Hindawi

Scientific Programming

Volume 2019, Article ID 8235458, 19 pages
https://doi.org/10.1155/2019/8235458

Research Article

Hindawi

An Energy Efficiency Study of Web-Based Communication in

Android Phones

Inmaculada Ayala @, Mercedes Amor

, and Lidia Fuentes

Lenguajes y Ciencias de la Computacion, Universidad de Malaga, Andalucia Tech, Malaga 29071, Spain

Correspondence should be addressed to Inmaculada Ayala; ayala@lcc.uma.es

Received 15 November 2018; Revised 24 January 2019; Accepted 25 February 2019; Published 4 April 2019

Academic Editor: Michele Risi

Copyright © 2019 Inmaculada Ayala et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Currently, mobile devices are the most popular pervasive computing devices, and they are becoming the primary way for accessing
Internet. Battery is a critical resource in such personal computing gadgets, network communications being one of the primary
energy consuming activities in any mobile app. Indeed, as web-based communication is the most used explicitly or implicitly by
mobile devices, HTTP-based traffic is the most power demanding one. So, mobile web developers should be aware of how much
energy demands the different web-based communication alternatives. The goal of this paper is to measure and compare the energy
consumption of three asynchronous HTTP-based methods in mobile devices in different browsers. Our experiments focus on
three HTTP-based asynchronous communication models that allow a web server to push data to a client browser through a
HTTP/1.1 interaction: Polling, Long Polling, and WebSockets. The resulted measurements are then analysed to get more accurate
understanding of the impact of the selected method, and the mobile browser, in the energy consumption of the asynchronous
HTTP-based communication. The utility of these experiments is to show developers what are the factors and settings that mostly
influence the energy consumption when different web-based asynchronous communication methods are used, helping them to
choose the most beneficial solution if possible. With this information, mobile web developers should be able to reduce the power
consumption of the front-end of web applications for mobile devices, just selecting and configuring the best asynchronous method

or mobile browser, improving the performance of HTTP-based communication in terms of energy demand.

1. Introduction

The number of mobile phone users in the world is expected
to pass the five billion mark by 2019. In 2016, an estimated
62.9% of the population worldwide already owned a mobile
phone. The mobile phone penetration is forecasted to
continue to grow, rounding up to 67% by 2019 [1]. The use of
mobile phones varies through the day, smartphone use being
overwhelmingly popular for some activities such as social
media, messaging, and browsing Internet to catch up with
news and updated information. And, it is precisely frequent
Internet access which drains the battery. Most of smart-
phone users (in 2018, Android copes more than 75% of
market share) find their Android battery is regularly
emptied. Although it is possible to squeeze more life out of
the battery by optimizing some phone settings, some battery

drain may be due to badly designed apps that are constantly
receiving notifications with updated content without the
user intervention. These hidden communications are often
the culprits of battery draining: apps that frequently get
online for updates and notifications in the background.
Another issue is that while other phone hardware such as
screens and motherboards have been constantly improved to
be better and more powerful, battery technology has not seen
a similar advancement. So, even brand-new phones with
larger charge capacities may not last any longer than their
predecessors. And, while it is always recommended
downloading software updates, older phones that have been
upgraded to the very latest operative system (OS) version
may also experience drastic battery drain as a result. Users
can find several tips that can improve Android phone battery
life depending on the Android version. From the system

mailto:ayala@lcc.uma.es
http://orcid.org/0000-0002-5119-3469
http://orcid.org/0000-0001-7190-0581
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8235458

perspective, network communication (WiFi, 3G, 4G, more
recently 5G, or Bluetooth) is one of the primary energy
consuming operations in mobile devices. On average, net-
work communications can consume over 40% or more of the
total non-idle state energy of an app or a mobile device
[2-4]. So, one of the most popular tips is turning off no-
tifications. However, this option is not very useful in apps
that intend to get real-time updates like email or social
networks.

Given that smartphones are now becoming the most
popular way to browse Internet, mobile browsers can be
considered one of the heaviest drains on the battery. Mobile
web usage has recently overtaken desktop Internet access for
the first time [5]. Even when users are not actively using the
browser, it continues consuming in the background. Among
all kinds of network activities, those related with the Hy-
pertext Transfer Protocol (HTTP, defined in [6, 7]) are the
most energy consuming, representing almost 80% of all
network-related energy consumption [2, 8].

Different statistics illustrate what it means in figures: in
April 2018, mobile devices excluding tablets accounted for
51.2% of web page views worldwide. In 2021, mobile data
traffic worldwide is expected to reach 49 exabytes per month
at a compound annual growth rate of 47%. According to
Statcounter, most of the Internet traffic of mobile devices is
HTTP-based (the data excludes the use of apps such as
Facebook and WhatsApp, which account for a significant
proportion of mobile Internet usage). Therefore, reducing
browser energy consumption due to data transfer can have a
significant impact on the overall energy consumption of the
device and improve the overall user experience by increasing
the underlying device’s battery life. In order to contribute to
increase battery life when using browsers, it is necessary to
identify which are the variable factors that influence the
energy consumption of browsers and can be tuned and
configured by the Software developer. In addition to data
size, another issue that must be considered is data rate
(i.e., the speed at which data are updated or the number of
times data is sent in a particular period). This factor depends
on (i) the type of the data source, which determines when
data are generated (e.g., bursty, interactive, real-timed, or at
a fixed rate); and (ii) the mechanism or technology used to
push the data.

At the beginning, HTTP-based interactions occurred
when users retrieve or update web content proactively. Every
time a user clicked on a link, new content was retrieved and
shown in the browser. Nowadays, however, most of the web
content is automatically retrieved without user intervention
(e.g., instant messaging, web mail, and real-time content).
This means that whenever new content is available, the
server is able to push that information out to the browser,
allowing users to maintain timely updates from sites in-
advertently. Server push technology can be tackled by the
application protocol or by the application itself. Recognizing
the necessity of server push, HI'TP/2, which was released in
2017, supports server push as part of its specification. Prior
to that new version, HTTP/1.x is purely a synchronous
request/response application protocol. So, in order to
achieve server pushing using HTTP/1x, developers are

Scientific Programming

advocated to use solutions at the application level if they
want an asynchronous interaction. However, HTTP/2 is
used just by 32.9% of all the websites in 2019. So, the browser
always has to initiate a request to get web content. Nowa-
days, Web developers can adopt different technologies to
achieve server pushing in HTTP/1.x. Most of the web ap-
plications require the server to send data to the client
asynchronously as the state of a dynamic system changes and
without the need for the user to interact with the browser
interface.

Although HTTP is synchronous, Web software de-
velopers have different approaches to achieve asynchronous
interaction. The first solution adopted, which is still widely
used, consisted in emulating asynchronous communication
over a synchronous communication channel using a con-
tinuous polling technique. Web Applications that need to
listen for server originated data can use a continuous client-
originated Polling. A popular variation of Polling is the Long
Polling, where the HTTP response is delayed for a specific
time or until data are available. More recently, the markup
language HTML introduces in its latest version 5, the
WebSocket protocol [9] to address such asynchronous in-
teraction, which is not supported by HTTP/I1.
WebSocket allows a bidirectional, full-duplex, persistent
socket connection between the client and server. Based on
the bidirectional connection, the server can actively send
(i.e., push) data to the browser. A WebSocket connection is
built on top of TCP and has only small overhead in com-
parison to HTTP [10]. A newer solution for server push at
the application level is the W3C Push API [11], which lets a
web page or app send notifications at the system level even if
the app is idle or in the background. All these solutions have
in common that their use lean on JavaScript APIs.

Another distinct feature that may affect performance and
then energy consumption is the browser selected to show the
content. Although all the browsers provide the same
functionality, internally, they may differ in the browser
engine, which is the core software component of every major
web browser. Because the Web platform is an open standard,
there are multiple browser engine implementations, which
try to differ in their performance and resource management
when rendering the content. When accessing the Web from
a mobile device, it is especially important to pay attention to
the consumption and performance of the used mobile
browser. So, mobile web developers also should bear in mind
the limited power available on mobile devices and may have
to design accordingly their applications. In smartphones,
battery power capabilities are not keeping up with the ad-
vances in other device resources (e.g., processing and
memory), which are considered firstly to improve user
experience and especially in view of the growth in usage of
mobile browsers to access Internet. The deficiency in battery
power and the need for optimized energy consumption
provide motivation for web software developer to use energy
efficient techniques in order to manage the power con-
sumption in async HTTP-based communications, which
may vary from a mobile browser to another.

Our goal is to measure and compare how the use of three
different web applications using different asynchronous

Scientific Programming

HTTP-based communication techniques (Polling, Long
Polling, and WebSocket) and two different mobile browsers
(Chrome and Firefox) behave regarding energy consumption.
The scope of our study lies at the application level and using
HTTP/1.X. Although HTTP/2 improves the performance of
websites and web applications, this version is still used just by
28.3% of all the websites, so its benefits are not significant yet.
In addition, the use of asynchronous solution at the application
level is used by the 90% of web developments, because they are
well-known and widespread solutions. This work is part of our
ongoing study on the energy consumption of asynchronous
communication mechanisms. This work extends our previous
contribution [12] with a new experimental set and a new kind
of experiment (ie., longer interaction experiments). Addi-
tionally, we make the web browser part of our study and
analyse whether there is a statistically significant difference on
the power consumption of the mechanisms.

