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+e robustness problem of the classical proximal support vector machine for regression estimation (PSVR) when confronting with
samples in the presence of outliers is addressed in this paper. Correntropy is a local similarity measure between two arbitrary
variables and has been proven the insensitivity to noises and outliers. Based on the maximum correntropy criterion (MCC), a
correntropy-based robust PSVR framework is proposed, named as RPSVR-MCC. +e half-quadratic optimization method is
employed to solve the resultant optimization, and an iterative algorithm is developed to solve RPSVR-MCC. In each iteration, the
complex optimization can be converted to a linear system of equations which can be easily solved by the widely popular op-
timization techniques. +e experimental results on synthetic datasets and real-world benchmark datasets demonstrate that the
effectiveness of the proposed method. Moreover, the superiority of the proposed algorithm is more evident in noisy environment,
especially in the presence of outliers.

1. Introduction

Regression estimation from datasets is the basic subject in
the field of machine learning. We are given the training
samples of input vectors accompanied by the corresponding
targets.+e goal is to search a function estimation which best
expresses the relationship between input vectors and their
targets. In the real-world applications, many factors such as
sampling errors, modeling errors, and instrument errors
corrupt the training samples with noises and outliers, which
are extremely far away from other samples [1]. Training the
contaminated samples needs to build a robust model, which
reflects the ability of dealing with a large number of outliers
[2, 3]. +erefore, a robust method should be excellent
enough to reject outliers and construct regression on only
uncontaminated samples.

Support vector machine (SVM) was proposed by Vapnik
et al. as a successful and powerful machine learning tool,

which is based on the structural risk minimization principles
[4–6]. It strikes a balance between the empirical risk and
model complexity and can be derived by solving a convex
quadratic programming problem. One efficient variant of
SVM is the least squares SVM (LSSVM) introduced by
Suykens et al. [7, 8], which replaces inequality constraints
with equality ones, and then only needs to solve a linear
system of equations. It tremendously accelerates the training
speed. LSSVM has widely applied in a variety of real-world
tasks. Different from LSSVM, proximal support vector
machine (PSVM) is proposed by Fung and Mangasarian as
another effective variant of SVM by adding an bias item
(1/2)b2 in the objective function, which leads to a strongly
convex objective function [9]. It can be considered as a
special case of regularized LS-SVM, which gives the
simple optimal solution as well as the very fast computation
time [9]. LSSVM and PSVM both attempt to minimize
mean squares error (MSE) on training samples while

Hindawi
Scientific Programming
Volume 2019, Article ID 7102946, 11 pages
https://doi.org/10.1155/2019/7102946

mailto:zping@cau.edu.cn
http://orcid.org/0000-0002-3166-0365
http://orcid.org/0000-0003-1515-3475
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7102946


simultaneously escaping from overfitting [7]. However,
many researchers have shown that while training samples
with noises and outliers, LSSVM and PSVM are sensitive to
noises and outliers and lead to poor generalization per-
formance and bad robustness since they tend to have the
large loss owing to the SSE [8].

+ere are a lot of papers which concern about improving
the robustness of LSSVM and PSVM. A direct method of
enhancing LSSVM is outlier elimination by some advanced
techniques [10, 11]. Wen et al. employed a criterion
according to least trimmed squares to recursively eliminate
outliers [10]. In [11], samples with the slack variables larger
than the 3 times standard deviation were discard in the
training phase. Another alternative approach develops the
weight setting strategies to mitigate the influence of outliers.
+e key idea of this approach is how to set the weights of
samples. Suykens et al. assigned different weights according
to the error variables so that samples or outliers which were
less important have small weights [8]. In [12, 13], researchers
provided another weight rule that smaller weights were
commonly given to those samples with large distances from
other samples for the purpose of reducing their impact.
Brabanter et al. [14] discussed four different types of the
weighting function, which included Huber, Hampel, Lo-
gistic, and Myriad and concluded that in most cases, the
performances of Logistic and Myriad weighting functions
were ranked in the top two. But until now, it is unclear in
theory whether these weighting strategies are appropriate or
not owing to noises and outliers. Some researchers hadmade
efforts to the nonconvex loss functions to obtain great
improvement on generalization performance and robustness
[15–20]. Nonconvex loss functions directing limited the
maximal loss value directly and gave definite restrictions to
the influence of outliers and led to much less sensitive to
outliers. Recently, Correntropy derived from information
theoretic learning was a generalized and local similarity
measure between two arbitrary variables [21, 22]. It was
proved as a robust measure which was appropriate for noise,
nonGaussian noise and nonzero mean noise and had shown
its superiority in robust learning of classification and re-
gression [22, 23]. Maximum Correntropy Criterion (MCC)
was introduced as a loss function to LSSVM for regression
estimation to enhance the robustness of LSSVM, termed as
RLSSVR-MCC [24].

Inspired by the advantages of maximum correntropy
criterion, in this paper, we introduce maximum correntropy
criterion into PSVM for regression estimation (PSVR) and
derive a novel robust PSVR (RPSVR-MCC), attempting to
suppress the negative influence of outliers and enhance the
robustness of PSVR. +e proposed model integrates maxi-
mum correntropy criterion, regularization technique, and
kernel method. +e proposed RPSVR-MCC cannot be
solved directly by the classical optimization methods. +e
half-quadratic optimization technique is employed to derive
an iterative algorithm for solving the corresponding opti-
mization problem.

+e contributions of the proposed RPSVR-MCC can be
summarized as follows:

(1) A robust PSVM for the regression problem based on
maximum correntropy criterion is proposed, which
can reduce the negative influence of outliers in
minimizing the objective function, which is inter-
preted as the regularized version of RLSSVR-MCC.
Adding the bias item (1/2)b2 derives simpler ex-
pression of optimal solution and wider choices of the
kernel function.

