11,

C22 � cum y(n)
∗
, y(n)

∗
(  � M22 −M

2
20 − 2M

2
11,

C33 � cum y(n)
∗
, y(n)

∗
, y(n)

∗
(  � M33 − 6M20M31

− 9M22M11 + 18 M20( 
2
M11 + 12M

3
11,

C44 � cum y(n)
∗
, y(n)

∗
, y(n)

∗
, y(n)

∗
(  � M44 −M

2
40

− 18M
2
22 − 54M

4
20 − 144M

4
11 − 432M

2
20M

2
11

+ 12M40M
2
20 + 192M31M11M20 + 144M22M

2
11

+ 72M22M
2
20,

(6)

where the sign cum(..) represents the cumulant operation,
while the superscript “∗” represents the operation of
complex conjugate [30].

3.2. Improved Higher Order Cumulant Feature. )e loga-
rithmic expression formulas in (7)–(10) below show the
modified higher order cumulant in terms of logarithm. )e
pros of modification not only make these features insensitive
to noise but also help classifiers to recognize the increase in
the higher order modulation signals. )e simulation con-
dition tests of 10,000 signal realizations from {4∼1024}-

QAM each consisting signal length N� 4096 with a phase
offset of “π/6” with the statistical average value are shown in
Figures 1–4, the distribution curve of each feature with
varying values of the SNR.)rough the simulation results, it
is clear that the feature distribution curve is not significantly
affected by variation of noise. However, this modification
provides a better improvement in the achieved classification
activity:

fa � log10 C11


 , (7)

fb � log10 C22


 , (8)

fc � log10 C33


 , (9)

fd � log10 C44


 . (10)

4. Details on Algorithm and
Simulation Performance

)e above four HOC parameters have been derived and
modified by using the logarithmic function to get optimum
quality to recognize the M-QAM signals in the AWGN
channel. However, the basic procedure of the automatic
modulation classification system is shown in Figure 5 [31],
while the actual decision procedure of the algorithm that
has been proposed is demonstrated in Figure 6, yet the
logarithmic modulation recognition method is effective
with nine sets of M-QAM signals. )e feature distribution
curves in Figures 1–4 show the extracted features of
modulation formats. Feature extraction is a primary step
in the pattern recognition method. )reshold settings can
then be determined depending on the distribution con-
ditions of the extracted features. )e threshold levels have
been determined based on the projection of two lines
upward and downward with effective space to avoid
misclassification. )e lines are parallel to the SNR axis
(within a certain range of SNR). )e created cluster region
is used to separate required class distribution samples
(modulation format that required discrimination). )e
points are computed empirically on the y-axis (feature
distribution level), and this criterion will give a highly
effective recognition rate even with a minimum value of
SNR.

Table 1 represents the feature threshold values which
were set empirically. )e Boolean equations (12)–(16) il-
lustrated the logical decision process, while Figure 7 shows
the block diagram of the M-QAM logarithmic recognition
algorithm, which is posterior to easily implement an ex-
tension of the proposed method in real time.

Algorithm 1 formally describes the procedures for the
feature extraction and the decision for modulation recogni-
tion. On the contrary, in the feature extracting procedure, the
input is represented by the data row after modulated with M-
QAM. However, si � dx signal passes through a noisy channel
si � dx
′, and the first step in extracting is fetching C11,

C22,C33,C44}; after computing the cumulant vector of signals,
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the process of the logarithmic classifier is begun and tested
if {fa0
<fx(φ0)}, if so index1 � 1 for the 4-QAM signal.

Else if {fxi
≥fx(φi)&&fxi

≤fx(φi)} indexi � i′, where
2n′QAM, n′ > 2, i> 1, i′ > 1.

)e same procedure is carried out for {fai
, fbi

, fci
, fdi

}

with the increase in the index i, until i� 8.
Algorithm 2 formally describes the procedure of de-

ciding which classifier has a better probability to discrimi-
nate the required modulation format. )e outcome of the
classifier to recognize a single class is boosted by one, two, or
all classifiers. )is operation depends on feature distribution
curves for each class. Let us suppose that their feature
distribution curves have no overlapping parts and the curves
are approximately parallel to the SNR axis (within a certain

range of SNR). All classifiers set “true.” )e input is
{fai

, fbi
, fci

, fdi
}, with i index.

If(indexfai
�� i′)||(indexfbi

�� i′)||(indexfci
�� i′)||

(indexfci
�� i′) is true, then increase the index CCindex SNR.