By knowing the impact in battery consumption of the
selected method for asynchronous communication, the
mobile browser, and other factors (pushed data size and data
pushing rate), mobile web developers could reduce the
power consumption of the front-end of web applications on
mobile devices selecting the most appropriate Web browser
and asynchronous mechanism to send asynchronously
pushed data. Although energy is a critical resource for
smartphones, developers lack of quantitative and objective
information about the behaviour of apps with respect to
energy consumption. This paper analyses and compares the
energy consumption of an Android device while using three
typical asynchronous HTTP-based communication tech-
niques: Polling, Long Polling, and WebSockets; and two
Web browsers: Chrome and Firefox, both for Android. The
study is conducted according to the goal-question-metrics
approach with the goal “Analyse asynchronous HTTP-based
communications for Android, from the point of view of web
software developers” and two research questions that aim to
find out which are the factors influencing energy con-
sumption in the different experimental scenarios, and if the
differences found are statistically significant. For developers,
the results would show if it is worth learning how to use a
technique or use a concrete mechanism in terms of battery
consumption. The major beneficiaries of this energy saving
would be users who would benefit of being updated while
their batteries do not drain off.

This paper is organized as follows: The second section
provides an overview of the HTTP protocol and asyn-
chronous communication mechanisms, the third section
introduces the energy profile tool used in this study, the
fourth section explains the results of this study using the
goal-question-metrics approach, the fifth section illustrates
the threats to the validity of the presented results, the sixth
section overviews work related to our study, and finally, the
seventh section concludes the paper and introduces future
work.

2. Summary on HTTP Protocol

In this section, we describe the HTTP protocol and the
mechanism or technology used by Web application to push

data at the application level. We pay special attention to the
relationship between the size of the data and the rate of
update, JavaScript libraries that support them, and the
reasons for that selection.

The Hypertext Transfer Protocol [6] is a request/
response protocol. A client (i.e., a browser) establishes
TCP connections to a Web server with the purpose of
sending HTTP requests. Each HTTP request only allows
requesting a resource. Once a HTTP server accepts a request,
it sends back the requested resource in the entity-body
content of an HTTP response. HTTP communication
takes place over TCP/IP connections. The number of TCP
connections used depends on the HTTP version. The use of
inline images and other associated data often require a client
to make multiple requests of the same server in a short
amount of time. In HTTP/1.0, most browser implementa-
tions use a different TCP connection for each HTTP request/
response exchange, thus increasing the load on HTTP
servers and causing congestion on the Internet. However, at
the same time, it provides a lower load and rendering time
since all the resources are downloaded almost simulta-
neously in connections that run in parallel. In the next
version of this protocol, HTTP/1.1, the same persistent TCP
connection may be used for one or more request/response
exchanges, although connections may be closed for a variety
of reasons. Persistent HTTP connections have several ad-
vantages [6], which can influence positively to power con-
sumption, by opening and closing fewer TCP connections,
CPU time, and memory are saved. On the contrary, the use
of TCP persistent connection can be affected by the head-of-
line blocking problem, which limits performance and affects
end-user experience. In mobile devices, maintaining the
connection open also contributes to save energy. It seems
that maintaining a connection open requires less energy
than a re-establishing or opening a new connection [13]. In
addition, latency and power consumption on subsequent
requests is reduced since there is no time or energy spent in
TCP’s connection opening handshake and slow start. Al-
though TCP persistent connections are the default behav-
iour of any HTTP connection, many browsers use
nonpersistent TCP connection for improving end-user ex-
perience, despite the overload and the resources required.

The opening and controlling of TCP connections, the
instantiation and sending of HTTP requests through TCP
sockets, and the reception and processing of HTTP re-
sponses is the responsibility of the browser, so the choice of
one browser or another can affect battery consumption. The
process of sending and receiving HTTP messages can
consume a large amount of energy due to the underlying
operations that such request entails. HTTP is part of a
multilayer network protocol stack, which includes TCP, IP,
and various hardware level protocols. These operations,
which involve many system operations (such as calculating
checksums, copying data, referencing data buffers, and
processing protocol data units of different layers), are part of
the operating system. In mobile devices, there is extra power
consumption, since each HTTP API request has tail energy,
which is independent from the size of the request. Tail
energy occurs when the system keeps the network radio in

the active state after an HTTP request is finished. This is
typically done to attempt to reduce the high energy overhead
of starting and shutting down the wireless radio. Although
seemingly small, the overhead of an HTTP request can have
a significant impact on its energy efficiency.

2.1. Polling. In the standard HTTP model, a server cannot
initiate a connection with a client nor send an unrequested
HTTP response to the client; thus, the server cannot push
asynchronously events or data to browsers. Therefore, in
order to receive asynchronously new data as soon as
possible, the browser polls the server periodically for new
content by sending an HTTP request. With the traditional
or “short” polling technique, a client sends regular re-
quests to the server and each request attempts to “pull”
any available events or data. If there are no events or data
available, the server returns an empty response and the
client waits for some time before sending another poll
request (i.e., polling interval). The polling frequency de-
pends on the latency that the client can tolerate in re-
trieving updated information from the server. Polling
implementation on the client-side relies on features in-
cluded by default in browsers, such as JavaScript, rather
than on nondefault plugins.

Regarding energy consumption, continual polling can
consume significant bandwidth and energy by forcing a
request/response round trip when no data are available. It
can also be inefficient because it reduces the re-
sponsiveness of the application since new data are queued
until the server receives the next poll request from the
client [14].

This results in high energy consumption for even a single
HTTP request. HTTP also poses a significant overhead of
extra data and messages to be sent when it makes a request.
Therefore, not only the size of the HTTP data sent affects the
transmission cost but also the set of headers, which can
range from 200 B to 2 KB worth of headers.

Given a compliant server and a compliant browser, the
client just has to instantiate an XMLHttpRequest object. All
modern browsers support the XMLHttpRequest object, a
JavaScript object which allows accessing the DOM. The
XMLHttpRequest object can be used to exchange data with
a web server without the user intervention (also known as
AJAX). This means that it is possible to update parts of a
web page, without reloading the whole page. The client
instantiates an XMLHttpRequest and sends it to the server.
After that, the client reads the HTTP response, which
contains updated content if data of the server have new data
available from the last HITP request. Otherwise, the re-
sponse does not contain any payload in the body. The basic
communication cycle of an application using “HTTP
polling” is as follows (Figure 1(a)):

(1) The client makes an initial request and then waits for
a response.
(2) If there are data available, the server sends an HTTP

response with the data. Otherwise, it sends an empty
response (no data in the body).

Scientific Programming

(3) The client typically sends a new poll request after a
pause (poll interval) to allow an acceptable latency
period.

However, Polling, despite its simplicity, has a priori
drawback: the resources consumed by the client (browser
processing and network) strongly depend on the frequency
data are updated and the polling interval. If the data
availability is low (e.g., of the order of seconds), then a high
polling frequency can cause an unacceptable burden on the
browser, the network, or both.

Figure 2 shows a comparison of the simplified JavaScript
code required for Polling (top), Long Polling (middle), and
WebSocket (bottom). For simple Polling, the client has a
tunction (pollServer in Figure 2) that at every interval sends a
request (.get function in JQuery) and immediately, receives
and process the response. The client must establish, usually
hardcoded, the polling interval, which determines when the
server is polled by the front-end of the application (indicated
by the clock in the upper code in Figure 2).

2.2. Long Polling. In order to improve Polling shortcom-
ings, there are several server-side programming mecha-
nisms often grouped under the common label “Comet”
[15]. One of the most common server push mechanisms is
HTTP “Long Polling”, in which the server attempts to
“hold open” (not immediately reply to) each HTTP re-
quest, responding (i.e., sending the HTTP response) only
when there are events to deliver. Then, there is always a
pending request to which the server can reply sending data
as it is available. This solution enables a web server to send
data to clients when new data are available, and the
browser does not have to be aware of polling periodically,
nor adjusting the polling interval. Long Polling can deliver
updates to browsers in a timelier manner while avoiding
the latency experienced by client applications due to the
poll interval or the empty responses, thereby minimizing
the latency in message delivery and the use of processing/
network resources.

Given a compliant server (supporting async servlets of
Servlet 3.0) and a compliant browser, to send the request
(code shadowed in blue in the middle of Figure 2), the
client has just to instantiate an XMLHttpRequest object
and send it to the server (methods open and send). After
that, the client waits until the Http response is ready. Once
the server has new data available, it completes the HTTP
interaction sending the corresponding Http response. The
basic communication cycle of an application using “HTTP
Long Polling” is as follows (Figure 2(b)):

(1) The client makes an initial request and then waits for
a response

(2) The server defers its response until an update is
available or until a particular status or timeout has
occurred (if this occurs, the HTTP response has no
data)

(3) When an update is available, the server sends a
complete response to the client

Scientific Programming

Time
Browser Server Browser Server Browser
A @ @
—,— Q N
b t‘= ilabl HTTP request Ws\'
Polling ata gvatiable &4 Data available Data
interval . HTTP response Event
Polling
HTTP request +data "
HTTP request Q
Polling
> HTTP request
N Q
1= . -~
Data available =1 Data
i HTTP response Data available \H
Pollin Event
ollng +data
x HTTP request HTTP request
” HTTP response
+data
(a) (b) (c)

FiGure 1: Communication scheme in asynchronous HTTP communication using Polling (a), Long Polling (b), and WebSocket (c).