(2) +e resultant optimization problem of RPSVR-MCC
can be transformed into a half-quadratic optimiza-
tion. Furthermore, an iterative algorithm is de-
veloped which only needs to solve a linear system of
equations in each iteration.

(3) +e proposed RPSVR-MCC is illustrated on sub-
stantial datasets including six synthetic datasets and
eleven real-world benchmark datasets under the
cases of without outliers and with outliers. +e ex-
perimental results show that RPSVR-MCC not only
derives excellent estimation accuracy but also keeps
stable performance in noisy environment, especially
in the presence of outliers.

+e reminder of this paper is organized as follows. We
present briefly a background of PSVR and maximum cor-
rentropy criterion in Section 2. Section 3 proposes a robust
PSVR in the kernel space and solves the proposed RPSVR-
MCC by an iterative algorithm. +e proposed method is
evaluated by numerical experiments on synthetic datasets
and benchmark datasets in Section 4. Section 5 concludes the
paper.

2. Background

2.1. PSVR. In this section, we concisely present the basic
principles of the classical PSVR. For more detail, the reader
can refer to [9]. Consider a regression problem with a
training dataset (xiyi)􏼈 􏼉

n

i�1, where the input vector xi ∈ Rm

and the corresponding target yi ∈ R. +e essence of the
regression problem is to search a function f(x) which best
expresses the relationship between input vectors and their
targets. PSVR is formulated as [9]

min
w,b,ξi

1
2
‖w‖

2
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2
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ξ2i , (1)

s.t. w
⊤ϕ xi( 􏼁 + b−yi � ξi, i � 1, . . . , n, (2)

where ξi is the training error and C> 0 is the pre-given
parameter that provides a tradeoff between the model
complexity and empirical risk. To solve the optimization
problem (1) and (2), we construct the following Lagrangian
function:
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2 Scientific Programming



Utilizing the Karush-Kuhn-Tucker (KKT) conditions,
training PSVR is equivalent to solving the dual problem in
the form of a linear system of equations,

K +
1
C

In + ee
⊤

􏼒 􏼓α � y, (4)

b � e
⊤α, (5)

where In denotes n × n identity matrix, α � (α1, α2, . . . , αn)⊤,
e � (1, 1, . . . , 1)⊤, and y � (y1, y2, . . . , yn)⊤. K � (Kij)n×n

denotes the matrix with element Kij � k(xi, xj) �

ϕ(xi)
⊤ϕ(xj), and k(·, ·) is the kernel function which can be

expressed as the inner product calculation in high di-
mensional feature space. Among all the kernel functions, the
most popular choice is Gaussian kernel defined by
k(xi, xj) � exp(−σ‖xi −xj‖

2), where σ > 0 is the kernel
parameter.

+e decision function of PSVR is

f(x) � w
⊤ϕ(x) + b � 􏽘

n

i�1
αik xi, x( 􏼁 + b, (6)

where αi and b are the solutions of (4) and (5).
Different from LSSVM, there is a bias term (1/2)b2 in the

objective function of PSVM, and this formulation brings
about the strong convexity of the objective function. +e
strong convexity plays a prominent part in the simpler type
of optimal solution and derives that the kernel function of
PSVM is not required to satisfy Mercer’s theorem so that
they can be selected from a wide range. PSVM can also be
interpreted as a regularized version of LSSVM. +e classical
PSVR is based on MSE measurement that equally treats all
the samples and has been considered to be sensitive to
outliers, which would seriously affect the reliability. +ey are
significant challenges mainly due to the unpredictable nature
of the error, which may be arbitrarily large in magnitude and
cannot be ignored or treated with methods devised for small
noises [23].

2.2. Maximum Correntropy Criterion. Correntropy is a re-
cently developed information-theoretic measure to deal with
error distributions with nonGaussian characteristics
[21, 22]. +e MCC expresses the similarity between the
predicted output and the real sample in the correntropy
sense. Given two arbitrary random variables A and B, their
correntropy can be defined by

Vc(A, B) � E kσ(A−B)􏼂 􏼃, (7)

where kc(·) is the kernel function which satisfies Mercer’s
theory and E(·) denotes the mathematic expectation. It has a
clear theoretical foundation and is symmetric, positive, and
bounded [22, 23]. In practice, the joint distribution of A and
B is commonly unknown and only a finite number of
samples (ai, bi), i � 1, 2, . . . , n are given. +us, correntropy
can be estimated by the following expression:

V̂c(A, B) �
1
n

􏽘

n

i�1
kc ai − bi( 􏼁, (8)

where kc(·) is the Gaussian kernel kc(·)≜G(a− b, c) �

exp(−(‖a− b‖2/c2)) with bandwidth c.+erefore, we rewrite
(8) as

V̂c(A, B) �
1
n

􏽘

n

i�1
G ai − bi, c( 􏼁. (9)

+e maximum of correntropy of an error in (7) is called
the maximum correntropy criterion (MCC) [21–23]. Dif-
ferent from the global similarity measure MSE, MCC is local
since the value of correntropy mainly depends on the kernel
function along the line A � B. Liu et al. proved that cor-
rentropy is a robust function for linear and nonlinear re-
gression, and the kernel size controls all the properties of
correntropy as one of its main merits [22].

