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In this study, we developed a model which elaborates relationship among efficiency of an estimator and survey cost. -is model is
based on a multiobjective optimization programming structure. Survey cost and efficiency of related estimator(s) lie in different
directions, i.e., if one increases, the other decreases. -e model presented in this study computes cost for a desired level of
efficiency on various characteristics (goals).-e calibratedmodel minimizes the cost for the compromise optimal sample selection
from different strata when characteristic j is subject to achieve at least (1− αj) level of efficiency of its estimator. In the first step,
the proposed model minimizes the variance for a fixed cost, and it then finds the rise in cost for an αj percent rise in efficiency of
any characteristic j. -e resultant model is a multiobjective compromise allocation goal programming model.

1. Introduction

An efficient estimator (estimator with reduced mean square
error, MSE) is always desirable while estimating the true
population parameter from the sample data. Cost is directly
proportional to sample size which increases the efficiency [1]
of an estimator as it increases.

-is situation becomesmore interesting in amultivariate
multiobjective study.-is estimation mechanism demands a
compromise allocation programming model when several
goals are competing with each other in a multivariate study.
-is gives us an inspiration to calibrate a multiobjective
compromise allocation model when several estimators are
being optimized (minimize mean square error, MSE) on a
single feasible space.

Sample allocation in multivariate survey plays an im-
portant role in determining the cost and efficiency of an
estimator. It has significant impact in case when variance is
high among groups. Sampling design, methods of estimation/
estimator, and variable cost among groups are main factors

that contribute while allocating sample size. Among the many
objectives of a survey, the major two are as follows: it must
give efficient estimates for a fixed cost and it should optimize
the cost for a complete survey plan with a reasonable effi-
ciency level. In multivariate surveys, sample allocation among
heterogeneous strata is an important decision-making tech-
nique to increase efficiency of estimates.

Sample selection in survey sampling with a balanced
design (i.e., equal allocation) is common. It maximizes the
statistical power, but many other scenarios need to ad-
dress. For example, the groups with large variation usually
have to allocate a large sample to reduce variation due to
that group. In one-way analysis of variance (ANOVA), if
we assume heterogeneous variances among groups, al-
ternate estimators with variable sample size allocation is
reasonable to be considered [2]. -e heterogeneity among
groups and survey cost are the important factors that
should be considered while allocating samples. -e
scarcity of valuable participants of survey is becoming
more and more costly, and the survey cost increases.
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-emathematical structure of trading between precision
or efficiency and cost optimizes the variance or cost function
subject to basic constraints. Multiobjective programming
models for multiple goals while optimizing transportation
problems have been discussed in the study of Roy et al. [3]
where authors calibrated these models to minimize trans-
portation cost. -e limited budget and the optimal variance
suggest only a rough approximation of a sampling design.
-e efficiency or precision for a fixed cost and vice versa that
may actually be achieved by implementation have been
discussed in depth, for example, the studies of Cochran [1],
Groves [4], and Kish [5]. For an extensive discussion on cost
and precision as the only criterion for evaluation, see the
study of de Vries [6]. A statistical analysis of the costs and a
comprehensive discussion on cost or on error variance
trade-off is given in the studies of Kish [5] and Groves [4] for
various survey designs.

For an optimum allocation of various characteristics,
optimal costs, or optimal variance, the solution of such
problems needs some compromise allocation criteria.
Varshney et al. [7] discussed in detail the optimal allocation
which minimizes some cost vectors, minimizes the weighted
average of variances, or maximizes the relative efficiency
of the estimators. Many other studies including Bethel [8],
Khan et al. [9], Ansari el al. [10], Khan et al. [11], and
Varshney et al. [12] worked out different compromise cri-
terion. Most of them solved the allocation problem in a
stratified sampling design.

-is paper focuses on the trade-off between cost and
relative efficiency of estimators. In this context, it investigates
the extent to which survey costs and other related compo-
nents can improve the design and technique for similar such
surveys. It tries to take on the problem of reducing the cost of
a survey or increasing the efficiency of the estimate. Such
analysis are useful in twofold; firstly, it potentially provides a
practical solution to the problem in which there is scarcity of
information on cost or efficiency of estimates and, secondly,
addresses the similarities of sampling designs, survey in-
frastructure, and population distributions. -is information
can be obtained from one survey and used in another survey,
or it improves the efficiency of same survey estimates. A
variety of components are typically a problem, specifically,
when some fixed factors are to be compared.