[JavaScript & JQuery]

function pollServer (interval) { HTTP request

$.get("PollingServlet", function(responseText){ HTTP response |
var div = document.getElementByld("data");
div.innerHTML = div.innerHTML + "\r\n" +responseText;

Ds x
setTimeout(pollServer, interval);

()

Polling
client code

[JavaScript - Function getData()

/ xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState==4 && xmlhttp.status==200) { <

messagesWaiting = false;
var contentElement = document.getElementById("content");

Long polling contentElement.innerHTML = xmlhttp.responseText + bi)\

HTTP response |

client code contentElement.innerHTML;
}
var xmlhttp = new XMLHttpRequest ();
milhttp.open ("GET", "LongPollingServlet?t="+new Date(), true); I HTTP request

X
inhttp.send(); /

(b)
WebSocket webSocket.onmessage = function (event) {
client code writeResponse (event.data); Pushed data |
b
(c)

FIGURE 2: JavaScript client code for Polling (a), Long Polling (b), and WebSocket (c).

(4) The client typically sends a new Long Polling request,
either immediately upon receiving a response or
after a pause to allow an acceptable latency period

The HTTP Long Polling mechanism can be applied to
either persistent or nonpersistent HTTP connections.
However, the use of persistent HTTP connections will avoid
the additional overhead of establishing a new TCP/IP
connection [16] for every Long Polling request.

2.3. WebSocket Protocol. WebSocket is a protocol defined in
[9], which allows to use the TCP connection established
between a browser and a Web server as a full-duplex and
persistent socket-like channel for exchanging non-HTTP
messages with only a small overhead in comparison to
HTTP [10]. Using this connection, the back-end in the Web
server is able to actively and asynchronously push data to the
client whenever it is available. Prior to data/message ex-
change through the connection, the WebSocket protocol
requires an initial handshake to establish the WebSocket
connection. The message exchange is executed in form of
frames, which contain either text or binary data [9]. Dif-
ferent subprotocols for WebSocket are defined like SOAP
Over WebSocket Protocol Binding (MSSWSB), WebSocket
Application Messaging Protocol (WAMP), or Simple Text
Oriented Messaging Protocol (STOMP).

Given a WebSocket compliant server and a compliant
browser, the client, using a JavaScript API, just has to in-
stantiate a WebSocket object and starts listening to server-
pushed data events (method onmessage) (see example code
in the bottom of Figure 2). The basic communication cycle of
a client application using WebSockets is as follows
(Figure 1(c)):

(1) The client makes an initial handshake and then waits
for a response

(2) When an update is available, the server sends the
data to the client through the WebSocket

(3) Incoming data are available to the browser through
an asynchronous event (method onmessage)

3. Energy Profiling Tool

To measure energy consumption of software applications
running on mobile phones, there are multiple tools based on
both hardware and software [17-24]. Although hardware
measurement offers higher precision, we cannot make use of
it, since it estimates the energy consumed by the whole
machine, and our study investigates the consumption at the
application level. Additionally, selecting and configuring a
hardware equipment may represent a complex task [25],
which can introduce additional bias. Some solutions require
special equipment and are difficult to apply with the
available documentation [18, 19]. Other solutions offer
applications that can be installed in devices easily [20, 21] but
they are restricted to specific devices and architectures.
PETrA, which is an acronym for a Power Estimation Tool
for Android apps, is able to measure power consumption
at a method-level granularity, but it requires some app

Scientific Programming

preprocessing before measuring energy consumption. En-
ergy measurements provided by PETRA have been com-
pared against the actual energy consumption computed by a
hardware toolkit, obtaining similar results [22]. In our case,
taking into account the available devices for testing, we find
two software solutions that fitted our requirements: the
GreenOracle [26, 27] and the Trepn Profiler [28]. Green-
Oracle is an accurate software energy model that is now
improved by GreenScaler [24]. The latter improves training
process by automating the generation process of the software
tests. A summary and a brief comparison of the existing
Android testing tools for model building test generation can
be found in [24]. An overview of the empirical studies on
energy consumption in mobile devices is presented in the
Related Work section.

In a previous contribution [12], we have used both
GreenOracle and Trepn Profiler tools to profile the power
consumption of different Android devices. As the results
of the experiments were remarkably similar for all the de-
vices and profiling tools, in this contribution, we have opted
to use just one of the tools. Specifically, we have opted
for Green Oracle, widely used in other experimental re-
searches [29, 30], which supports to experiment with the
device connected to a power source, allowing to speed up the
experimentation process.

Regarding the equipment, tests have been executed on a
Samsung Galaxy Nexus (https://en.wikipedia.org/wiki/
Galaxy_Nexus), which is the device used to develop the
GreenMiner. The back-end of the web sites is deployed in a
Glassfish web server in an Ubuntu 14. The PC is an Intel
Core i7 3.50 GHz with 16 gigabytes of RAM memory. The
web server has a 1 gigabit Ethernet Internet connection. On
the other hand, the smartphone uses a WiFi connection in a
different local network to the web server.

3.1. GreenOracle. GreenOracle is an accurate energy model
generated using a big-data approach and hundreds of energy
measurements obtained by the GreenMiner [19]. According
to authors, GreenOracle has an upper error-bound close to
10% which is similar to other methods like the ones dis-
cussed in [18, 31]. Additionally, it is relatively easy to apply as
it is based on information that can be extracted from the
operative system of the device (i.e., Android), and authors
have well documented the workflow to apply the energy
model. Finally, GreenMiner, the source of energy mea-
surement data, has been applied in several works [29, 30, 32].
This supports the accuracy of the data used to generate the
energy model.

The framework used to apply the GreenOracle model is
composed of different applications and tools (Figure 3). We
have developed several scripts for Android ADB [33] that
gather the information of the operative system and interact
in an automated way with the mobile phone screen avoiding
introducing additional bias. This information is processed by
a Java application, which finally applies the model. The
energy model requires information of the CPU consump-
tion, interruptions, major faults, and context switches that
are extracted from the operative system files “/proc/stat” and

https://en.wikipedia.org/wiki/Galaxy_Nexus
https://en.wikipedia.org/wiki/Galaxy_Nexus

Scientific Programming

ADB scripts

PN
[

Galaxy Nexus

v

v v

/proc/pid/stat/

/proc/stat% /strace/output/

Screen capture [

I J

v

. Average
Color summarizer &

RGB values

Java application

(GreenOracle) LoV

F1GURE 3: Framework to apply the GreenOracle Energy Model.

“/proc/pid/stat”. Other necessary information is the system
calls performed as a result of the execution of the appli-
cation, which is extracted using the “strace” command, and
average RGB values of colour in the screen during the ex-
ecution. This information is generated capturing periodically
the screen during the work of the application (by means of
an ADB script) and processing captures using the utility
Image Color Summarizer [34]. All this information is
processed by the Java Application, which contains the
GreenOracle model, and generates csv files that can be
processed by Microsoft Excel or other similar tools. The
components of this framework are available at https://goo.
gl/sZsMZ3.

4. Empirical Study

In this section, we present the experimental planning and the
energy profile results obtained by the experiments. The
measurement unit used is joule (J). One joule is the
equivalent of one watt of power radiated or dissipated per
second.

4.1. Objectives and Research Questions. The methodology of
this study is defined according to the goal-question-metrics
approach [35] as follows: “Analyse asynchronous HTTP-
based communications for Android, from the point of view
of web software developers”. To achieve this goal, we set the
following research questions (RQs):

RQI. What is the factor (polling/pushing interval time or
data size) that most influences energy consumption in
asynchronous communication? This question explores the
influence of data size, data latency; and polling/pushing time
interval, and their relationship in the power consumption of
the three methods considered. Also, the data availability
frequency in relation with polling interval is also considered
in the simple polling method, because in polling mechanism,
if client polling interval is minor than data availability
frequency, it can cause the reception of empty HTTP re-
sponses. Other factors, such as the use of two mobile web

browsers with different browser engines, will also be
considered.

RQ2. Which asynchronous communication method is the
most efficient in terms of energy consumption? Are statistically
significant the differences in terms of energy consumption of
the three communication mechanisms? RQ2 compares and
overviews whether the power consumption of each asyn-
chronous method is significantly different, or there exists
different scenarios or browsers where a method is better than
others. The answer to this question is the key to make the
best choice in terms of energy consumption and application
requirements. Additionally, we analyse whether the quan-
titative saving in power consumption of one communication
mechanism of a mobile browser is significant with regard to
others. This is especially interesting for developers that
consider to change the implementation of a Web application
to get a mobile front-end more respectful with device energy.

4.2. Data Collection. In order to measure and compare the
consumption of the three asynchronous communication
mechanisms in two different mobile browsers, we have
developed three simple web sites compatible with mobile
browsers (http://caosd.lcc.uma.es:9000/). Each of them al-
lows testing one of the three communication mechanisms
considered. The user interface of the front-end allows
configuring the parameters for each experiment: the polling/
push frequencies and size of the data received from the
server (Figure 4). All the web sites allow to configure the
server to generate data randomly (both size and time). The
server generates events randomly according two normal (or
Gaussian) distributions.