3. Robust PSVR Based on Maximum
Correntropy Criterion

As mentioned in Section 2.1, the classical PSVR model
employs MSE measurement that has been considered to be
sensitive to outliers. In order to address this issue, we in-
troduce the correntropy in robust regression estimation.
Replacing the third term of the objective function in (7) of
PSVR with maximizing the correntropy between the true
target and the predicted value f(x) � w⊤ϕ(x) + b, a new
criterion can be derived as follows:

max
w,b

􏽘

n

i�1
G w
⊤ϕ xi( 􏼁 + b−yi, c( 􏼁. (10)

Different from the MSE measure, MCC in (10) differ-
ently considers the samples and gives more emphasis on the
small error, which implies that if a target is contaminated or
corrupted to be outlier, it will give small contribution to the
objective function. +en we get the following maximum
correntropy problem for training PSVR:

max
w,b

J(w, b) �
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􏽘
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G w
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1
2
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2
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2

b
2

􏼒 􏼓.

(11)

It combines maximum correntropy criterion, regulari-
zation technique, and kernel trick. However, the maximum
correntropy in (11) is nonlinear, it is difficult to directly
optimize. Recently, many researchers havemademuch effort
to the half-quadratic technique [25], the expectation-
maximization method [26], and the conjugate gradient al-
gorithm [27], which are devoted to solve this optimization
problem. In this paper, we use the half-quadratic technique
to solve the optimization problem (11). By introducing an
auxiliary variable, this method transforms the original ob-
jective function into a half quadratic objective function.
According to the property of convex conjugated functions
[27], the following proposition [25] holds (Algorithm 1).

Proposition 1. There exists a convex conjugated function
φ: R⟶ R, such that
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G(x, c) � max
p<0

p
‖x‖2

c2 −φ(p)􏼠 􏼡, (12)

and for a fixed x, the maximum is reached at p � −g(x, c)

[25].

Introducing (12) into the objective function of (11), the
optimization (11) can be transformed into the following
half-quadratic optimization according to Proposition 1,

max
w,b,p
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1
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2
+
1
2

b
2

􏼒 􏼓,

(13)

where p � [p1, p2, . . . , pn]⊤ stands for the auxiliary variables
appeared in the half-quadratic optimization. According to
Proposition 1, for a fixed (w, b), the following equation
holds:

J(w, b) � max
p

J(w, b, p). (14)

Furthermore, we get

max
w,b

J(w, b) � max
w,b,p

J(w, b, p). (15)

Obviously, w, b, p can be derived by alternatingly
optimizing with respect to (w, b) and p while holding the
other fix. First, if p is fixed, (13) can be reduced as the
following problem with respect to (w, b):

max
w,b
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2
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+e unconstrained optimization problem (16) can be
expressed as the following constrained problem with respect
to (w, b, ξ):

min
w,b,ξ
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s.t. w
⊤ϕ xi( 􏼁 + b−yi � ξi, i � 1, . . . , n, (18)

where ηi � −pi. +e optimization problem (17)-(18) can
be solved by constructing the following Lagrangian
function:
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From KKT conditions, we obtain
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zL

zξi

�
Cηi
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Cηi

, (22)

zL

zαi
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Substituting (20)–(22) into (23), (20)–(23) can be written
as a linear system of equations,

K + S + ee
⊤

( 􏼁α � y, (24)

where S � diag s1, s2, . . . , sn􏼈 􏼉 is a diagonal matrix with si �

−(c2/Cpi)> 0 and e � (1, 1, . . . , 1)⊤. From (24) and (21), we
get

α � K + S + ee
⊤

( 􏼁
−1y, (25)

b � e
⊤α. (26)

Second, the optimal p is directly obtained from Prop-
osition 1 by

pi � −g ξi, c( 􏼁 � −exp −
ξ2i
c2􏼠 􏼡. (27)

Implementing half-quadratic optimization for RPSVR-
MCC is given as Algorithm 1.

4. Experiments

In this section, we present experiments on six synthetic datasets
and eleven benchmark datasets to validate the performance of
the proposedRPSVR-MCC. To that end, we compare it with the
least squares support vector regression (LSSVR) [7] and PSVR
[9]; weighted LSSVR with the Hampel weight function

Input: Training set (xi, yi)􏼈 􏼉
n
i�1, C, σ, c, K, a integer M> 0, and a small real ρ> 0. Initialize pi � −ηi � −1, i � 1, 2, . . . , n, the

diagonal matrix S1 � (1/C)In, and let t � 1.
Step 1. Solve (25) and (26) to obtain αt and bt.
Step 2. Obtain error variable ξt

i by (22) and determine pt
i by (27).

Step 3. Build the diagonal matrix St+1 and then solve (25) and (26) to obtain αt+1 and bt+1.
Step 4. Let β � (αT, b)T. If t>M or ‖βt+1 − βt‖≤ ρ, go to Step 5, else go to Step 2. Let t� t + 1.
Step 5. Derive the final regression estimation by (6).

ALGORITHM 1: Half-quadratic optimization for RPSVR-MCC.
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(WLSSVR-H) [8]; andweighted LSSVRwith the Logistic weight
function (WLSSVR-L) [14] and RLSSVR-MCC [24]. +e
Gaussian kernel is adopted in the experiments for all models.
+e performance of thesemodels usually depends on parameter
choices. All these models have two common parameters C and
σ. In each algorithm, we select the optimal C∗ and σ∗ from
the set 2i|i � −9,−8,−7, . . . , 7, 8, 9􏼈 􏼉. +e correntropy
parameter c in RPSVR-MCC is searched from the set
2i|i � −5,−4,−3, . . . , 1, 2, 3􏼈 􏼉. In this paper, we choose the
optimal parameters of these algorithms by the classical grid
search such that they can derive best performance on the testing
samples.

In order to evaluate the performances of the algorithms,
we employ the following four regression accuracy measures
[28], which are, respectively, defined as

(1) +e root mean squares error (RMSE) and the mean
absolute error (MAE),

RMSE �

�������������

1
m

􏽘

m

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

, (28)

MAE �
1
m

􏽘

m

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (29)

where yi is the real target, 􏽢yi is the corresponding prediction,
and m is the number of testing samples. y � (1/m)􏽐

​ m
i�1yi

represents the average value of y1, y2, . . . , ym. +e smaller
RMSE is, the better fitting performance is. MAE is also a
popular deviation measurement between the real and pre-
dicted values.