Survey science always recommends a better sampling
design, efficient estimator, and reduced total cost of a survey
[8–12]. -is method comprehensively addresses all the above
positive aspects simultaneously and contributes to those
studies when researchers are conducting some surveys with
competing effects of cost and efficiency of survey. -e model
minimizes the survey cost for a desired level of efficiency to be
achieved for a particular characteristic which is introduced as a
constraint in the model. In other words you can say, efficiency
is a function of survey cost. Increasing the cost will increase the
efficiency of survey. While allocating the cost for some pro-
posed studies, in advance, you will be aware of efficiency level
by using some previous studies. Now, if team wants much
efficient results, they should expect a relatively high cost for the
survey. -is model will provide a direct equation of relative
change in cost and efficiency even before starting the survey.

Rest of the paper is organized as follows. Section 2 is
about problem formulation; in Section 3, we discussed the
multiobjective goal programming structure for this model.
-e successive Sections 4 and 5 elaborate our solution
methodology and numerical example, respectively; results
and discussion is presented in Section 6, and Section 7 is the
summary of our research work.

2. Problem Formulation

Minimum solution is desired either for survey cost or ef-
ficient estimates when the remaining solutions are adjusted
as constraint. Survey cost and variance or relative efficiency
of estimates are major contributing elements of allocation in
stratified samples. -ere are many surveys which are based
on a multistage sampling design.

2.1. Sampling Frame. Let we have the data Yjhi (study
variable) and Xjhi (associated auxiliary variable) for h �

1, 2, . . . , L with i � 1, 2, . . . , Nh sampling units in the hth

stratum on j � 1, 2, . . . , p characteristics. Structure of
auxiliary attribute can be defined as

Xjhi �

1, if ith unit possesses attribute Xj for

(j � 1, 2, . . . , p) in the hth stratum,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

Let yjhi and Yjhi are the sample and population means of
the study variableYjhi, respectively, in the hth stratum for the
jth characteristic defined as

S
2
yjh � 􏽘

​ yjhi −Yjh􏼐 􏼑
2

Nh − 1
, whereYjh � 􏽘

Nh

i�1

yjhi

Nh

,

S
2
xjh � 􏽘

​ xjhi −Xjh􏼐 􏼑
2

Nh − 1
, whereXjh � 􏽘

Nh

i�1

xjhi

Nh

,

S(yx)jh � 􏽘
​ yjhi −Yjh􏼐 􏼑 xjhi −Xjh􏼐 􏼑

Nh − 1
.

(2)

2.2. Survey Cost. Minimizing the survey cost was discussed
in the study of Kokan and Khan [13] on various charac-
teristics for a desired precision as a convex problem. Many
other authors discussed linear functions which minimize the
cost of selecting a sample in stratified sampling design.
Suppose a population which has L mutually exclusive strata
such that total size is N � 􏽐

L
h�1Nh. An independent random

sample of size nh is selected without replacement from each
stratum. -e linear cost function is

C � co + 􏽘
L

h�1
chnh, (3)

where C is the total budget, ch(h � 1, 2, . . . , L) is per unit
cost in the hth stratum, and co is the initial fixed cost of the
survey.

2 Scientific Programming



Beardwood et al. [14] proposed a cost function, con-
sidering the unit and traveling cost as a shortest route among
k selected units in the strata, asymptotically proportional to�

k
√

, if k is large. A quadratic cost function discussed in the
study of Varshney et al. [12] is

C � co + 􏽘
L

h�1
chnh + 􏽘

L

h�1
τh

��
nh

√
, (4)

where τh is per unit travel cost.
A true functional form of cost is important to determine.

Practically, in a survey, the unit cost, travel cost, reward to
respondent, and labor cost are important factors. A more
representative polynomial cost function which includes unit
cost, traveling cost, reward to respondent, and labor cost are
discussed in the study of Muhammad et al. [15]. -ey de-
scribed that labor cost can be computed over time units
consumed for a particular respondents. -e cost is given as
follows:

�C � 􏽘
L

h�1
�chnh + 􏽘

L

h�1
τhn

δ
h + ω E Th( 􏼁, (5)

where �C � C− c0, �ch is per unit cost including the reward
paid to respondents in the hth stratum, δ is the traveling
effect, and τh represents the aggregate labor time consumed
in hth stratum to collect data on nh units.