)is procedure continues until {fai
, fbi

, fci
, fdi

}i�8
Algorithm 2 has been developed to shorten the execution

time of signal recognition and classifier speed increment
and, moreover, to improve the accuracy of the classifier.
Algorithm 2 can be summarized as follows: the comparison
is achieved by logical operation of the sequential status
{fai

, fbi
, fci

, fdi
}i. As result if either present statue could not

recognize the candidate class, in both cases of signal/noise
power ratio is greater or less than 0 dB. To overcome that
situation, other classifiers strengthened the present status
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Figure 2: Feature “fb” distribution curve vs SNR with the test of
10,000 signal realizations from {4∼1024}-QAM each consisting
signal length N� 4096 with a phase offset of “π/6.”
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Figure 4: Feature “fd” distribution curve vs SNR with the test of
10,000 signal realizations from {4∼1024}-QAM each consisting
signal length N� 4096 with a phase offset of “π/6.”
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signal length N� 4096 with a phase offset of “π/6.”
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signal length N� 4096 with a phase offset of “π/6.”
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and boosted the probability of the correct recognition rate
before deciding the correct modulation.

)e mathematical expression of the decision boundary
of the logarithmic classifier algorithm of the higher order
QAM signals is expressed below. For instance, for an input
feature Dx

(1), the threshold levels are concluded from the
results in Table 1 at i � 0 and expressed as logical status:

D
x
(1) � fa ≥fa φ0( &fa <fa φ2(  . (11)

Remark: i′ � (i + 1) for 4-QAM, i′ � 1; likewise the ex-
pression of Dx

(i)>1 is as follows:

D
a
(i+1) � fa ≥fa φi−1( &fa <fa φi+1(  , (12)

D
b
(i+1) � fb ≥fb φi−1( &fb <fb φi+1(  , (13)

D
c
(i+1) � fc ≥fc φi−1( &fc <fc φi+1(  , (14)

Start

Calculate logarithmic 
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Figure 6: Flowchart of the M-QAM recognition algorithm.
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Feature boundary based on logic status

Constellation 
shape with 

AWGN 

Data normalized

Logarithmic features
{ fa, fb, fc, fd }

Modulation type

Decision boundary
{Da (i + 1)}

PCC (%)

PCC: probability of correct classification
fx : feature data vector

Decision boundary
{Db (i + 1)}

Decision boundary
{Dc (i + 1)}

Decision boundary
{Dd (i + 1)}

Figure 7: )e block diagram of our logarithmic classification system.

Input: generate digital M-QAM modulation signals;
Dx � d1, d2, d3, . . . , di, and x ∈ a, b, c, d{ },
M� {2n}, n� 2, 3, 4, 5, 6, 7, 8, 9, 10
si � dx; si row of data after modulated by M-QAM signal
Output: v ∈ index fai

, fbi
, fci

, fdi
 ; output boundary with indexi

Step 1: si � dx
′; corrupted by Gaussian random noise

Calculate cumulants C11, C22, C33, and C44
Step 2: fai

� log10[|C11i
(si)|]; fbi

� log10[|C22i
(si)|];

fci
� log10[|C33i

(si)|]; fdi
� log10[|C44i

(si)|] ;
Step 3: If fa0

<fx(φ0) ; 4-QAM
indexi � 1;
Step 4: Else If fxi

≥fx(φi)&&fxi
≤fx(φi) ;

where 2n′QAM; n′ > 2, i> 1, i′ > 1
indexi � i′;
Step 5: Return v;

ALGORITHM 1: Logarithmic classifier of higher order QAM modulation signals.

Table 1: Optimum threshold values to each logarithmic feature.

I fa fb fc fd

0 0.5 1.5 1.5 3
1 0.95 2.2 3 5
2 1.3 2.7 4 6.4
3 1.52 3.1 5 7.6
4 1.8 3.7 6.3 9
5 2.2 4.3 6.6 10
6 2.5 4.8 7.5 11
7 3 5.7 9 12
8 4.5 7.5 12.5 15.5

Input: v ∈ index fai
, fbi

, fci
, fdi

 
i
; input boundary with indexi

Output: PCCi
; probability of correct recognition

Step 1: If (indexfai
�� i′){||(indexfbi

�� i′)||(indexfci
�� i′)||(indexfdi

�� i′)};
CCindex SNR � CCi + 1; correct rate counts
End
Step 2: Return Pcc;

ALGORITHM 2: Choose a higher and better classifier.
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D
d
(i+1) � fd ≥fd φi−1( &fd <fd φi+1(  , (15)

Di � D
a
(i+1) D

b
(i+1)







D
c
(i+1) D

d
(i+1)



 , (16)

where fx(φi) is the threshold value to each of the logarithmic
features, in which x ∈ a, b, c, d{ } and i � 0, 2, 3, 4, . . . , 8, where
the threshold count here is 8, and also i′ � 1, 2, 3, 4, . . . , 9 is
a class pattern number ofQAMsignals that is being recognized.