(2) +e ratio between the sum squared error SSE and the
sum squared deviation testing samples SST (SSE/
SST),

SSE
SST

�
􏽐​ mi�1 􏽢yi−yi( 􏼁

2

􏽐​ mi�1 yi −y( 􏼁
2. (30)

(3) +e ratio between interpretable sum deviation SSR
and SST (SSR/SST),

SSR
SST

�
􏽐
​m
i�1 􏽢yi−yi( 􏼁

2

􏽐​ mi�1 yi −y( 􏼁
2. (31)

In most situations, small SSE/SST shows good agreement
between the real and predictions values. To derive smaller
SSE/SST commonly follows an increase in SSR/SST. Never-
theless, the extremely small value of SSE/SST is in fact not
good, for it probably means overfitting of the regressor.
+erefore, a good estimator should strike balance between
SSE/SST and SSR/SST.

4.1. Synthetic Datasets. In synthetic experiments, we con-
sider the approximation of the following sinc function y �

sin(3x)/3x which is a popular choice in regression esti-
mation [28, 29]. We generate the synthetic datasets
(xi, yi)􏼈 􏼉

n

i�1 as follow:

yi �
sin 3xi( 􏼁

3xi

+ ηi, xi ∈ [−4, 4], (32)

where ηi represents the different types of noises to obtain the
contaminated datasets. In the experiments, the first and
second kinds of noises ηi follow Gaussian distribution
N(0, 0.152) and N(0, 0.32), respectively, and denote this two
type noises as Type A and Type B.+e third and fourth kinds
of noises ηi follow uniform distribution [−0.15, 0.15] and
[−0.3, 0.3], respectively, denoted as Type C and Type D
noises. +e fifth and last kinds of noises ηi follow student
distribution T(4) and T(8), respectively, denoted as Type E
and Type F noises, where T(c) is a student random variable
with c degrees of freedom.

+e goal of this evaluation is to measure the robustness
of different algorithms against outliers. In order to avoid
biased comparisons, we randomly generate ten independent
groups of 850 samples according to the sinc function, and
the training samples and test samples were 350 and 500,
respectively. For each kind of noises, we first add them into
training samples to obtain noisy samples for the contami-
nation purpose and then randomly select 20% training
samples and add large noises on their targets to simulate
outliers. +e test samples are clean, which are uniform from
the sinc function without any noise. Table 1 reports the
average performances of these six algorithms with ten in-
dependent runs under the different noises distributions. (·)
behind the criterions (RMSE, MAE, SSE/SST, and SSR/SST)
stands for the rank of this algorithm among these six al-
gorithms.+e optimal parameters (C∗, σ∗, c∗) are also listed
in Table 1. Table 2 shows the average ranks of these algo-
rithms with different types of noises. +e best results are
highlighted in bold.

From Tables 1 and 2, we can derive the results as
follows:

(1) +e classical LSSVR and PSVR obtain almost the
dissatisfied results, reflected by its much higher
RMSEs, MAEs, and SSE/SSTs. +is shows that
LSSVR and PSVR are sensitive to outliers. On the
contrary, the weighted model (WLSSVR-H,
WLSSVR-L) enhances the LSSVR and PSVR to a
certain extent, yet less accurate than the RLSSVR-
MCC and RPSVR-MCC.

(2) It has been shown that the proposed RPSVR-MCC
performs best reflected by the smallest RMSE, MAE,
and SSE/SST for most of the types of noises. Espe-
cially, the RPSVR obtains the four criteria all ranked
first for Type E noises. However, in term of SSR/SST,
RPSVR-MCC is not satisfactory.

(3) For the RMSE,MAE, and SSE/SST indexes in Table 2,
the average rank of the RPSVR-MCC is better than
the other algorithms. For the SSR/SST index, no
obvious difference was found between these
algorithms.
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Figures 1–3 show one run regression estimations of these
algorithms under Type A, Type C, and Type E noises. +e
results report that the curve derived by LSSVR and PSVR are
disastrously damaged by outliers, regardless of the types of
noises. Although WLSSVR-H and WLSSVR-L perform
better than LSSVR and PSVR, they still have large deviations
at some samples, especially outliers. We notice that the curve
of the RPSVR-MCC always follows the original curve more
closely for most of the test samples. On average, our

proposed RPSVR-MCC can derive higher robustness and
more satisfactory results in the presence of outliers than
other algorithms.

4.2. Benchmark Datasets. In the real-world examples, we
conduct experiments on eleven benchmark datasets to further
evaluate the proposed RPSVR-MCC. +ey include Pyrimi-
dines (Pyrim), Triazines, AutoMPG, Boston Housing (BH),
Servo, and Abalone downloaded from the well-known UCI
machine learning repository: https://archive.ics.uci.edu/ml/
index.php, Bodyfat, Pollution and Concrete Compressive
Strength (Concrete) from StatLib: http://lib.stat.cmu.edu/
datasets/, and Machine CPU (MCPU) and Diabetes from
the web page https://www.dcc.fc.up.pt/∼ltorgo/Regression/
DataSets.html, which are widely appeared in the field of
evaluating various regression algorithms.

+e first column in Tables 3–5 displays the detailed
information of these datasets including the numbers of the
samples and attributes, training and test samples. For each
dataset, we randomly divided them into two parts (training

Table 1: Experiment results on y � sin(3x)/(3x).