The three web sites present the same simple user in-
terface. Our tests focus on energy consumption at data
reception, so we have measured the energy consumption of
the mobile browser when it is receiving data using the three
communication mechanisms in different scenarios with
different durations, data sizes, and frequencies. We con-
sidered experiments of two durations: 1 minute and 5
minutes. We have selected 1 minute because, according to

https://goo.gl/sZsMZ3
https://goo.gl/sZsMZ3
http://caosd.lcc.uma.es:9000/

@ & 5

150.214.108.58:8080/HadasMob |

Hadas Websocket

First, you must establish a connection (Press
Open)

Set the size of the data (bytes) to send
Set the frequency (milliseconds) of sending

After finising the test, please, close the
connection (Press Close)

Size in Bytes:
1024
Frequency in milliseconds:
30000
Random tests
Iteration count 0

| Open || Runtest || Close |

S O =

FiGure 4: Minimal UT to test WebSocket reception in Google.

different works [36, 37], the interaction of people with
mobile phones is for short periods of time of around 1
minute. Additionally, we consider longer experiments of five
minutes. Interactions with tablets or specific Web apps, such
as gambling, news consult, or access to social networks, are
longer than 1 minute and usually of this duration [38]. Most
notifications and updates occur at intervals of more than 30
seconds. With regard to the data size, we consider five
different message sizes (140 bytes, 280 bytes, 560 bytes, 1120
bytes, and 2240 bytes) that comes from a usual twitter
message (i.e., 140 bytes) to messages that requires frag-
mentation at the IP level (i.e., 2240 bytes). The data update
periods selected for the tests are (in milliseconds) 1000, 5000,
10000, 30000, and 50000. These update periods represent the
polling frequency for simple polling and interval time be-
tween data availability at the server for Long Polling and
WebSockets. Each test has been repeated 20 times.

Figures 5-7 show the results of these experiments. The
results are conclusive enough with a standard deviation
lower than 15 joules for experiments of 1 minute and lower
than 25 joules for experiments of 5 minutes. According to
our experiments, there are different patterns of energy
consumption depending on the web browser and the du-
ration of the experiments. In general, Chrome has a lower
energy consumption than Firefox. However, it seems more
sensible to lower polling periods. As expected, WebSocket
has the lowest energy consumption for all experiments.
Other interesting issue is that it seems that data size has little
impact on energy consumption.

Scientific Programming

We have performed experiments to measure energy
consumption of Long Polling and WebSocket in more re-
alistic scenarios. Specifically, we have measured energy of
both communication mechanisms in scenarios of random
data size available at random time. In order to generate
randomly data in the back-end, we have used the java class
java.util. Random and its method nextGaussian(). This
method is used to get the pseudorandom numbers that are
normally distributed (i.e., they follow a Gaussian distribu-
tion) with mean 0 and standard deviation 1. We have used
equation (1) with the parameters dev and mean to generate
more realistic data patterns. The Gaussian distribution to
model the event generation time has a mean of 5000 and
standard deviation (dev) of 1000 (this means that 70 percent
of values will fall between 5000 + 1000, in other words be-
tween 4000 and 6000 milliseconds; the 95 percent of values
will fall between 3000 and 7000 milliseconds). The standard
deviation of the Gaussian distribution used to generate data
size has a mean of 500 and standard deviation (dev) of 100
(the 70 percent of values will fall between 500 + 100, in other
words between 400 and 600 bytes).

r.nextGaussian () * dev + mean. (1)

Results of random experiments are depicted in Table 1.
We can see a great similarity between Long Polling and
WebSocket but with slightly lower consumption for Web-
Socket. Additionally, it is interesting to note that, for random
experiments, the energy consumption of Firefox is higher
than the consumption of Chrome.

4.3. Answers to Research Questions. RQI. What is the factor
(polling/pushing interval time or data size) that has more
influence to energy consumption in asynchronous commu-
nication? In order to answer this question, we apply cor-
relation coefficients [39]. A correlation coeflicient is a
numerical measure of some type of correlation between two
variables. Depending on the type of the relationship between
the variables (i.e., linear and monotonic), we can use dif-
ferent correlation coeflicients like Pearson or Spearman.
Therefore, before applying the corresponding coefficient, we
will study the relationship between the variables. In order to
accomplish this task, we will create scatterplots matrices of
the data. In addition, scatterplots can detect whether there is
a relationship between the variables.

The scatterplots of our experiments (Figures 8-13) show
three important results. Firstly, there is not a relationship
between the variables bytes and energy consumption in any
of the scenarios studied. Secondly, there is a relationship
between frequency and energy consumption and this re-
lationship is monotonic. This is true for all scenarios except
the one of Polling using Firefox in 1-minute experiments
(Figure 8). In this case, the relationship between the variables
is linear. Finally, these scatterplots confirm the in-
dependence of our input variables (i.e., bytes and period).

In order to assess the strength of the relationship be-
tween frequency and energy consumption, we run Spear-
man’s rank correlation coefficient. This coefficient is a
statistical measure of the strength of a monotonic

Scientific Programming

300
250
200
[
= 150
L2
100
50
1000 5000 10000 30000 50000
Milliseconds
m 140 1120
= 280 m 2240
560
(a)
1000
900 -
800 -
700 A
g 600
= 500 A
2400 -
300
200 -
100 -
1000 5000 10000 30000 50000
Milliseconds
m 140 1120
u 280 2240
560

(c)

9
300
250
200
[
= 150
2
100
50
1000 5000 10000 30000 50000
Milliseconds
m 140 1120
= 280 m 2240
560

1000
900
800
700
600
500
400
300
200
100

Joules

1000 5000 10000

Milliseconds

30000

50000

= 140
n 280
560

1120
m 2240

(d)

FIGURE 5: Energy consumption of Polling for 1-minute experiments in Chrome (a) and Firefox (b) and 5-minute experiments in Chrome (¢)

and Firefox (d).

relationship between paired data. Therefore, it is adequate
for variables that are monotonically related. As all the linear
relationships are monotonic, we can apply this coefficient to
the Polling Firefox 1-minute scenario (Figure 8). Spearman’s
rank correlation coeflicient is denoted by r; and is con-
strained by —1 and 1. The closer ris to + 1, the stronger the
monotonic relationship is. We have performed this analysis
using the statistical tool IBM SPSS.

Results of the application of the Spearman correlation
(Table 2) confirm what was evident from the scatterplots;
there is a strong negative relationship between energy
consumption and period in all scenarios. Thus, short polling
periods are associated with high energy consumptions. We
have tested the significance of the results using the p value,
which is lower than 0.001 in all scenarios, so we can confirm
the results obtained.

In conclusion, the polling/pushed interval is the factor
that has more influence on energy consumption. We can
confirm this fact in bar charts of Figures 5-7. In Chrome,
there is a considerable difference between the energy con-
sumed for periods of 1 second and the rest of polling periods
regardless of the duration of the experiments. On the one
hand, for experiments of 1 minute (Figures 5(a), 5(b)-7(a),
7(b)), the energy consumption for polling periods of 1
second is around 150-200 joules, while for the rest of the
polling periods is around 100 joules, with no significance of
the data transmitted. The situation for experiments of 5

minutes is similar (Figures 5(c), 5(d)-7(c), 7(d)), for polling
periods of 1 second the energy consumption is around
500-800 joules, and for the rest of the polling periods
analysed is around 400 joules. These differences are slighter
for WebSocket. On the other hand, Firefox seems less
sensible to variations in the polling period.

Taking into account the information provided by the bar
charts and Spearman’s rank coefficient, we state that updating
frequency is the factor that has more impact on energy con-
sumption. So, mechanisms that just provoke some interaction
when it is necessary will consume less. However, this is not the
case of the polling mechanism that will consume energy, re-
gardless of the availability of the data. In view of these data, the
answer to question RQLI is that frequently updating data affects
negatively energy consumption, while the size of the data
pushed barely influences energy consumption. In order to
reduce battery consumption in the mobile front-end, and if data
pushing/polling can be set to a fixed rate without jeopardizing
the quality of the service and the user experience, the developer
should configure the back-end of the web application to push
data with a period above 5000 milliseconds. If new data are
generated within this interval, it can be sent together in the same
delivery without penalizing energy consumption.

RQ2. Which asynchronous communication method is the
most efficient in terms of energy consumption? Are the dif-
ferences significant in terms of energy consumption of the
three communication mechanisms? In order to answer this

10
300
250
200
3
= 150
2
100
50
1000 5000 10000 30000 50000
Milliseconds
= 140 1120
u 280 2240
560
(a)
1000
900 -
800
700 A
2 600 1
= 500 A
2400 -
300 A
200 A
100 -
1000 5000 10000 30000 50000
Milliseconds
= 140 1120
u 280 2240
560

(c)

Scientific Programming

300
250
200
9]
= 150
2
100
50
1000 5000 10000 30000 50000
Milliseconds
= 140 1120
u 280 2240
560
(b)
1000
900
800
700
2 600
= 500
2400
300
200
100
1000 5000 10000 30000 50000
Milliseconds
u 140 1120
n 280 2240
560

(d)

FIGURE 6: Energy consumption of Long Polling for 1-minute experiments in Chrome (a) and Firefox (b) and 5-minute experiments in

Chrome (c) and Firefox (d).

question, we firstly make a quantitative study of the energy
consumption values obtained for the different communi-
cation mechanisms and web browsers. Table 3 includes the
descriptive statistics for these values. Polling is clearly the
communication mechanism with the highest energy con-
sumption while there is a strong similarity between Long
Polling and WebSockets. In general terms, the use of
WebSocket to push data shows the lowest energy con-
sumption. However, for polling/pushing periods longer than
1 second and using Firefox, its consumption is very similar
to the other communication mechanisms. Simple Polling is
the asynchronous communication mechanism with the
highest energy consumption but for longer polling periods
its consumption is very similar to Long Polling. The answer
is that, according to our results (Figures 5-7), there is no
single asynchronous mechanism clearly better in all the
scenarios.