Referring to the flowchart in Figure 7, and equations
(12)–(16), under the effect of SNR, theMonte Carlo simulation
was carried 10000 times realization for each one of the nine

M-QAM signals and then it was tested by using the proposed
logarithmic classifier, and the phase was offset by using three
degrees starting from 1/6π as the reference point.

)is work emerges some promising results, and the
simulation results are arranged in Figures 8–15. )e most
striking result that formed in Figures 8–11 shows that when
SNR ≥ 5, the recognition rate of M-QAM signals can reach
over 99% even with variation in both sample length and
phase offset; therefore, the algorithm proposed in this paper
is very efficient in recognizing these signals, and in order to
evaluate the performance of the proposed algorithm,
a comparison is conducted in terms of the probability of
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correct classification (PCC) versus SNR which can be for-
mulated as

PCC � 

j

k�1
p ωk ∣ ωk( P ωk( ,

probability of correct classification rate%

� PCC · %100.

(17)

In the same direction, “J” is the modulation signal
candidate classification (ω1,ω2,ω3,ωj), where P(ωk) is the
probability of the modulation scheme when (ωk) occur,
while P(ωk ∣ ωk) is the probability of correct classification
when an (ωk) constellation is sent [32].

5. Discussion

All the simulations have been done under the computer
simulation environment.)e experiments were carried out in
three stages in the presence of AWGN: first, extract the HOC
features and then pass through the feature modifier, the latter
will be a logarithmic classifier based on HOC. Second, make
a decision based on the threshold algorithm, and third,
achieve the evaluation of PCC % for each modulation type.

It appears from the simulation results that the best
performance curve is achieved in using the length of sample;
4096 samples. )is was performed based on the fact that
increasing the data set can overcome the overfitting prob-
lem. Nevertheless, this performance has the highest
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Figure 10: )e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM consisting signal length
N� 4096 and phase offset “π/3”.
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Figure 11:)e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM each consisting variable
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classification rate at a low SNR from –3 dB to 20 dB, as
shown in Figure 8.

On the contrary, the curves for variable sample length
[64, 128, 256, 512, 1024, 2048, and 4096] indicate a con-
verged accuracy in the same test range of the SNR, and this
can be clearly observed in Figure 11.

)e accuracy of classifications is lower when reducing the
number of samples transmitted, while in the proposed al-
gorithm, the sample length has been reduced to [2048, 1024,
512, 256]. )e probability of the correct classification ratio
ranges from about 80% to 100% in the SNR range of 0 to
20 dB, as shown in Figures 12–15, respectively. )is is mainly
due to the reason that we proposed a method which

considered that the HOC’s feature is based on logarithmic
modification; this will create a new classifier known as
a logarithmic classifier. However when SNR≥−5, the classifier
accuracy deteriorates but does not collapse the correct clas-
sification rate that becomes below 75% and the phase offset
will be considered as shown in Figure 9 in which the phase
offset were π/4, while in Figure 10, the phase offset is π/3. )e
proposed algorithm gives a consistent classification accuracy
of about 99.7%, in the range of SNR from 2dB to 20 dB.

It was observed when the phase offset changed; the
probability of the correct classification rate is almost equal,
and this was due to the high robustness of the proposed
classifier. Eventually, the superior performance of the
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Figure 12: )e probability of correct classification rate vs SNR with 10,000 signal realizations {4∼1024}-QAM each consisting signal length
N� 256 and phase offset “π/6”.
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Figure 13: )e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM each consisting signal
length N� 512 and phase offset “π/6.”
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proposed classifier changed the phase offset, and also var-
iability of the transmitted signal length is attributed to the
efficient of the proposed logarithmic classifier.

5.1. EvaluationAccuracy andComplexitywithOtherMethods.
Because of the complexity of the classification algorithm, this
research suggests a different method of classifications to
conventional modulation [10, 11], which requires a different
logarithmic operations. Yet, still it is crucial in terms of high
probabilities to correct the recognition rate and less process
is required to calculate the cumulant orders; at the same
time, the other studies do not highlight these promising lines
[21, 23, 33–35].