Noise Algorithm (C∗, σ∗, c∗) RMSE MAE SSE/SST SSR/SST

Type A

LSSVR (22, 2−1, /) 0.0863(5.5) 0.0676(5) 0.0720(5) 1.0761(2)
PSVR (22, 2−1, /) 0.0863(5.5) 0.0677(6) 0.0721(6) 1.0762(1)

WLSSVR-H (24, 2−1, /) 0.0422(3) 0.0349(3) 0.0181(3) 1.0344(6)
WLSSVR-L (24, 2−1, /) 0.0514(4) 0.0408(4) 0.0262(4) 1.0479(3)

RLSSVR-MCC (28, 2−2, 2−1) 0.0409(2) 0.0331(1.5) 0.0173(1.5) 1.0446(4.5)
RPSVR-MCC (28, 2−2, 2−1) 0.0408(1) 0.0331(1.5) 0.0173(1.5) 1.0446(4.5)

Type B

LSSVR (2−1, 20, /) 0.0979(5) 0.0795(5) 0.0944(5) 0.9374(6)
PSVR (2−1, 20, /) 0.0980(6) 0.0796(6) 0.0945(6) 0.9378(5)

WLSSVR-H (22, 2−1, /) 0.0723(3) 0.0599(3) 0.0503(3) 0.9976(4)
WLSSVR-L (23, 2−1, /) 0.0771(4) 0.0642(4) 0.0588(4) 1.0497(1)

RLSSVR-MCC (23, 2−1, 20) 0.0694(1.5) 0.0580(1.5) 0.0464(1.5) 1.0399(2)
RPSVR-MCC (23, 2−1, 20) 0.0694(1.5) 0.0580(1.5) 0.0464(1.5) 1.0398(3)

Type C

LSSVR (27, 2−2, /) 0.0828(5.5) 0.0665(6) 0.0664(5.5) 1.1137(1)
PSVR (27, 2−2, /) 0.0828(5.5) 0.0664(5) 0.0664(5.5) 1.1136(2)

WLSSVR-H (24, 2−1, /) 0.0289(3) 0.0221(3) 0.0083(3) 0.9816(4)
WLSSVR-L (24, 2−1, /) 0.0378(4) 0.0308(4) 0.0142(4) 1.0154(3)

RLSSVR-MCC (21, 2−1, 2−2) 0.0276(2) 0.0213(1.5) 0.0075(1.5) 0.9737(5)
RPSVR-MCC (21, 2−1, 2−2) 0.0275(1) 0.0213(1.5) 0.0075(1.5) 0.9736(6)

Type D

LSSVR (2−1, 20, /) 0.0899(5) 0.0707(5) 0.0772(5) 0.9488(6)
PSVR (2−1, 20, /) 0.0900(6) 0.0708(6) 0.0774(6) 0.9492(5)

WLSSVR-H (21, 20, /) 0.0531(1) 0.0424(1) 0.0287(1) 1.0116(2)
WLSSVR-L (23, 2−1, /) 0.0610(4) 0.0500(4) 0.0357(4) 1.0495(1)

RLSSVR-MCC (2−1, 20, 2−1) 0.0546(2.5) 0.0443(2.5) 0.0293(2.5) 0.9703(4)
RPSVR-MCC (2−1, 20, 2−1) 0.0546(2.5) 0.0443(2.5) 0.0293(2.5) 0.9704(3)

Type E

LSSVR (2−4, 21, /) 0.2120(6) 0.1749(6) 0.4268(6) 0.7142(4)
PSVR (2−4, 21, /) 0.2109(5) 0.1742(5) 0.4226(5) 0.7110(5)

WLSSVR-H (2−4, 21, /) 0.2004(4) 0.1636(4) 0.3836(4) 0.5573(6)
WLSSVR-L (2−3, 21, /) 0.1887(3) 0.1552(2) 0.3434(3) 0.7500(3)

RLSSVR-MCC (20, 20, 21) 0.1848(2) 0.1553(3) 0.3412(2) 0.7873(2)
RPSVR-MCC (20, 20, 21) 0.1845(1) 0.1548(1) 0.3405(1) 0.7881(1)

Type F

LSSVR (2−3, 20, /) 0.1796(5) 0.1498(5) 0.3112(5) 0.9709(2)
PSVR (2−3, 20, /) 0.1791(4) 0.1493(4) 0.3091(4) 0.9699(3)

WLSSVR-H (2−3, 20, /) 0.1846(6) 0.1507(6) 0.3270(6) 0.8896(6)
WLSSVR-L (2−2, 20, /) 0.1730(1) 0.1406(1) 0.2990(1) 1.0589(1)

RLSSVR-MCC (23, 20, 23) 0.1770(3) 0.1466(3) 0.3019(3) 0.9197(4)
RPSVR-MCC (23, 20, 23) 0.1765(2) 0.1461(2) 0.2996(2) 0.9185(5)

Table 2: +e average ranks of these algorithms on
y � sin(3x)/(3x) with different types of noises.

Algorithm RMSE MAE SSE/SST SSR/SST
LSSVR 5.3333 5.3333 5.25 3.5
PSVR 5.3333 5.3333 5.4167 3.5
WLSSVR-H 3.3333 3.3333 3.3333 4.6667
WLSSVR-L 3.3333 3.1667 3.3333 2
RLSSVR-MCC 2.1667 2.1667 2 3.5833
RPSVR-MCC 1.5 1.6667 1.6667 3.75
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samples, test samples) according to the number in
Tables 3–5. In this paper, we concern the robustness of
outliers and samples were contaminated by large noises to
simulate outliers in the training process. Concretely, the
outliers are generated by randomly choosing 20% training
samples and then adding noises to their targets according to
the average value of the regression targets. Test samples are
clean, which are not contaminated by any noise. All these
regression algorithms are repeated ten times with different
independent partition of training and test datasets. +e ten
accuracy measures were averaged to produce a single esti-
mation. +e performances and optimal parameters

(C∗, σ∗, c∗) of these algorithms on ten datasets are reported
in Tables 3–5.