This result is coherent with the active processing that the
browser has to perform for small periods. For instance, if 80
bytes of data is available every 2000 milliseconds, the Polling
client, with a polling interval of 1500 milliseconds, sends 40
HTTP requests of 462 bytes (a data overload of 7760 bytes plus
the size of header in bytes of the HTTP response). For the same
scenario, the client using Long Polling sends 30 HTTP requests
of 462 bytes (plus the size of header in bytes of the HTTP
response). Since the WebSocket client does not need to send any
request nor data to the server to receive 80 bytes of data every

2000 milliseconds, the overhead is 0. The number of messages
sent explains the higher energy consumption. In terms of
usefulness, the TCP connection transports more useful appli-
cation data than Polling and Long Polling.

Tests with random generation of data (see Table 1), which
allows to measure energy consumption when data is generated
by a bursty or interactive source, have confirmed a similar
energy consumption between Long Polling and WebSockets.
Both in the I-minute and 5-minute experiments, energy
consumption of the WebSocket client is slightly lower than the
energy consumption of Long Polling client. These random results
confirm the advantage of Long Polling and WebSocket over
Polling when the source does not generate data at a fixed rate.
When the most adequate polling period cannot be set in
advance, the client side polls for data more frequently, pro-
voking some empty responses and increasing energy con-
sumption: the average energy consumption of Polling in
Chrome for 1-minute experiments is 137 joules and for 5-
minute experiments is 498 joules. Using Firefox, the con-
sumption is higher: for 1-minute experiments the consumption
is 225 joules, and for 5 minutes experiments is 616 joules. In all
the tests (fixed rate/data and random generation), Firefox
energy consumption is higher than the consumption of Chrome.

Taking into account the results, our answer to the first
part of RQ2 is that the energy consumption of Long Polling
and WebSocket is very similar for the experiments per-
formed. Simple polling is the most inefficient in terms of

Scientific Programming

1000 5000 10000 30000 50000
Milliseconds
= 140 1120
m 280 m 2240
560

(a)

1000
900
800
700
600
500
400
300
200
100

Joules

1000 5000

10000

Milliseconds

30000 50000

= 140 = 1120
280 m 2240
560

(c)

11

1000 5000 10000 30000 50000
Milliseconds
= 140 1120
m 280 m 2240
560

(b)

1000
900
800

Joules

1000 5000 10000 30000 50000
Milliseconds
= 140 = 1120
280 m 2240
560

(d)

FIGURE 7: Energy consumption of WebSockets for 1-minute experiments in Chrome (a) and Firefox (b) and 5-minute experiments in

Chrome (c) and Firefox (d).

TaBLE 1: Energy consumption in joules of random experiments.

Chrome Firefox
1 min 5min 1 min 5 min
Long Polling 117.583 420.295 203.734 589.927
WebSocket 104.533 423.350 215.115 491.951

energy consumption. However, when the new data are
frequently available, Long Polling introduces an overload
derived from the processing and sending of HTTP requests,
which consumes more energy (using WebSockets, the client
does not have to send request to server). Surprisingly, this is
not maintained for longer periods. The reason is the
WebSocket protocol sends periodically signalling data to
keep the connection opened if it is not used and the energy
consumption of this interaction is similar to the energy
consumption caused by sending HTTP requests of Long
Polling. So, surely many developers may think that Web-
Sockets, being a more recent technology, will consume less
than an older one, but we have found that the beliefs of these
web developers do not correspond to the reality, showing the
great utility of this kind of experiments.

Answering the second part of RQ2 implies to analyse
whether these differences on energy consumption are sta-
tistically significant or not. We have visually analysed the
energy consumption of the communication mechanisms using

a box plot (Figure 14). These graphs evidence the different
patterns of energy consumption depending on the web browser
and the duration of the experiments. Differences in energy
consumption are remarkable for 1-minute experiments (see
Figures 14(a) and 14(b)). It is interesting to note that the lowest
and the highest values of energy consumption are for Long
Polling in all experiments except for Firefox in 5-minute ex-
periments. We can see outliers in all experiments that can
means statistically significant difference between the three
communication mechanisms.

Hence, we also performed a Wilcoxon rank sum test (a.k.a.
Mann-Whitney U-test) for each pair of groups to test observed
differences in their averages. The Wilcoxon rank sum test is a
nonparametric test appropriate for small samples as in our case.
This test is used to test whether two samples are likely to derive
from the same population. Therefore, the null hypothesis of this
test is “there is not a statistically significant difference between
two data sets.” If the p value of this test is lower than 0.05, the
null hypothesis is rejected. The p values for these tests are
summarized in Table 4, the null hypothesis is rejected for
Chrome in 1-minute experiments, but surprisingly is accepted
for Firefox in 1 minute but between Polling and Long Polling.

So, in general, there are statistically significant differ-
ences depending on the communication mechanism. In 1-
minute experiments, this is true with the exception of Firefox
for which the differences are not significant. We have

12 Scientific Programming
(1 X] [] [] @e [] [L X] [] [] o o e o
2 (L X] ° [] [_J ° & [L X] ° ° [X] ° []
(L X] [] [1] [] [L X] L] [] [X J L] L]
11 s s @ % $s s s oo %°
®oe o [] ® e o o [e o
=] 9
2 ®we o ° [J 9 ®e o [] oe
S S
~ v
®.e o [J [J ®e o [[1 J
®oe o [] LN] ee o [®@eo0 L]
®e o ° - oo o [] L]
= =
'g 'g L4 %
E %o o ° (] g %° ° ° g °
32 2 ° °
g gl o° .
) o [} []
®e ° ° ° (]]
Bl ®3 e 8 o o o Bl g I
z &
= 3
Bytes Period Energy consumption Bytes Period Energy consumption
(a) (b)
FIGURE 8: Scatterplots for Polling in Chrome (a) and Firefox (b) in 1-minute experiments.
L L X J [] [] L X 1] [] (L X J [] [] - []
8 8
§~ L L X J [] [] L1} [] g\ (L X J [] [] -se []
/Q <3}
(1 X] [] [J o oo [] (1 X] [] [J o o []
888 8 8 3%s s 888 8 8 & & ¢
e o ° o™ o e o ° (L _J
o 9
9 LK J L] L] L J 9 LK J [] [] o» o
S S
~ v
o o (3 (4 ® o o (3 (3 «@e o
e o [[J e o [(X 1 _J
o o L] [] [_J o o L] [] -
= =
g S
= ®e o ° [] a
gu g ®° o ° s
Z 2
= =i
Slaes | % , @ 5| e, - .
Bl %00 e : ¢ G| eg @ 0 S 1 3
o) ° ®
= =i
= 3
Bytes Period Energy consumption Bytes Period Energy consumption

(a)

()

FIGURE 9: Scatterplots for Polling in Chrome (a) and Firefox (b) in 5-minute experiments.

different results for 5 minutes experiments and the differ-
ences are statistically significant between Polling and Long
Polling, and Long Polling and WebSockets in Chrome. In
Firefox, there is a statistically significant difference between
Polling and Long Polling, and Polling and WebSocket.

The Wilcoxon sum rank test has demonstrated there is a
statistically significant difference between some scenarios.
However, we did not assess the relevance of these differ-
ences. In order to accomplish this task, we run an effect size
test Cohen d for the cases where Wilcoxon has discarded the
null hypothesis (Table 4, where black cells mean there is no
statistically significant difference for Wilcoxon, so the
Cohen d does not apply for that cases). According to the rule

of thumb, values of Cohen d higher than 0.8 shows a large
effect or, in other words, the differences between the two
groups are relevant. In our experiments, this is true for
Polling-Long Polling using Firefox, and Polling-WebSocket
for Firefox in 5-minute experiment. On the other hand,
values of Cohen d higher than 0.5 show a medium effect,
which is the case of Polling-WebSocket for Chrome in 1-
minute experiments and Long Polling-WebSocket for
Chrome in the 5-minute scenario.