2.3. Estimators. Let we have first estimator say yj,st �

􏽐
L
h�1Whyjh of Yj with variance

Var yj,st􏼐 􏼑 � 􏽘

L

h�1
W

2
h

1
nh

−
1

Nh

􏼠 􏼡S
2
yjh, (6)

where E(yj,st) � Yj and Wh � Nh/N is the known stratum
weight.

When auxiliary information is given, then the regression
estimator can be used. It provides precise estimates when the
regression line passes through the origin. Consider the re-
gression estimator for multivariate stratified sampling. -e
traditional regression estimator is yj,lr � 􏽐

L
h�1Whyj,lrh where

yj,lrh � yjh + bjh(Xjh − xjh)

-e variance of yj,lr is given by

Var yj,lr􏼐 􏼑 � 􏽘

L

h�1
W

2
h

1
nh

−
1

Nh

􏼠 􏼡

· S
2
yjh − 2bjhS(yx)jh + b

2
jh S

2
xjh􏼐 􏼑,

(7)

where bjh � S(yx)jh/S2xjh is the sample regression coefficient
in the hth stratum for jth characteristic. -e minimum
Var( yj,lr) can be computed as [1]

Var yj,lr􏼐 􏼑min � 􏽘
L

h�1
W

2
h

1
nh

−
1

Nh

􏼠 􏼡S
2
yjh 1− ρ2jh􏼐 􏼑, (8)

where ρ2jh � S2(yx)jh/( S2yjh∗ S2xjh).
-e minimum Var( yj,lr)min can be obtained by mini-

mizing the variance subject to a fixed cost. -e difference
between two minimum variances (both subject to same fixed
cost) is

Var yj,st􏼐 􏼑− Var yj,lr􏼐 􏼑min. (9)

As discussed in the studies of Cochran [1] and Yousaf
and Ijaz [16], the relative increase in optimum variances can
be expressed as

Var yj,st􏼐 􏼑min− Var yj,lr􏼐 􏼑min

Var yj,lr􏼐 􏼑min

�
􏽐

L
h�1W

2
h 1/�nh( 􏼁− 1/Nh( 􏼁( 􏼁S2yjh − 􏽐

L
h�1W

2
h 1/􏽢nh( 􏼁− 1/Nh( 􏼁( 􏼁S2yjh 1− ρ2jh􏼐 􏼑

􏽐
L
h�1W

2
h 1/􏽢nh( 􏼁− 1/Nh( 􏼁( 􏼁S2yjh 1− ρ2jh􏼒 􏼓

, (10)

where �nh and 􏽢nh are the two vectors of sample allocation in
strata while optimizing Var( yj,st) and Var( yj,lr), re-
spectively.-e above two variances are optimum for a same
cost, and the only difference between estimates is only
due to their structure. -e regression estimate partitions an
additional component from total variation due to ex-
planatory auxiliary variable involved. If we assume that
correlation coefficients among study variable and auxiliary
variable are the same or almost the same in all strata, then it
is reasonable to suppose that the above two vectors of
sample allocation �nh and 􏽢nh are almost similar. Substituting
�nh � 􏽢nh � nh in the above equation and solving (ignoring
fpc) for efficiency of two estimates, we have

EF yj,lr, yj,st􏼐 􏼑 �
Var yj,st􏼐 􏼑min

Var yj,lr􏼐 􏼑min

� 1 + αj, (11)

where

αj �
􏽐

L
h�1 W2

hS2yjh ρ2jh/njh􏼐 􏼑

􏽐
L
h�1 W2

hS2yjh 1− ρ2jh􏼒 􏼓/njh􏼒 􏼓

. (12)

If kjh � W2
hS2yjh, the above equation reduces to

αj �
􏽐

L
h�1 kjhρ2jh/njh􏼐 􏼑

􏽐
L
h�1 kjh 1− ρ2jh􏼒 􏼓/njh􏼒 􏼓

. (13)