In this subsection, we compare in detail the performance
of the RPSVR-MCC with the other five algorithms. For the
RMSE index, one can see in Tables 3–5 as follows:

(1) Under the case of without outliers, RPSVR-MCC is
superior to LSSVR and PSVR on nine datasets
except Concrete and performs better than
WLSSVR-H and WLSSVR-L on eight datasets ex-
cept AutoMPG and Servo. Meanwhile, it is more
accurate than RLSSVR-MCC on seven datasets
except Concrete and derives comparable results on
Pyrim and Bodyfat.

(2) Under the case of with outliers, RPSVR-MCC is
superior to LSSVR and PSVR on all the datasets
and performs better than WLSSVR-H and
WLSSVR-L on eight datasets except Pyrim and
Servo. It obtains more satisfactory results than
RLSSVR-MCC on six datasets except Pollution,
Servo, and Concrete and derives comparable per-
formance on Bodyfat. For the MAE and SSE/SST
indexes, there are similar conclusions that on av-
erage, RPSVR-MCC outperforms these five algo-
rithms under all cases.

In order to analyze the performance of these algorithms
more accurately, we summarize the average ranks of these
algorithms on benchmark datasets under the cases of
without outliers in Table 6 and with outliers in Table 7. From
Tables 6 and 7, in term of the RMSE, MAE, and SSE/SST
indexes under the cases of without and with outliers,
RPSVR-MCC always ranks first, and RLSSVR-MCC always
ranks second among these six algorithms.+emain reason is
that RPSVR -MCC and RLSSVR-MCC both employ the
robust loss function (maximum correntropy criterion) to
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Figure 1: y � sin(3x)/(3x) under the Type A noise.
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Figure 3: y � sin(3x)/(3x) under the Type E noise.
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limit the influence of outliers during the training phase. In
addition, RPSVR-MCC outperforms RLSSVR-MCC in
seven out of eleven datasets under the case of with outliers.
For the SSR/SST index, the proposed RPSVR-MCC derives
poor performance and ranks third among these algorithms.
However, it is still superior to RLSSVR-MCC. On average,
the RPSVR is more robust to outliers and has better gen-
eralization performance than the other algorithms.

5. Conclusion

In this paper, we introduce maximum correntropy criterion
into the classical PSVR and propose a novel robust PSVR,
namely, RPSVR-MCC, for dealing with regression estima-
tion in noisy environment, especially in the presence of
outliers. +e proposed method integrates maximum cor-
rentropy criterion, regularization technique, and kernel

Table 3: Experimental results on Pyrim, Pollution, Servo, and Triazines without outliers (I) and with outliers (II).

Dataset Algorithm (C∗, σ∗, c∗) RMSE MAE SSE/SST SSR/SST

Pyrim (74 × 27) (50, 24)

I

LSSVR (25, 2−3, /) 0.1028(4) 0.0606(3) 0.5618(4) 0.6067(1)
PSVR (24, 2−3, /) 0.1036(6) 0.0608(4.5) 0.5715(6) 0.5628(3)

WLSSVR-H (23, 2−3, /) 0.1013(3) 0.0610(6) 0.5502(3) 0.4216(6)
WLSSVR-L (25, 2−3, /) 0.1032(5) 0.0608(4.5) 0.5658(5) 0.5747(2)

RLSSVR-MCC (2−1, 2−4, 2−3) 0.1002(1.5) 0.0593(1) 0.5440(2) 0.4788(4)
RPSVR-MCC (2−1, 2−4, 2−3) 0.1002(1.5) 0.0594(2) 0.5432(1) 0.4774(5)

II

LSSVR (24, 2−3, /) 0.1056(4.5) 0.0649(3) 0.5925(3) 0.5729(3)
PSVR (24, 2−3, /) 0.1063(6) 0.0653(5.5) 0.6022(6) 0.5819(2)

WLSSVR-H (23, 2−3, /) 0.1026(1) 0.0627(1) 0.5590(1) 0.4788(6)
WLSSVR-L (25, 2−3, /) 0.1056(4.5) 0.0651(4) 0.5947(4) 0.5918(1)

RLSSVR-MCC (22, 2−3, 2−3) 0.1052(3) 0.0653(5.5) 0.5972(5) 0.4939(5)
RPSVR-MCC (2−2, 2−3, 2−3) 0.1044(2) 0.0646(2) 0.5837(2) 0.4941(4)

Pollution (60 × 16) (40, 20)

I

LSSVR (23, 2−2, /) 34.0594(5) 26.8079(5) 0.3921(5) 0.8644(2)
PSVR (23, 2−2, /) 33.6752(2) 26.4472(2) 0.3821(2) 0.8713(1)

WLSSVR-H (23, 2−2, /) 35.1268(6) 27.1519(6) 0.4097(6) 0.7284(6)
WLSSVR-L (24, 2−2, /) 33.9942(3) 26.7418(3) 0.3895(4) 0.8631(3)

RLSSVR-MCC (21, 2−2, 21) 33.9966(4) 26.7578(4) 0.3894(3) 0.8373(5)
RPSVR-MCC (21, 2−2, 21) 33.5695(1) 26.4044(1) 0.3784(1) 0.8434(4)

II

LSSVR (23, 2−3, /) 39.8592(6) 31.0642(5) 0.5358(6) 0.8910(2)
PSVR (22, 2−2, /) 39.8591(5) 31.0858(6) 0.5326(5) 0.9008(1)

WLSSVR-H (23, 2−2, /) 38.4257(4) 29.6791(4) 0.4890(4) 0.8240(3)
WLSSVR-L (23, 2−2, /) 37.8460(3) 29.4832(3) 0.4749(3) 0.8182(4)