The answer to the second part of RQ2 is that, taking into
account the results of the analysis, we conclude that the
communication mechanism with the lowest energy con-
sumption is WebSocket. However, the difference on energy

Scientific Programming

13

(L X] L] [] [L _J L] [L X] ° ° __J °
8 3
c%\ (L X] ° [] - e ° % [L X] ° L] e o0 °
(1 X] [] [] [1] ° [L X] ° ° o® e []
L1} s s a8 % 883 L s «B8® o°
®oe o [] [] e o o e»e
E ®e o [] [J E e o [] a»
5 S
A A
®.e o [J [J ee o [ose
®e o [[J ®e o ° o
®we o ° -e ®we o [] oo
g =
= . . = . °
o %o . (] o ° o
[J
g =
S we o s [S 2 ; : s
°
5l @t s 8 * 4+ . sl PECO0 o 1 3
L Q
= j=
3 &3]
Bytes Period Energy consumption Bytes Period Energy consumption
(a) (b)
FIGURE 10: Scatterplots for Long Polling in Chrome (a) and Firefox (b) in 1-minute experiments.
(L X] ° [] ® o [] [L X] ° L] - e °
% (L X] [] o o0 ° & [L X] ° ° - o °
(1 X] [] [] (1} [] [L X] [] [] [X] []
111 s $ 138 L 883 $ $ ° Qo
®oe o [] [] e o ° [J
=]]
9 ®oe o [] o oo 9 e o ° [_J
) 3
A A
®e o [[X] ®e o [[_J
®oe o [3 [] ®ee o [__J o
®.e o [] [_J ®ee o ° o®
g g
p= = ° °
% o, o ° [g :. ° !.
E 3
« 1z}
g g
2. we $ ° o, $. ° s © "
> 3% s e o o ® o, J ¢ 0
= =
3 &3
Bytes Period Energy consumption Bytes Period Energy consumption

(a)

(®)

FIGURE 11: Scatterplots for Long Polling in Chrome (a) and Firefox (b) in 5-minute experiments.

consumption of this mechanism is only clearly relevant
compared with Polling in Chrome for 1-minute experiments
and Firefox for 5-minute experiments. According to our
analysis, the most important difference on power con-
sumption is between Polling and Long Polling when the web
browser is Firefox.

5. Threats to Validity

This section briefly discusses the internal validity, construct
validity, and external validity of our study. The internal

validity intends to explore whether the results obtained are
influenced or not by other factors. The threat to construct
validity is concerned with how good is the relation between
theory and observation. However, the external validity an-
alyses whether the results obtained in the experiments can be
generalized or not.

With regard to the internal validity, we should analyse
the accuracy of the results provided by the energy-measuring
tool. Although hardware solutions usually offer more pre-
cision in energy measurements, we have opted for using a
software measuring tools, GreenOracle. As previously stated

14 Scientific Programming
(1 X] L] [] L _J [] [] (1 1] [] [] L] []
;%\ (1 1] L] L] - o [] 2 (1 1] L] L] 0000 []
o0 0 [J e o L] (11 L] L] 000 ¢ L]
11} 8] N ®e 883]] Mm® o« %
®.e o [] L] ®e o L] [__J
E ®.e o [] - 'g ®e o L] o
S o}
Ay ="
®.e o [3 L__J ®e o [000 []
®e o [3 L __J ®e o ° »e
”®oe o [] L _J ®e o ° L __J
=} =}
g 2 % ']
I o o s ® o °
[]
g ° d ' g ° °
g ° g ° °
o ° o [} ° °
e I ! 5| ptd 8 2 1 3
5| e 8 3 L g ‘
=} =}
=] =]
Bytes Period Energy consumption Bytes Period Energy consumption
(a) (®)
FIGURE 12: Scatterplots for WebSocket in Chrome (a) and Firefox (b) in 1-minute experiments.
(1 X] L] [] @”e o [] (11} [] [] o« L]
8 8
C%\ (1 1] L] L] ®e o L] E‘\ (1 1] L] L] L _J [] []
(1 1] o @e o [] (1 1] - o []
t11] s] B L o° 888]] 8 8 o°
oo o [] [_J ”®oe o ° [J
o ja=]
9 oo o [] [] 9 ”®oe o L] o o
S o}
~ ~
”®oe o [4 [] ”®oe o ° e o
e.e o [- e.e o [3 o e
”®oe o [] o & ”®oe o L] [X 1}
=} =}
S . S R .
- ‘ o :
g ° ° § e o °
=] =]
3 %o o [] 3 s ¢ 8. °
B B . (1)
P ome e H * s Pl o ‘ e e
=} =}
= =]
Bytes Period Energy consumption Bytes Period Energy consumption

()

(®)

FIGURE 13: Scatterplots for WebSocket in Chrome (a) and Firefox (b) in 5-minute experiments.

TABLE 2: Spearman’s rank correlation coefficient for 1-minute
experiments.

Chrome Firefox
1 minute . 1 minute .
minutes minutes
Pollin r, 0833 -0871 —0.698 —0.788
& pvalue 0000 0.000 0.000 0.000
LonePolling s 0957 —0.718 —0.757 -0.657
& & pvalue 0000 0000 0.000 0.000
re —-0945 —0.705 —0.672 —0.689
WebSocket lue 0000 0,000 0000 0.000

in the third section of this paper, the difficulties of repro-
ducing experiments made by hardware solutions by third
parties, and the precision demonstrated by software tools are

the main reasons to select software solutions. Additionally,
we are not interested in reporting absolute energy values, but
to give recommendations to developers based on compar-
ative results.

Another internal validity is related with the energy
consumption of other elements of the Web applications in
the experiments. In order to mitigate this threat, all the
JavaScript clients present the same user interface, which
equate the energy consumption of rendering in all the ex-
periments. Internally, the three JavaScript-based client
implementations are based in minimal examples provided
by tutorials from Netbeans and university courses. The client
does not use CSS, and the JavaScript functions used to
implement asynchronous mechanisms are from standard
JavaScript libraries and fully supported by mobile browsers
used in our experiments.

Scientific Programming 15
TaBLE 3: Descriptive statistics for energy consumption in joules.
Chrome Firefox
Polling Long Polling WebSocket Polling Long Polling WebSocket
1 minute
Mean 137.49 127.41 121.259 222.56 201.84 218.056
Standard deviation 31.946 39.728 11.255 21.164 14.89 1.152
Minimum 114.93 99.417 111.102 203.57 184.53 212.53
Maximum 203.79 216.08 143.659 279.18 236.46 229.628
5 minutes
Mean 498.73 511.06 437.162 616.19 580.95 57231
Standard deviation 155.33 179.97 58.551 55.447 50.952 37.24
Minimum 346.49 344.95 381.722 552.15 539.69 538.99
Maximum 795.87 865.93 555.983 723.39 678.6 656.863
250 300
200 ; : 250)
200 , + S
150 e
-
100 S S
100
50 50
0 0
| Polling | Polling

900

800

700

600

500

400

300

200

100

m Long polling
B WebSocket

(a)

m Long polling

m WebSocket

800

700

600

500

400

300

200

100

(®)

-

H Polling

B Long polling
I WebSocket

(©)

H Polling

B Long polling

m WebSocket

(d)

FIGURE 14: Box plots of the energy consumption for Polling, Long Polling and WebSockets in Chrome for 1-minute experiments (a), Firefox
for 1-minute experiments (b), Chrome for 5-minute experiments (c), and Firefox for 5-minute experiments (d).

Another internal threat may come from using a set of
parameters in the experiments that could not be considered
exhaustive. According to the literature, the main factors

involved in power consumption during asynchronous
communications are the polling period and the amount of
information transmitted. The range of values selected

16

TaBLE 4: Statistically significance in the different scenarios (Wil-
coxon sum rank test and Cohen d).

Chrome Firefox
1min 5min 1min 5min

Wilcoxon 0.009 0.000 0.000 0.002
Cohen d 0.389 0.1 1.55 0.83

Wilcoxon 0.006 0.184 0.233 0.003

Polling-Long Polling

Polling-WebSocket

Cohend 0.709 — — 0.997
Long Polling- Wilcoxon 0.045 0.000 0.677 0.839
WebSocket Cohend 0.217 0.574 — —

illustrate minimal interactions such as the delivery of a
message in Twitter (140 bytes) and more complex cases that
even require fragmentation at the IP level (2240 bytes). So,
considering five different sizes of data, we think we have
covered a great variety of situations. Regarding the fre-
quency that new data are available, we have considered the
energy consumption for long interactions or updates of
webs that do not require interaction by the user. This
situation can occur when the user requires to be notified of
recent publications of social networks or specialized webs
(e.g., trading, gambling and sport results webs, to mention
a few).

The threats to construct validity analyse the extent to
which the energy measurement tool measures the theoretical
construct it is designed to measure. We have identified the
election of a single software tool to measure the energy
consumption as a threat to construct validity. In a previous
section, we have already discussed that using only one energy
measurement tool cannot be considered a serious construct
threat since we have tested different widely accepted software
tools in previous experiments, and the results showed that
they provide similar energy measures.

Regarding the external validity, we have taken into
consideration the influence of using a concrete mobile
browser in the experiments. There are only two mobile
browsers supporting the three asynchronous communica-
tion mechanisms of this study, Chrome and Firefox. We are
aware that the use of one browser or other can affect to the
energy consumption of the device. So, we have opted to use
the two most extended web browsers in our experiments,
Google Mobile Chrome and Mozilla Firefox for Android,
which use a different browser engine (i.e., Gecko). Other
mobile browsers use internally Blink, the same browser
engine that includes Mobile Chrome.