Although cumulant-based classifier methods were con-
venient to cope with M-QAM modulation recognition, yet it
does not provide a sufficient classification rate M-QAM
modes under fading channel, and it can even produce missing
classification in some circumstances, while the logarithmic
classifier of M-QAM signals has a better probability of correct
recognition rate at SNR range between −5dB and 20 dB.

)e performance of the logarithmic classifier of M-QAM
is superior in what was proposed in terms of its ability to
distinguish between high order and very high order of QAM
signals and thus can be considered as one of the pillars for
the modulation techniques in the future due to un-
precedented demand for the wireless communication
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Figure 14: )e probability of correct classification rate vs SNR with 10,000 signal realizations from {4-1024}-QAM each consisting signal
length N� 1024 and phase offset “π/6.”
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Figure 15: )e Probability of correct classification rate vs SNR with 10,000 signal realizations {4-1024}-QAM each consisting signal length
N� 2048 and phase offset “π/6.”
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technology expecting to reach an estimated 7.6 billion by
2020 [36].

According to Table 2, the fourth-order cumulant
classifier has the lowest complexity, while the combina-
tion between forth-, sixth-, and eighth-order cumulants
based classifier has the highest complications due to the

use of exponential operations; however, it is worth to
clarify that the logarithmic classifier in this research work
depends on unique combination between lowest and
highest orders of cumulant, and this combination will
create an integrity and a less complexity classifier system.
)e complexity of several methods proposed that

Table 2: Comparison between proposed classifier with other systems in the literature.

Reference
Classifier structure Modulation type System performance

Simulation tool
Features Complexity M-QAM M-PSK SNR (dB) Accuracy (%)

[33] C40, C41,, C42, , C60,

C61, C62,C63,

High 16, 64 4
−3 Not covering

MATLAB functions
are invoked to implement

and evaluate
the performance

0 Not covering
≥+5 78.4–100

[34] C40, C41,, C42, , C60,

C61, C62,C63,

High 16, 64 2, 4
−3 Not covering
0 Not covering
≥+5 89.8–100

[11] C11, C22,, C33, , C44, Medium 16∼256 No
−3 98.33
0 100
≥+5 100

[35]
C20, C21,, C40, , C41,

C42, C60,C61,C62,

C63

High 16, 64, 256 2, 4, 8
−3 Not covering
0 77.6
≥+5 99.96

[23]

C20, C21,, C40, , C41,

C42, C60,C61,C62,

C63, C80, C81,C82,

C83, C84

High 16, 64, 256 2, 4, 8,
and others

−3 Not covering
0 Not covering

≥+5 Unknown

[21] C20, C21,, C41, , C42,

C63
Medium 16, 64, V.29 4

−3 60
0 81
≥+5 90

[10] C20, C21,, C40, , C41,

C42
Medium 8, 16, 32, 64 4, 8, 16, 32, 64

−3 26
0 45
≥+5 95

Proposed
algorithm

Logarithmic
cumulant Medium (8∼1024) 4

−3 75–95
0 80–98
≥+5 100

“∼” refers values from M-QAM to M-QAM and “,” refers values M-QAM and M-QAM; note that signal length N� 4096.
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Figure 16: )e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM each consisting signal
length N� 4096 and phase offset “π/6” under AWGN plus fast, frequency selective Ricean fading channel with fD � 5 kHz.
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occurred in previous work was compared in detail as
shown in Table 2.

)e results shown in Figures 16 and 17 indicate the
performance degradation of classification for QAM
signals versus their performance in the AWGN channel.
It is not difficult to understand that the cause of the
performance degradation comes from the multipath
channel fading and Doppler fading effects model. )e
weakness performance of cumulant-based classifiers
with fading channels has been documented in [22]. )e
only exception in the logarithmic classifier that maintains
the same level of classification accuracy is typically at
SNR >5 dB despite the different fading channel models
used.

6. Robustness Evaluation Cases

6.1. Under Different Channel Models. Research in the
modulation classification of digital signals approximately
started since forty years ago, and the robustness evaluation
of conventional AMC methods under the AWGN channel
has been well established in the literature [37–39]. Similarly,
the use of AWGN as the channel model is a common practice
for communication engineers and researchers [19, 40].