RLSSVR-MCC (20, 2−3, 2−2) 37.3457(1) 28.6822(1) 0.4613(2) 0.7896(5)
RPSVR-MCC (2−1, 2−2, 2−2) 37.4479(2) 28.9103(2) 0.4592(1) 0.7791(6)

Servo (167 × 4) (100, 67)

I

LSSVR (26, 20, /) 0.7055(6) 0.4017(6) 0.2121(6) 0.8589(2)
PSVR (26, 20, /) 0.7043(5) 0.4002(5) 0.2117(5) 0.8596(1)

WLSSVR-H (27, 20, /) 0.6748(1) 0.3530(3) 0.1964(1) 0.7610(4)
WLSSVR-L (26, 20, /) 0.6809(4) 0.3813(4) 0.1989(4) 0.7685(3)

RLSSVR-MCC (21, 20, 2−3) 0.6795(3) 0.3416(1.5) 0.1984(2) 0.7176(6)
RPSVR-MCC (21, 20, 2−3) 0.6794(2) 0.3416(1.5) 0.1985(3) 0.7181(5)

II

LSSVR (25, 20, /) 0.7054(6) 0.4194(6) 0.2126(6) 0.8353(2)
PSVR (26, 20, /) 0.7049(5) 0.4090(5) 0.2121(5) 0.8695(1)

WLSSVR-H (28, 20, /) 0.6709(1) 0.3588(1) 0.1941(1) 0.7946(3)
WLSSVR-L (26, 20, /) 0.6813(4) 0.3888(4) 0.1995(2) 0.7879(4)

RLSSVR-MCC (22, 20, 2−2) 0.6800(2) 0.3605(2) 0.2007(3) 0.7677(6)
RPSVR-MCC (22, 20, 2−2) 0.6802(3) 0.3606(3) 0.2011(4) 0.7683(5)

Triazines (186 × 60) (150, 36)

I

LSSVR (23, 2−4, /) 0.1443(6) 0.1063(6) 0.8759(6) 0.3521(2)
PSVR (22, 2−4, /) 0.1428(5) 0.1060(5) 0.8536(5) 0.2769(6)

WLSSVR-H (23, 2−3, /) 0.1422(3.5) 0.1014(1) 0.8449(3) 0.3638(1)
WLSSVR-L (24, 2−4, /) 0.1422(3.5) 0.1033(4) 0.8469(4) 0.3337(3)

RLSSVR-MCC (21, 2−4, 2−1) 0.1419(2) 0.1024(3) 0.8360(2) 0.2907(4)
RPSVR-MCC (21, 2−4, 2−1) 0.1404(1) 0.1018(2) 0.8205(1) 0.2888(5)

II

LSSVR (22, 2−4, /) 0.1481(6) 0.1126(6) 0.9295(6) 0.3356(1)
PSVR (22, 2−4, /) 0.1466(4) 0.1122(5) 0.9129(5) 0.3334(2)

WLSSVR-H (21, 2−3, /) 0.1474(5) 0.1097(4) 0.9080(4) 0.2471(6)
WLSSVR-L (23, 2−4, /) 0.1464(3) 0.1096(3) 0.9033(3) 0.3082(3)

RLSSVR-MCC (20, 2−4, 2−1) 0.1459(2) 0.1093(2) 0.8896(2) 0.2584(4)
RPSVR-MCC (20, 2−4, 2−1) 0.1442(1) 0.1088(1) 0.8722(1) 0.2563(5)
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method. +e half-quadratic optimization technique is
adopted to derive an iterative algorithm for solving the
corresponding optimization problem. Two groups of exper-
iments on synthetic datasets and benchmark datasets with
outliers are conducted, respectively, to test the robustness of
the proposed algorithm. Compared with the classical LSSVR
and PSVR, the proposed RPSVR-MCC obtains better gen-
eralization, especially under the case of with outliers. +e
possible reason is that the MCC is a local criterion of simi-
larity and appropriate for samples with large outliers.

Compared with other robust SVR algorithms (WLSSVR-H,
WLSSVR-L), the proposed RPSVR-MCC outperforms in
eight out of eleven datasets. +e proposed algorithm is su-
perior to the correntropy-based RLSSVR-MCC in seven out
of eleven datasets. In conclusion, the developed algorithm not
only derives higher robustness with better estimation accu-
racy and keeps stable performance in dealing with outliers.

+is paper discusses outlier robustness which only
concentrates on target noises. However, datasets in various
practical applications are commonly contaminated by both

Table 4: Experimental results on MCPU, Bodyfat, AutoMPG, and BH without outliers (I) and with outliers (II).

Dataset Algorithm (C∗, σ∗, c∗) RMSE MAE SSE/SST SSR/SST

MCPU (209 × 6) (150, 59)

I

LSSVR (27, 2−3, /) 53.3871(6) 27.3354(6) 0.1547 (6) 0.9474(4)
PSVR (27, 2−3, /) 53.2070(5) 27.1529(4) 0.1530(5) 0.9419(6)

WLSSVR-H (29, 2−3, /) 52.1390(3) 27.1578(5) 0.1410(3) 0.9922(1)
WLSSVR-L (28, 2−3, /) 52.2495(4) 27.0081(3) 0.1427(4) 0.9249(5)

RLSSVR-MCC (23, 2−3, 2−3) 51.8570(2) 26.8429(1) 0.1402(2) 0.9492(3)
RPSVR-MCC (22, 2−3, 2−3) 51.5925(1) 27.0013(2) 0.1388(1) 0.9505(2)

II

LSSVR (27, 2−3, /) 53.6345(6) 27.5341(5) 0.1567(6) 0.9485(2)
PSVR (27, 2−3, /) 53.4728(5) 27.3651(4) 0.1551(5) 0.9431(5)