Finally, we consider as an external threat the general-
ization of the results to all mobile phones and Android
versions. Here the limitation is to have reliable energy
measurement tools available for enough devices. In order to
mitigate this limitation, we have opted for using GreenOracle
as measuring tool (as stated before, GreenOracle and Trepn
Profiler produce similar results for different devices).

6. Related Work

The energy consumption in mobile devices has been studied
in different works. The experimental studies cope with

Scientific Programming

energy consumption in different contexts and with different
purposes [12, 27, 29-31, 39-51]. These studies are conducted
to help developers about being concerned of energy con-
sumption and contribute to provide alternative choices more
energy saving. The study in [31] analyses how symptoms of
poor design or implementation choices (namely, code
smells) affect energy consumption. The study highlights that
methods affected by some code smell types consume up to 87
times more than methods affected by other code smells and
propose refactoring to reduce energy consumption in all of
the situations. Code smells energy consumption is also
studied in [29] in order to assess the benefits of a tool that
automatically correct code smells and evaluate their impact
on energy consumption. The study in [40] provides detailed
profiles of the energy consumed by common operations
performed on common data structures such as Java List,
Map, and Set abstractions, showing that the alternative data
types for these abstractions differ significantly in terms of
energy consumption depending on the operations. De-
velopers can use the usage context of a data structure and the
measured energy profiles to decide between alternative
collections implementations. The energy impact of logging
in different Android mobile apps using GreenMiner is
assessed in [30]. This study shows that logging has a neg-
ligible effect on energy consumption for most of the mobile
applications tested. The approach in [40] combines em-
pirical measurements of different machine learning algo-
rithm implementations with complexity theory to provide
concrete and theoretically grounded recommendations to
developers who want to employ machine learning on
smartphones in terms of energy consumption and accuracy.
The study concludes that some implementations of algo-
rithms generally perform better than others and indicates
which other factors and parameters can affect which ma-
chine learning algorithms and what implementations will
provide the best results.

The mobile device communication functions have also
been considered in different experimental studies. In [39],
the energy consumption of the main functions of a mobile
phone, including data transfer with 2G and 3G, were
researched. Later, the same authors analysed the energy
consumption of different communication components like
Bluetooth, WLAN, 2G, and 3G in more detail [44]. This
study, conducted on a Nokia N95, concludes that 3G
communication is more energy consuming than GSM (2G)
communication, for using different application and services
requiring the data connection.

As most of the mobile applications transfer data over the
Internet, it is an important area to analyse the components
needed for such data transfer at different layers. In [45], a
comparison between WLAN and 3G with regard to their
energy consumption is provided, showing that using WiFi as
opposed to 3G is more energy efficient. This study also shows
how the network activities (packet size and interval between
packets sent/received) directly affect the energy consump-
tion and ultimately battery life. Both works focus on the
network access technology, and other studies try to optimize
the energy consumption at the application level. In [46, 47],
the differences between two current data interchange

Scientific Programming

formats (JSON and XML) are compared. The comparison
analysed them with regard to the processing speed, over-
head, and energy consumption. Results indicate that JSON
format shows better performance in battery management.
The comparison in [47] also test binary protocol buffers,
which is most efficient when transferring big data volumes,
showing better management energy for raw data.

Other works focus on providing a solution to make a
more efficient use of battery for communications. An ap-
proach to extend the battery life by customizing the content
was shown in [48]. The idea is that the server provides the
content based on the battery status of the connected mobile
phone. For instance, a mobile phone whose battery is nearly
empty gets provided text and not video data. The server plays
also an important role in the computation oftloading ap-
proach, where battery intensive calculations get transferred
to servers provided over the Internet (cloud computing) to
save energy. Different existing researches show that com-
munication and the data transfer is one of the important
topics in regards to the energy consumption in mobile
devices. Energy consumption at the transport layer in-
cluding security issues is analysed in WLAN- and 3G-
systems [49]. Close to our study, different works tackle
with energy consumption of data transfer concepts in
browsers of the mobile phones. In [50], WebSocket and
AJAX are measured in regards to their energy consumption
and performance for 3D graphic renderings in the browser
of a mobile phone. A comparison between WebSockets and
WebRTC as HTML5 connectivity methods was done by
Mandyam and Ehsan [51]. They suggested some approaches
how mobile web developers could reduce the power con-
sumption on mobile devices such as the W3C battery API or
the development of best practices. In [52], WebSocket
protocol is compared to the Hypertext Transfer Protocol
(HTTP) using the OpenPicus Flyport WLAN module. This
work also studies the influence of the amount of data
transferred and the transfer frequency in regards to the
energy consumption. The work in [13] measures and
compares HTTP/REST and WebSocket energy consump-
tion using a mobile phone. The energy consumption be-
tween REST/HTTP and WebSocket is measured while
using different access network technologies (Edge, 3G, and
WLAN). The factors influencing the energy consumptions
are identified by means of statistical analysis, and they
conclude with the following results: (i) the use of REST
consumes more energy than the use of WebSocket; (ii) the
reason for the higher energy consumption of REST is not
the overhead of the HTTP protocol; (iii) a continuous
connect and disconnect consume more energy than a
standing connection; (iv) the publish&subscribe model
with WebSocket consumes less energy than the Long
Polling with REST; (v) the standing connection with
WebSocket has lower latencies than a REST connection;
(vi) the publish&subscribe model with WebSocket con-
sumes less energy than the Long Polling with REST; (vii)
the used network (Edge, 3G, and WLAN) has influence on
the result of the theses above.

Since energy is a critical resource for apps that run on
mobile devices, several works cope with saving energy or

17

optimizing battery duration as a problem to solve in the
context of data transfer and communication. In [8], making
HTTP requests is identified as one of the most energy
consuming activities of a mobile phone among all opera-
tions. Based on previous studies, this work proposes an
approach to reduce the energy consumption of HTTP re-
quests in Android apps by automatically detecting and then
bundling multiple HTTP requests.

7. Conclusions and Future Work

The experiments carried out in this paper provided in-
teresting information for software developers about how
different asynchronous communication mechanisms for
Web applications and browser engines behave from an
energy consumption point of view. According to the ex-
perimental data, we can state there is a significant difference
between asynchronous solutions and the emulated one
(i.e., simple polling) in the majority of the scenarios studied.
However, between Long Polling and WebSocket, there is no
scenario that can be considered the greenest one and their
differences on power consumption are not statistically
significant. The relevance of this study is also in the fine-
grained information that it provides and can be used to make
a reasoned decision about which is the best asynchronous
technique for the requirements of each Web application. It is
also very useful to find that software developers can increase
the size of the pushed data without incurring in an in-
crement in the energy consumption. However, software
developers need to be careful because this is not the case if
the frequency at which new data are pushed increases. The
higher the update rate, the higher the energy consumption is.
The pushing rate can be set by the back-end of the appli-
cation attending the application requirements. The analysis
in this paper helps in making that decision. In general terms,
the use of WebSocket to push data shows the lowest energy
consumption, although the energy consumption is very
similar to Long Polling. According to our results, there is no
single asynchronous mechanism clearly better in all the
scenarios. Finally, another interesting conclusion is that
Chrome for Android consumes less energy than Mobile
Firefox, confirming our hypothesis that it is useful to explore
and identify the most efficient browser engine.

As part of our future work, we plan to use these results to
analyse if the asynchronous interaction of most Web appli-
cations can be improved by monitoring and refactoring or
reconfiguring the asynchronous communication functions
without incurring a huge penalty in either energy con-
sumption or user experience. Another goal is to study and
compare the energy consumption in HTTP/2 now that is
supported by mobile browsers. HTTP/2 offers better per-
formance of websites and web applications. However, better
performance does not always mean lower energy consump-
tion. We plan to study whether HTTP/2 offers improved
energy consumption performance achieving longer battery
life in comparison with HTTP/1.1. As part of this study, we
also plan to investigate how Transport Layer Security (TLS)
(mobile browsers only support HTTP2 over TLS-https) in-
fluences the energy consumption of the mobile devices.

18

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the projects Magic P12-TIC1814
and HADAS TIN2015-64841-R (cofinanced by FEDER funds)
and the postdoctoral plan of the University of Mélaga.

References

(1]

(2]

[3

(10]

(11]

(12]

“Number of mobile phone users worldwide from 2015 to 2020
(in billions),” August 2018, https://www.statista.com/statistics/
274774/forecast-of-mobile-phone-users-worldwide/.

D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical
study of the energy consumption of android applications,” in
Proceedings of 2014 IEEE International Conference on Software
Maintenance and Evolution, pp. 121-130, Victoria, Canada,
September 2014.

M. Tawalbeh, A. Eardley, and L. Tawalbeh, “Studying the
energy consumption in mobile devices,” Procedia Computer
Science, vol. 94, pp. 183-189, 2016.

N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani, “Energy consumption in mobile
phones: a measurement study and implications for network
applications,” in Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement, IMC 09, pp. 280-
293, Chicago, IL, USA, November 2009.

“Mobile and tablet internet usage exceeds desktop for first
time worldwide,” May 2016, http://gs.statcounter.com/press/
2016.

R. T. Fielding, J. Gettys, J. C. Mogul et al., Hypertext Transfer
Protocol-http/1.1, Internet Requests for Comments, RFC
Editor, RFC 2616, World Wide Web Consortium, Cambridge,
MA, USA, 1999, http://www.rfc-editor.org/rfc/rfc2616.txt.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
Hypertext Transfer Protocol-http/1.1, Internet Requests for
Comments, RFC Editor, RFC 2068, World Wide Web
Consortium, Cambridge, MA, USA, 1997.