In information theory, the basic communication channel
model AWGN that represents the effect of several random
processes occurring in nature is in the same direction, by which
AWGN is used as a channel model where the communication
impairment is an addition of white noise with a constant
spectral density and normally distributed amplitude. In this
work, the proposed logarithmic classifier has shown superior
performance under the AWGN channel even with low SNR,
also with variable lengths of the transmitted signal.

Table 2 shows the robustness analysis among previous
works which were investigated in the development of the
modulation classification algorithm. It appears very clearly

that the logarithmic classifier has higher classification ac-
curacy of modulation schemes {4-1024}-QAM, which also
achieves a high percentage when the SNR≥ 5.

Although AWGN alone could be a proper model to the
degradation of signals in free space, yet the existence of
physical obstructions such as building and towers can cause
multipath propagation losses. It implies that the signal
reaches the receiver site via multiple propagation paths.
Respecting to the relative lengths of the paths, this could be
either constructive or destructive interference. Furthermore,
relative motion between the transmitter and receiver may
cause the Doppler shift. )e performance of the proposed
classifier is also investigated in the AWGN channel with fast
frequency-selective fading also with the effect of Rayleigh
and Rician magnitude channel fading, while the phase was
randomly distributed and was assumed to be constant
through the symbol period, which indicates no loss in
signals. Rician factor is defined as the ratio between the
power of the direct path and the power of the reflected paths,
which is a constant value. Here, it is assumed to be 3 dB.

)e specification used was based on Molisch and his
coworker research [41], with a symbol rate of 3.84 × 106
symbols per second, average path gains [0,−0.9,−4.9,−8,

−7.8,−23.9]dB, path delays [0, 2, 8, 12, 23, 37] × 10−7 sec-
onds, and maximum Doppler shift of 5 kHz. Figures 16 and
17 depict the probability of correct recognition rate at signal
length N� 4096 in the AWGN plus fast, frequency selective
with 50 kHz of maximum Doppler shifts with Rician and
Rayleigh fading channels, respectively. Furthermore, Fig-
ures 18 and 19 show the probability of correct recognition
rate with variable signal lengths in AWGN plus fast, fre-
quency selective with 50 kHz of maximum Doppler shifts in
Rician and Rayleigh fading channels, respectively.

As could be observed in Figures 16 and 17, respectively,
under signal propagation over multipath, it gives an ac-
cepted classification rate when SNR is not lower than 4 dB,
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Figure 17: )e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM each consisting signal
length N� 4096 and phase offset “π/6” under AWGN plus fast, frequency selective Rayleigh fading channel with fD � 5 kHz.
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although with presence of effect of the Doppler shift. Also, it
could be observed in Figures 16 and 17. )e probability of
the correct classification rate at SNR > 4 dB is higher for the
Rician fading channels compared to the Rayleigh fading
channels. )is is because of the existence of the strong signal
due to the line of sight component. It is well noted that
a higher Doppler shift results in a lower probability of
correct classification [41]. As well as contrast to that, the
logarithmic classifier provides unexpected performance even
with the existence of the Doppler shift, and signal is
transmitted with a variable length between {64-4096}. It is

also important to underline that the proposed classifier
vouchsafes satisfactory results under both fading channel
environments Rician and Rayleigh.

As could also be observed in Figures 16 and 17, mainly, at
SNR lower than −2 dB, the correct classification rate has fallen
below 80%, especially to {32, 64, 128, 256} QAM signals. )is
could be noted when the SNR is lower than 0dB.

)e intraclass recognition of the modulation order using
the logarithmic classifier gives different results depending on
the modulation type. For example, the simulations in this
work illustrated that this recognition will be better for 1024-
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Figure 19:)e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM each consisting variable
signal length from N� {64 128 265 512 1024 2048 4096} and phase offset “π/6” under AWGN plus fast, frequency selective Rayleigh fading
channel with fD � 5 kHz.
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Figure 18:)e probability of correct classification rate vs SNR with 10,000 signal realizations from {4∼1024}-QAM each consisting variable
signal length from N� {64 128 265 512 1024 2048 4096} and phase offset “π/6” under AWGN plus fast, frequency selective Ricean fading
channel with fD � 5 kHz.
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QAM and 512-QAM schemes than other modulation
schemes, where the probability percent is high to correct the
classification rate. Similarly, the SNR is not lower than 0 dB,
and the results show that the probability of the recognition
rate gives the lowest percentage for 32-QAM and 64-QAM
signals, which can be observed in Figures 16–19. It is also
important to mention that the fluctuations in performance
in the correct recognition rate is in higher order QAM
signals, and that is due to the internal structures of the
logarithmic classifier.