WLSSVR-H (29, 2−3, /) 52.8168(4) 27.5543(6) 0.1489(4) 1.0060(1)
WLSSVR-L (28, 2−3, /) 52.1319(3) 27.0399(3) 0.1436(3) 0.9335(6)

RLSSVR-MCC (23, 2−3, 2−3) 50.8516(2) 26.5944(2) 0.1366(2) 0.9476(3)
RPSVR-MCC (23, 2−3, 2−3) 50.6647(1) 26.5101(1) 0.1355(1) 0.9461(4)

Bodyfat (252 × 14) (200, 52)

I

LSSVR (29, 2−7, /) 0.0025(5.5) 0.0011(5.5) 0.0262(6) 0.9326(6)
PSVR (29, 2−7, /) 0.0025(5.5) 0.0011(5.5) 0.0260(5) 0.9362(5)

WLSSVR-H (29, 2−6, /) 0.0022(3.5) 7.1305E-4(3) 0.0233(3) 0.9477(3)
WLSSVR-L (29, 2−6, /) 0.0022(3.5) 7.9633E-4(4) 0.0238(4) 0.9416(4)

RLSSVR-MCC (29, 2−7, 2−5) 0.0020(1.5) 4.5370E-4(2) 0.0224(1.5) 0.9781(1)
RPSVR-MCC (28, 2−7, 2−5) 0.0020(1.5) 4.4860E-4(1) 0.0224(1.5) 0.9765(2)

II

LS-SVR (23, 2−5, /) 0.0075(5) 0.0056(6) 0.1868(5) 0.7799(6)
PSVR (28, 2−9, /) 0.0076(6) 0.0055(5) 0.1970(6) 0.9459(3)

WLSSVR-H (29, 2−7, /) 0.0031(3) 0.0017(3) 0.0372(3) 0.9148(4)
WLSSVR-L (29, 2−8, /) 0.0037(4) 0.0023(4) 0.0476(4) 0.8947(5)

RLSSVR-MCC (24, 2−9, 2−5) 0.0021(1.5) 6.7207E-4(2) 0.0225(2) 0.9652(2)
RPSVR-MCC (24, 2−9, 2−5) 0.0021(1.5) 6.6674E-4(1) 0.0224(1) 0.9670(1)

AutoMPG (392 × 7) (300, 92)

I

LSSVR (25, 20, /) 2.6050(6) 1.8858(5) 0.1057(6) 0.8713(1)
PSVR (24, 20, /) 2.6017(5) 1.8870(6) 0.1054(5) 0.8596(2)

WLSSVR-H (24, 21, /) 2.5764(1) 1.8421(1) 0.1031(1) 0.8519(5)
WLSSVR-L (26, 20, /) 2.5867(4) 1.8642(3) 0.1040(4) 0.8583(3)

RLSSVR-MCC (21, 20, 2−2) 2.5833(3) 1.8676(4) 0.1037(3) 0.8515(6)
RPSVR-MCC (21, 20, 2−2) 2.5812(2) 1.8637(2) 0.1035(2) 0.8520(4)

II

LSSVR (22, 20, /) 2.8980(6) 2.1601(6) 0.1308(6) 0.8421(5)
PSVR (22, 20, /) 2.8951(5) 2.1552(5) 0.1305(5) 0.8422(4)

WLSSVR-H (24, 20, /) 2.6334(3) 1.9324(3) 0.1080(3) 0.8459(3)
WLSSVR-L (24, 20, /) 2.7141(4) 1.9911(4) 0.1148(4) 0.8480(2)

RLSSVR-MCC (2−2, 20, 2−3) 2.6194(2) 1.9087(2) 0.1065(2) 0.8376(6)
RPSVR-MCC (2−1, 20, 2−3) 2.6087(1) 1.8989(1) 0.1058(1) 0.8552(1)

BH (506 × 13) (300, 206)

I

LSSVR (27, 2−1, /) 3.2018(4) 2.2747(6) 0.1276(4) 0.8997(1)
PSVR (27, 2−1, /) 3.1967(2) 2.2734(5) 0.1271(2) 0.8994(2)

WLSSVR-H (27, 2−1, /) 3.3161(6) 2.2609(2) 0.1375(6) 0.8816(6)
WLSSVR-L (28, 2−1, /) 3.2319(5) 2.2476(1) 0.1302(5) 0.8925(5)

RLSSVR-MCC (27, 2−1, 20) 3.1993(3) 2.2693(4) 0.1274(3) 0.8985(3)
RPSVR-MCC (27, 2−1, 20) 3.1941(1) 2.2678(3) 0.1270(1) 0.8982(4)

II

LSSVR (24, 2−3, /) 4.3860(5) 3.2163(5) 0.2402(5) 0.8563(4)
PSVR (25, 2−3, /) 4.4092(6) 3.2482(6) 0.2433(6) 0.9097(1)

WLSSVR-H (25, 2−2, /) 3.6464(3) 2.6132(3) 0.1661(3) 0.8808(2)
WLSSVR-L (28, 2−4, /) 3.7909(4) 2.6898(4) 0.1800(4) 0.8676(3)

RLSSVR-MCC (21, 2−3, 2−4) 3.4941(2) 2.2972(1) 0.1530(2) 0.8535(5)
RPSVR-MCC (2−1, 2−2, 2−4) 3.4667(1) 2.3061(2) 0.1509(1) 0.8487(6)
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features (or attributes) and targets noises. Our future work
will focus on pinball loss [30] to yield a more useful and
flexible method. In addition, the proposed approach can be
extended to the one-class problem for imbalance classifi-
cation [31], and we plan to address it in future work.
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