3. Multiobjective Goal Programming

3.1. Single Characteristic Optimization Program. -e opti-
mum allocation within each stratum tominimize the cost for
a desired level of efficiency for a particular character “j” can
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be obtained subject to necessary constraints. -e cost
function equation (5) minimizes subject to the desired level
of efficiency, i.e., EF(􏽢θ1, 􏽢θ2 ), or Eq. (10) along with

2≤ njh ≤Nh. -e optimization program for a minimum cost
to the characteristic “j” is given:

minimize Cj � f njh􏼐 􏼑,

subject to
􏽐

L
h�1 kjhρ2jh/njh􏼐 􏼑

􏽐
L
h�1 kjh 1− ρ2jh􏼒 􏼓/njh􏼒 􏼓

≥ αj,

2≤ njh ≤Nh,

njh are integers and njh ∈ Ӻ ∀h � 1, 2, . . . ,L,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(Model 1) (14)

where Ӻ is the feasible region established by grid points
formed by decision space.

3.2. Multiobjective Goal Program. Our problem is a multi-
variate problem. We need an allocation within each stratum
which should be optimum for all the characteristics. -e
allocations, optimizing individual characteristic, may differ
from one another if characteristics are not correlated. So we

need a suitable Compromise allocation as discussed in the
study of Cochran [1].

In the context of data frame discussed above, a total
sample of size n � 􏽐

L
h�1nh is determined that minimizes cost

vector for all characteristics Yj(j � 1, 2, . . . , p). We for-
mulate this problem as a multiobjective, nonlinear integer
goal program using the single vector of samples from all
strata:

C∗ � minimize C1, C2, . . . , Cp􏼐 􏼑,

subject to
􏽐

L
h�1 kjh ρ2jh/njh􏼐 􏼑

􏽐
L
h�1 kjh 1− ρ2jh􏼒 􏼓/njh􏼒 􏼓

≥ αj,

(or single EF level α)

2≤ njh ≤Nh,

njh are integers and njh ∈ Ӻ ∀h � 1, 2, . . . ,L.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(Model 2) (15)

4. Solution Methodology

Our goal program have p goals, which are j � 1, 2, . . . , p.
To optimize all j � 1, 2, . . . , p goals, we define p vectors of
decision variables with each dimension L, i.e., njh. Decision-
maker(s) has the control over these vectors. Among the list
of all p goals, every goal has an optimum value say Cj

∀j � 1, 2, . . . , p, which is the function of njh on their
fundamentals (14).

-ere are no assumptions on the generic form dis-
cussed in (14) regarding the decision variables. It is the
decision-maker(s) who sets a target level for all goals say
C∗j ∀j � 1, 2, . . . , p in (14); they are generally individual
optimal values for all objectives, respectively. If any other
vector, then the optimal decision vector variables are
selected, and the jth goal leads to the following deviation
structure:

􏽢Cj � C
∗
j + d

+
j − d

−
j , (16)

where 􏽢Cj is the jth objective value at the compromised al-
location vector and d−j and d+

j are negative and positive

deviational variables, respectively. d−j and d+
j are also called

unmet goal variables.
If a set of goals is a set of constraints, the decision-

maker(s) objective is to optimize each goal. -e solution
obtained is feasible even if the goal remained unachieved.
If hard constraints that are the part of goal programming
are violated, the solution turns into infeasible. If Ӻ

→
is feasible

vector space established by decision vectors, we add the
following condition on stratified samples:

n
→

j ∈ Ӻ. (17)

-e solution thus obtained performs less than our in-
dividual optimal solution. We sum up all unwanted de-
viations as defined in Section 4 and minimize this sum to
ensure that our solution is “as close as possible” to our
desired goals. Lexicographic goal programming is one so-
lution technique, applied in such problems. It works
according to some predefined priority sequence of objectives
which are prioritized according to their importance.
According to this priority sequence, the first goal is optimized
and the remaining goals are compromised by minimizing the
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unwanted deviations as discussed in Section 4. A generic form
of such compromise allocation is given as