It seems that the effect of variation in the frequency offset
of the transmitted signals almost insignificantly influences the
logarithmic classifier although under SNR�−2 and random
signal lengths. Figures 20(a) and 20(b) depict the probability
of the correct classification rate vs frequency offset and signal
length N� 4096. Likewise Figure 20(b) depicts the probability
of the correct classification rate vs frequency offset with
a variable signal length and the signals corrupted by AWGN.
)is end could be an important point to the proposed
classifier among the AMC methods that have tested the
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Figure 20: (a) Probability of the correct classification rate vs frequency offset and signal length N� 4096. (b) Probability of the correct
classification rate vs frequency offset with variable signal lengths from N� {64 128 265 512 1024 2048 4096} with a phase offset of “π/6.”
{4∼1024}-QAM with 10,000 signal under AWGN—only SNR�−2 dB.
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influence of the offset frequency to the transmitted signal. In
the same direction, Figure 21 shows a change in the number of
transmitted symbols vs probability of the correct classification
rate. It also well-observed that the proposed method has
a better classification rate than the proposed algorithm does
[23]. Even with this, it is a very difficult circumstance with
SNR�−2 dB in the AWGN channel. Eventually, the loga-
rithmic classification algorithm is not the best one. On the
contrary, it facilitated the process of classification of higher
order QAM signals. Nevertheless, degradation points of the
logarithmic classifier are that it is a channel-dependentmodel.
Any variations in the type of noise (colored vs. AWGN), the
number of transmitted signals present in the channel, and the
type of possible modulated signals require an overhaul of all
four tree threshold levels.

7. General Trends

Unlike the traditional AMC algorithms, the logarithmic
classifier has functional features, which make them the
preferable classifier for the medium and higher order of M-
QAM modulation schemes. Likewise, the logarithmic clas-
sifier is very useful for channels that only receive corruption
by AWGN. )e prominent results related to the AWGN
channel without fading effect have shown unexpected per-
formance. Although the classification of higher order mod-
ulation signals is more challenging than to lower order signals
due to the distance between the constellation points is small,
but on the contrary, it appears nonreal convergence during
the evaluation of the robustness of the logarithmic classifier.
)e probability of correct classification suffered from dis-
parity especially for lower order modulation schemes at the
expense of schemes that have smaller constellation point
distance; therefore from this end, it might be concluded that
more research is needed on the logarithmic classifier par-
ticularly SNR� 0. Although cumulant-based classifier

schemes with many variations is the convenient way to cope
with M-QAMmodulation schemes, signal cumulant features,
or uncoordinated combination between cumulants and
moments does not provide sufficient classification under
multipath fading channels and can even produce contrast in
the classification rate. It is also notable that this classifier
technique is not unique in terms of fixed threshold and there
exist various ways to determine threshold levels automatically
in order to improve the classification sense to the desired
modulation schemes. However, the comprehensive review
reveals that the logarithmic classifier with fixed threshold has
overcome all weaknesses points even with a severe noisy
environment, moreover, under multipath propagation
channels. On the contrary, this work has provided references
that help researchers make progress toward in the direction of
developed new generation of AMC systems, which is called as
the logarithmic classifier.

8. Conclusion

)is paper provides a method that transacts with the
modulation recognition of higher order M-QAM signals
under the effect of AWGN on a channel environment
through the usage of classifier which is cumulant-based
natural logarithmic characteristics with fixed thresholds.

)e combination of higher order cumulant and prop-
erties of the logarithmic functions created a new generation
of the cumulant-based classifier, who provides a superior
performance to classify the higher order M-QAM signals
even with a low range of SNR.

)e simulation results indicate that the correct classification
rate can reach over 92% at an SNR of 4dB under the AWGN,
even as it seems moderate over different fading channels.

According to a comparison with the recently proposed
algorithms in the literature, the performance of the loga-
rithmic classifier was efficient and also less complex.
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Figure 21: )e probability of the correct classification rate vs the number of symbols SNR with 10,000 signal realizations from {4∼1024}-
QAM, phase offset “π/6”, and signal degradation using AWGN—only SNR�−2 dB.
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Abbreviations

AMC: Automatic modulation classification
HOM: Higher order moments
HOC: Higher order cumulant
M-QAM: Multilevel quadrature amplitude modulation
AWGN: Additive white Gaussian noise
N: Signal length
Cxpq: nth order statistical cumulant with q-conjugate

order
Mxpq: nth order statistical moment with q-conjugate

order
fx: Logarithmic feature transformer and

x ∈ a, b, c, d{ }

i: )reshold count integer number
i′: Number of class pattern status of the

modulation scheme
PCC: Probability of correct classification
fD: Maximum Doppler shift
M∼M: M-QAM . . . M-QAM
SNR: Signal-to-noise ratio.