minimize 􏽢z � g1 n1h( 􏼁, g2 d−2 , d+
2􏼒 􏼓, . . . , gp d−p , d+

p􏼒 􏼓􏼔 􏼕,

subject to 􏽢�Cjh + d−j − d+
j ≤ �C

∗
jh,

􏽣n
→

j ∈ Ӻ,

􏽢njh are integers ∀h � 1, 2, . . . , L and j � 1, 2, . . . , p,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(Model 3) (18)

where g1, g2, . . . , gp is a sequence of priority of functions
and d+

j and d−j are directional deviations vectors for maxi-
mization or minimization which are unwanted. Weighted
goal programming (WGP) technique minimizes a weighted
deviation objective function composed by unwanted de-
viations. Few other techniques are also used in such com-
promise allocation problems. A goal programming function
can be considered as a utility function which always subjects
to maximize. It can be described in either form, linear or
nonlinear, and sets an aspiration goal within the feasible
region [17]. -e programming techniques discussed in the
studies of Charnes and Cooper [18] and Romero [17]
minimize a weighted unmet aspiration ∀j � 1, 2, . . . , p

vector of goals in the feasible region. Now, if the goal ob-
jective is influenced differently by a negative deviational
variable and a positive deviational variable, let W

�→
1j and W

�→
2j

are weight vectors of negative and positive deviations on the
jth goal, respectively, then above formulation (18) is changed
by the following objective [17]:

minimize 􏽢z � 􏽘

p

j�1
gj W

�→
1jd
−
j , W

�→
2jd

+
j􏼒 􏼓􏼔 􏼕. (19)

If there is some difference between the desired aspiration
level and the maximum utility, the Archimedean goal pro-
gramming interprets it as “the maximization of a separable and
additive utility function in the p attributes considered”
(Romero [17]). -e Minimax (Chebyshev) minimizes the
maximum deviation of utility function. -is is discussed in the
studies of Tamiz et al. [19] and Romero [17]. If D is the
maximum deviation from the respective utility or aspiration
level, the above program (18) turns into the following equation:

minimize D,

subject to d−j , d+
j􏼔 􏼕(≤ or ≥ ) D,

􏽢�Cjh + d−j − d+
j ≤ �C∗jh,

􏽤n
→

j ∈ Ӻ,

􏽢njh are integers ∀h � 1, 2, . . . , L and j � 1, 2, . . . , p.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(Model 4) (20)

If φ represents the importance attached to maximizing
the achieved aspiration level (20) and (1−φ) weight attached
the weighted sum (Eq. (19)) of unwanted deviation model,

then a generalized goal programming model of utility
maximization (20) can be written as

minimize 􏽢z � φ D +(1− φ) 􏽘

p

j�1
gj W

�→
1jd
−
j , W

�→
2jd

+
j􏼒 􏼓􏼔 􏼕,

subject to W
�→

1jd
−
j , W

�→
2jd

+
j􏼔 􏼕 (≤ or ≥ ) D,

􏽢�Cjh + d−j − d+
j (≤ or ≥ )�C∗jh,

􏽣n
→

j ∈ Ӻ,

􏽢njh are integers ∀h � 1, 2, . . . , L and j � 1, 2, . . . , p.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(Model 5) (21)

-e feasible region can be expanded by relaxing the
constraint into

φ W
�→

1jd
−
j , W

�→
2jd

+
j􏼔 􏼕 (≤ or ≥ ) D, (22)

and 0 ≤ φ ≤ 1. D is an arbitrary choice how someone’s
positive and negative directional goals may vary. It depends
upon how close the modelers or surveyors want to get their
results. -is strategy provides the leverage to setting the
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feasible region.-is will help us to extend our feasible region
and allocating an integer sample size. Integer nonlinear
programming problems have always a smaller feasible so-
lution grid.

5. Numerical Illustration

We used the data for numerical illustration given in the study
of Shafi [20]. We are using these data as our objective to
compute trade-off of various estimators over each other how
they show change (in sample allocation and cost) against each
other for a certain change in the desired level of their MSE.

To explain the data, the study variables are given as
follows:

Y1 � biological yield of wheat varieties, and Y2 � harvest
index of wheat varieties.

Other variables used as covariates are as follows:

X1 � the number of plants of wheat varieties, and
X2 � total Grain weight of wheat varieties. Y1 is
45.19618523 and Y2 is 16.1223179.