Data Availability

No data were used to support this study; thereby, this paper
provides a new entry for the M-QAM modulation recog-
nition algorithm. )e higher order {4∼1024}-QAM signals
are considered, and new attributes were extracted from
signals. “MATLAB Communications Toolbox” was used to
evaluate the proposed method. Raw data are randomly
generated by fetching the random function in the simulation
program. For more details, contact the authors.
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classification using cumulants with repeated classification
attempts,” in 20th Telecommunications Forum (TELFOR),
vol. 4, pp. 424–427, 2012.

[13] D. S. Chirov, “Application of the decision trees to recognize
the types of digital modulation of radio signals in cognitive
systems of HF communication,” in Proceedings of the 2018
Systems of Signal Synchronization, Generating and Processing
in Telecommunications, pp. 1–6, Minsk, Belarus, July 2018.

[14] B. G.Mobasseri, “Constellation shape as a robust signature for
digital modulation recognition,” in Proceedings of the IEEE
Conference on Military Communications MILCOM 1999,
pp. 442–446, Piscataway, NJ, USA, October-November 1999.

[15] B. G. Mobasseri, “Digital modulation classification using
constellation shape,” Signal Processing, vol. 80, no. 2,
pp. 251–277, 2000.

[16] C. Yin, B. Li, Y. Li, and B. Lan, “Modulation classification of
MQAM signals based on density spectrum of the constella-
tions,” in Proceedings of the 2010 2nd International Conference
on Future Computer and Communication ICFCC 2010, vol. 3,
pp. 57–61, Wuhan, China, May 2010.

[17] A. Fehske, J. Gaeddert, and J. H. Reed, “A new approach to
signal classification using spectral correlation and neural
networks,” in Proceedings of the First IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access
Networks DySPAN 2005, pp. 144–150, Baltimore, MD, USA,
November 2005.

[18] W. C. Headley, J. D. Reed, and C. R. C. Da Silva, “Distributed
cyclic spectrum feature-based modulation classification,” in
Proceedings of the 2008 IEEE Wireless Communications and
Networking Conference, pp. 1200–1204, Las Vegas, NV, USA,
March-April 2008.

[19] Y. Yuan, P. Zhao, B. Wang, and B. Wu, “Hybrid maximum
likelihood modulation classification for continuous phase
modulations,” IEEE Communications Letters, vol. 20, no. 3,
pp. 450–453, 2016.

[20] H. T. Fu, Q.Wan, and R. Shi, “Modulation classification based
on cyclic spectral features for co-channel time-frequency
overlapped two-signal,” in Proceedings of the 2009 Pacific-Asia
Conference on Circuits, Communications and Systems PACCS
2009, pp. 31–34, Chengdu, China, May 2009.

16 Scientific Programming



[21] O. A. Dobre, M. Oner, S. Rajan, and R. Inkol, “Cyclo-
stationarity-based robust algorithms for QAM signal iden-
tification,” IEEE Communications Letters, vol. 16, no. 1,
pp. 12–15, 2012.

[22] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Cyclo-
stationarity-based modulation classification of linear digital
modulations in flat fading channels,” Wireless Personal
Communications, vol. 54, no. 4, pp. 699–717, 2010.

[23] O. A. Dobre, Y. Bar-Ness, and W. Su, “Higher-order cyclic
cumulants for high order modulation classification,” in
Proceedings of the 2003 IEEE conference on Military com-
munications MILCOM 2003, pp. 112–117, Boston, MA, USA,
October 2003.

[24] C. M. Spooner, “On the utility of sixth-order cyclic cumulants
for RF signal classification,” in Proceedings of the Conference
Record-Asilomar Conference on Signals, Systems and Com-
puters, vol. 1, pp. 890–897, Pacific Grove, CA, USA, November
2001.

[25] F. Ghofrani, A. Jamshidi, and A. Keshavarz-Haddad, “In-
ternet traffic classification using hidden naive Bayes model,”
in Proceedings of the ICEE 2015 23rd Iranian Conference on
Electrical Engineering, vol. 10, pp. 235–240, Tehran, Iran, May
2015.

[26] F. Ghofrani, A. Keshavarz-Haddad, and A. Jamshidi, “In-
ternet traffic classification using multiple classifiers,” in
Proceedings of the 2015 7th International Conference on
Knowledge and Smart Technology (KST) IKT 2015, Chonburi,
)ailand, January 2015.

[27] S. Norouzi, A. Jamshidi, and A. R. Zolghadrasli, “Adaptive
modulation recognition based on the evolutionary algo-
rithms,” Applied Soft Computing, vol. 43, pp. 312–319, 2016.

[28] H. Agirman-Tosun, Y. Liu, A. M. Haimovich et al., “Mod-
ulation classification of MIMO-OFDM signals by in-
dependent component analysis and support vector
machines,” in Proceedings of the 2011 Conference Record of the
Forty Fifth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), pp. 1903–1907, Pacific Grove, CA,
USA, November 2011.

[29] D. Boutte and B. Santhanam, “A hybrid ICA-SVM approach
to continuous phase modulation recognition,” IEEE Signal
Processing Letters, vol. 16, no. 5, pp. 402–405, 2009.

[30] B. Ramkumar, “Automatic modulation classification for
cognitive radios using cyclic feature detection,” IEEE Circuits
and Systems Magazine, vol. 9, no. 2, pp. 27–45, 2009.

[31] A. Ali, F. Yangyu, and S. Liu, “Automatic modulation clas-
sification of digital modulation signals with stacked autoen-
coders,” Digital Signal Processing, vol. 71, pp. 108–116, 2017.

[32] S. Xi and H.-C. Wu, “Robust automatic modulation classi-
fication using cumulant features in the presence of fading
channels,” in Proceedings of theIEEE Wireless Communica-
tions and Networking Conference, 2006. WCNC 2006,
pp. 2094–2099, Las Vegas, NV, USA, April 2006.

[33] Z. Zhu, M. Waqar Aslam, and A. K. Nandi, “Genetic algo-
rithm optimized distribution sampling test for M-QAM
modulation classification,” Signal Processing, vol. 94, no. 1,
pp. 264–277, 2014.

[34] N. Ahmadi and R. Berangi, “Modulation classification of
QAM and PSK from their constellation using Genetic Al-
gorithm and hierarchical clustering,” in Proceedings of the
2008 3rd International Conference on Information & Com-
munication Technologies: from Ceory to Applications,
vol. 11670, Damascus, Syria, April 2008.

[35] A. Abdelmutalab, K. Assaleh, and M. El-Tarhuni, “Automatic
modulation classification based on high order cumulants and

hierarchical polynomial classifiers,” Physical Communication,
vol. 21, pp. 10–18, 2016.

[36] M. H. Alsharif and R. Nordin, “Evolution towards fifth
generation (5G) wireless networks: current trends and chal-
lenges in the deployment of millimetre wave, massive MIMO,
and small cells,” Telecommunication Systems, vol. 64, no. 4,
pp. 617–637, 2017.

[37] C.-S. Park, J.-H. Choi, S.-P. Nah, W. Jang, and D. Y. Kim,
“Automatic modulation recognition of digital signals using
wavelet features and SVM,” in Proceedings of the 2008 10th
International Conference on Advanced Communication
Technology, vol. 1, pp. 387–390, Gangwon-Do, South Korea,
February 2008.

[38] N. Ahmadi, “Using fuzzy clustering and TTSAS algorithm for
modulation classification based on constellation diagram,”
Engineering Applications of Artificial Intelligence, vol. 23,
no. 3, pp. 357–370, 2010.

[39] L. Zhou, Z. Sun, and W. Wang, “Learning to short-time
Fourier transform in spectrum sensing,” Physical Commu-
nication, vol. 25, pp. 420–425, 2017.

[40] M. H. Valipour, M.M. Homayounpour, andM. A. Mehralian,
“Automatic digital modulation recognition in presence of
noise using SVM and PSO,” in Proceedings of the 6th In-
ternational Symposium on Telecommunications IST 2012,
pp. 378–382, Tehran, Iran, November 2012.

[41] A. F. Molisch, K. Balakrishnan, D. Cassioli, and C.-C. Chong,
“IEEE 802.15.4a channel model-final report,” Environments,
pp. 1–40, 2005.

Scientific Programming 17



Computer Games 
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

 Artificial 
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence 
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c  
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