According to protein contents, data are divided into 2
strata. Xjhi is the artificial dichotomous variable, the cutoff
for quantitative variable to be transformed into attribute is
set as the respective stratum mean for each characteristic in
the hth stratum. Table 1 shows the summary statistics of the
used data.

In this illustration, we suppose that �cj is unit cost se-
lection in the hth stratum. A unit of time cost ω and the
constant δ is determined using methodology discussed in the
studies of Winston [21] and Taha [22]. In the cost function
(Eq. (5)), the time taken, to collect the data within hth

stratum as well as the whole sample n � 􏽐
L
h�1nh , is con-

sidered as the collection of independently and identically
distributed random variables, i.e., the time consumed for a
unit. All of them follow exponential distribution, and their
sum follows a Gamma distribution with parameters say nh

(sample size in hth stratum) with an average of λh (Ross
[23] and Hogg et al. [24]). Furthermore, the same is true
for whole sample from all strata, i.e., n � 􏽐

L
h�1nh, with

average λst � 􏽐
L
h�1whλh, wherewh � nh/n. -e total ex-

pected time can be computed as 􏽐
L
h�1E(Th) � 􏽐

L
h�1(􏽒
∞
0 λ

exp−λt((λt)􏽐
L

h�1n−1
h

)/(nh−1)! dt) � 􏽐
L
h�1(nh/λ), [23, 24], where

λ � 1/λst. A complete formulation of the problem is shown
in Appendix.

6. Results and Discussion

A complete population selected as the sample provides the
highest efficiency level of the estimators (variance is mini-
mum). -e efficiency is calculated as (see Eq. (10))

EF yj,lr, yj,st􏼐 􏼑 �
Var yj,st􏼐 􏼑min

Var yj,lr􏼐 􏼑min

. (23)

For an arbitrary survey cost of 25000 (Figure 1), it is
1.2915 for characteristic one and 1.5645 for characteristic
two. We compute minimum cost (21) for varying levels
of α1 � 0.001, 0.002, . . . , 0.400 and similarly α2 � 0.001,

0.002, . . . , 0.600 as shown in Figures 1 and 2. Setting α1 and
α2 beyond these values, solution repeated or model gives no
integer solution. A minimum 25000 cost produces 29.15
percent efficient solution for characteristic one and 56.45 for
characteristic two, when only single characteristic’s variance
is optimized, respectively. Different combinations of α1
and α2 give a minimum cost solution using compromise
allocation structure discussed in (21). We see that com-
promise solution even reduces our initial survey cost of
25000 if choice of pair of α1 and α2 is small. Keeping one of
α1 and α2 constants and increasing the other increase our
cost for a compromise solution. Increasing both parameters
simultaneously increase our survey cost (Figure 2).
Figures 1(a) and 1(b) are plots of percentage rise in efficiency
of an estimator (x-axis) and rise in cost (y-axis) for each
characteristic, which shows that if we increase α1 one percent
successively, rise in the compromise cost is not as higher as
in the case of second characteristic. Figures 1(c) and 1(d)
show sample allocation in each strata for various pair of
choice of α1 or α2. -is is because each time we make a
change in our choice of α1 or α2 or both; (21) makes such a
selection of samples considering cost and variance of both
stratum independently. -is might be due to difference in
cost and variance structure in both strata. In the above goal
programming structure, we can make any percentage to
proportionally rise in the variances of both characteristics.
For some particular choice of α1 or α2, an integer solution
might not be possible as it always returns a grid point of n1
and n2. We restricted the goal programming model to select
at least 2 sampling units from strata 1 and 2. Figure 2 is a 3-D
plot of percentage rise in efficiency of an estimator 1 (α1),
percentage rise in efficiency of an estimator 2 (α2), and
compromised cost which (21) suggests.

7. Summary

It may not be possible to obtain a compromise integer
solution for all possible choices of α1 and α2, i.e., the
percentage rise in the variances of characteristics. However,
a real value solution may exist for all choices. A high unit
cost in a particular stratum may limit its selection. -is
optimization structure works as a dual procedure in which
the cost of the survey is optimized when we require a
certain level of efficiency among different estimates, and
initially we optimize a compromise variance for a supposed

Table 1: Data summary.

h Nh Wh S2y1h S2y2h S2x1h S2x2h S(yx)1h S(yx)2h ρ21h ρ22h k1h k2h �ch τh

1 51 0.6 114.293 21.396 0.238 2.238 1.120 0.483 0.299 0.246 41.1415 7.7026 210 18
2 47 0.4 89.214 19.948 0.255 2.048 0.778 0.700 0.199 0.119 14.2742 3.1917 155 17
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survey cost. Application of other goal programming
techniques may also be interesting. We used the nonlinear
cost function, but selection of some other cost function can
produce di�erent results. Furthermore, we can extend this
work using stochastic, dynamic, or stochastic dynamic
programming.

Appendix

A. Single Characteristic Models for (j � 1, 2)
Our decision variables are njh(∀h � 1, 2, . . . , L). Values
of �Ch and τh are replaced from Table 1 (∀h � 1, 2, . . . , L).
δ replaced with arbitrary values 0.5 and 2.0, and ω is
the cost for a unit time of labor (say 100, 150, etc.).
Estimation of the Gamma function is replaced with its
total expected time λst (say 15 minutes, 20 minutes, etc.).
�e �rst stage programs for j � 1 and j � 2 are given
below (14). �e values of kjh and ρjh are computed from
Table 1:
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Figure 1: Sample allocation and cost for di�erent choices α1 and α2.
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Figure 2: Compromise cost (in thousand) for di�erent choices of
α1 and α2.
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min �C1 � [210 155]∗ n11 n12􏼂 􏼃
T

+ [18∗ 17]∗ nδ
11n

δ
12􏽨 􏽩

T
+ ω 􏽘

L

h�1
n1hλ1h,

subject to
0.299∗ 41.1415/n11( 􏼁 + 0.199∗ 14.2742/n12( 􏼁

0.701∗ 41.1415/n11( 􏼁 + 0.801∗ 14.2742/n12( 􏼁
≥ α1,

2≤ n1h ≤Nh,

n1h are integers and n1h ∈ Ӻ, ∀h � 1, 2, . . .L,

min �C2 � [210 155]∗ n11 n12􏼂 􏼃
T

+ nδ
11n

δ
12􏽨 􏽩

T
+ ω 􏽘

L

h�1
n1hλ2h,

subject to
0.246∗ 7.7026/n21( 􏼁 + 0.199∗ 3.1917/n22( 􏼁

0.754∗ 7.7026/n21( 􏼁 + 0.881∗ 3.1917/n22( 􏼁
≥ α2,

2≤ n2h ≤Nh,

n2h are integers and n2h ∈ Ӻ ∀h � 1, 2, . . . ,L.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.1)

B. Multiobjective Model for (j � 1, 2)

From the above models, we obtain optimal values, say �C
∗
1

and �C
∗
2 for two characteristics j � 1 and j � 2. Selecting an

arbitrary value(s) of φ (say 0.1, 0.2, 0.3, . . . , 1.0), we es-
tablish the following model (let φ� 0.3, an arbitrary
choice):

minimize 0.3 D + 0.7 d+
1 + d+

2( 􏼁,

subject to d+
1 ≤D,

d+
2 ≤D,

[210 155]∗ n11 n12􏼂 􏼃
T

+ [18 17]∗ nδ
11n

δ
12􏽨 􏽩

T
+ ωλst 􏽘

L

h�1
nh − d

+
1 ≤ �C
∗
1 ,

[210 155]∗ n11 n12􏼂 􏼃
T

+ [18 17]∗ nδ
11n

δ
12􏽨 􏽩

T
+ ωλst 􏽘

L

h�1
nh − d

+
2 ≤ �C
∗
2 ,

0.299∗ 41.1415/n11( 􏼁 + 0.199∗ 14.2742/n12( 􏼁

0.701∗ 41.1415/n11( 􏼁 + 0.801∗ 14.2742/n12( 􏼁
≥ α1,

0.246∗ 7.7026/n21( 􏼁 + 0.199∗ 3.1917/n22( 􏼁

0.754∗ 7.7026/n21( 􏼁 + 0.881∗ 3.1917/n22( 􏼁
≥ α2,

2 ≤ nh ≤Nh,

nh are integers and nh ∈ Ӻ ∀h � 1, 2, . . . ,L.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B.1)
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