D.Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy
optimization of http requests for mobile applications,” in
Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pp. 249-260, Austin, TX, USA, 2016.
1. Fette and A. Melnikov, The WebSocket Protocol, Internet
Requests for Comments, RFC Editor, RFC 6455, World Wide
Web Consortium, Cambridge, MA, USA, 2011, http://www.
rfc-editor.org/rfc/rfc6455.txt.

V. Pimentel and B. G. Nickerson, “Communicating and
displaying real-time data with WebSocket,” IEEE Internet
Computing, vol. 16, no. 4, pp. 45-53, 2012.

P. Beverloo, M. Thomson, M. van Ouwerkerk, B. Sullivan, and
E. Fullea, “Push API,” Technical Report, W3C, Cambridge,
MA, USA, January 2019, https://www.w3.org/TR/push-api/.
I. Ayala, M. Amor, L. Fuentes, and D.-J. Munoz, “An em-
pirical study of power consumption of web-based commu-
nications in mobile phones,” in Proceedings of IEEE 15th

(13

[14

(15

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

Scientific Programming

International Conference on Pervasive Intelligence and Com-
puting, pp. 861-866, Orlando, FL, USA, November 2017.

V. Herwig, R. Fischer, and P. Braun, “Assessment of REST and
Websocket in regards to their energy consumption for mobile
applications,” in Proceedings of IEEE 8th International Con-
ference on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications, IDAACS 2015,
pp- 342-347, Warsaw, Poland, September 2015.

S. Loreto, P. Saint-Andre, S. Salsano, and G. Wilkins, Known
Issues and Best Practices for the Use of Long Polling and
Streaming in Bidirectional http, Internet Requests for Com-
ments, RFC Editor, RFC 6202, World Wide Web Consortium,
Cambridge, MA, USA, 2011, http://www.rfc-editor.org/rfc/
rfc6202.txt.

A. Russell, “Comet: low latency data for the browser,” 2006,
http://infrequently.org/2006/03/comet-low-latency-data-for-

the-browser/.

J. Postel, Transmission Control Protocol, Internet Requests for
Comments, RFC Editor, STD 7, World Wide Web Consor-
tium, Cambridge, MA, USA, 1981, http://www.rfc-editor.org/
rfc/rfc793.txt.

M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and
S. Tarkoma, “Modeling, profiling, and debugging the energy
consumption of mobile devices,” ACM Computing Surveys,
vol. 48, no. 3, pp. 39:1-39:40, 2015.

D. Li, S. Hao, W. G.]. Halfond, and R. Govindan, “Calculating
source line level energy information for android applications,”
in Proceedings of the 2013 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2013, pp. 78-89, Lugano,
Switzerland, July 2013.

A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow,
J. C. Campbell, and S. Romansky, “GreenMiner: a hardware
based mining software repositories software energy con-
sumption framework,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014,
pp- 12-21, Hyderabad, India, June 2014.

M. Dong and L. Zhong, “Self-constructive high-rate system
energy modeling for battery-powered mobile systems,” in
Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, MobiSys 11, pp. 335-348,
Bethesda, MD, USA, June-July 2011.

“Power monitor,” April 2017, https://www.msoon.com/
LabEquipment/PowerMonitor/.

D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman,
and A. De Lucia, “Software-based energy profiling of android
apps: simple, efficient and reliable?,” in Proceedings of IEEE
24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Klagenfurt, Austria, February
2017.

D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman,
and A. De Lucia, “Petra: a software-based tool for estimating
the energy profile of android applications,” in Proceedings of
the 39th International Conference on Software Engineering
Companion, Buenos Aires, Argentina, May 2017.

S. Chowdhury, S. Borle, S. Romansky, and A. Hindle,
“GreenScaler: training software energy models with automatic
test generation,” Empirical Software Engineering, pp. 1-44,
2018.

A. Hindle, “Green software engineering: the curse of
methodology,” in Proceedings of IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengin-
eering (SANER), vol. 5, pp. 46-55, Osaka, Japan, March
2016.

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
http://gs.statcounter.com/press/2016
http://gs.statcounter.com/press/2016
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://www.w3.org/TR/push-api/
http://www.rfc-editor.org/rfc/rfc6202.txt
http://www.rfc-editor.org/rfc/rfc6202.txt
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/

Scientific Programming

[26] S. A. Chowdhury and A. Hindle, “GreenOracle: estimating
software energy consumption with energy measurement
corpora,” in Proceedings of the 13th International Conference
on Mining Software Repositories, MSR ’16, p. 4, Austin, TX,
USA, May 2016.
S. A. Chowdhury, S. Gil, S. Romansky, and A. Hindle, “Did I
make a mistake? Finding the impact of code change on energy
regression,” Peer] Preprints, Technical Reports 5:e2419v3,
University of Alberta, Edmonton, AB, Canada, 2016.
“Trepn power profiler a product of Qualcomm Technologies,
Inc.,” April 2017, https://developer.qualcomm.com/software/
trepn-power-profiler.
A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and
R. Rouvoy, “Investigating the energy impact of android
smells,” in Proceedings of 24th International IEEE Conference
on Software Analysis, Evolution and Reengineering (SANER),
p. 10, Chicago, IL, USAs, February 2017.
S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. Jiang, “An
exploratory study on assessing the energy impact of logging
on Android applications,” Empirical Software Engineering,
vol. 23, no. 3, pp. 1422-1456, 2018.
F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and
A. De Lucia, “On the impact of code smells on the energy
consumption of mobile applications,” Information and Soft-
ware Technology, vol. 105, pp. 43-55, 2019.
K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and
E. Stroulia, “The power of system call traces: predicting the
software energy consumption impact of changes,” in Pro-
ceedings of 24th Annual International Conference on Com-
puter Science and Software Engineering, CASCON’14,
pp- 219-233, Markham, Canada, November 2014, http://dl.
acm.org/citation.cfm?id=2735522.2735546.

“Android debug bridge,” April 2017, https://developer.

android.com/studio/command-line/adb.html?hl=es-419.

“Image color summarizer, RGB, HSV, LCH & Lab image color

statistics and clustering simple and easy,” April 2017, http://

mkweb.bcgsc.ca/color-summarizer/.

[35] V. R. Basili, “Software modeling and measurement: the goal/
question/metric paradigm,” Techical Report, UMIACS TR-
92-96, University of Maryland at College Park, College Park,
MD, USA, 1992.

[36] N. van Berkel, C. Luo, T. Anagnostopoulos et al., “A sys-

tematic assessment of smartphone usage gaps,” in Proceedings

of the 2016 CHI Conference on Human Factors in Computing

Systems, CHI ’16, pp. 4711-4721, San Jose, CA, USA, May

2016.

D. Ferreira, J. Goncalves, V. Kostakos, L. Barkhuus, and

A. K. Dey, “Contextual experience sampling of mobile ap-

plication micro-usage,” in Proceedings of the 16th In-

ternational Conference on Human-computer Interaction with

Mobile Devices ¢ Services, MobileHCI ’14, pp. 91-100, Tor-

onto, Canada, September 2014.

D. Hintze, P. Hintze, R. D. Findling, and R. Mayrhofer, “A

large-scale, long-term analysis of mobile device usage char-

acteristics,” Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, vol. 1, no. 2, pp. 1-21,

June 2017.

[39] W. Waybe and Daniel, Applied Non-Parametric Statistics,

Houghton Mifflin Harcourt, Boston, MA, USA, 1978.

S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and

A. Hindle, “Energy profiles of java collections classes,” in

Proceedings of the 38th International Conference on Software

Engineering, pp. 225-236, Chicago, IL, USA, May 2016.

[27

[28

[29

(30

[31

(32

(33

[34

[37

(38

(40

19

[41] A. MclIntosh, S. Hassan, and A. Hindle, “What can Android
mobile app developers do about the energy consumption of
machine learning?,” Empirical Software Engineering, pp. 1-40,
2018.

[42] E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does
docker affect energy consumption? Evaluating workloads in
and out of docker containers,” Journal of Systems and Soft-
ware, vol. 146, pp. 14-25, 2017.

[43] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang,
“Fine-grained power modeling for smartphones using system
call tracing,” in Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, pp. 153-168, Salzburg, Aus-
tria, April 2011.

[44] G. Perrucci, F. H. P. Fitzek, G. Sasso, W. Kellerer, and
J. Widmer, “On the impact of 2g and 3g network usage for
mobile phones’ battery life,” in Proceedings of European
Wireless, pp. 255-254, Aalborg, Denmark, May 2009.

[45] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on
energy consumption entities on the smartphone platform,” in
Proceedings of VTC Spring, pp. 1-6, Budapest, Hungary, May
2011.

[46] G. Metri, A. Agrawal, R. Peri, and W. Shi, “What is eating up
battery life on my smartphone: a case study,” in Proceedings of
ICEAC, pp. 1-6, Guzelyurt, Cyprus, December 2012.

[47] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta,
“Comparison of JSON and XML data interchange formats: a
case study,” in Proceedings of the ISCA 22nd International
Conference on Computer Applications in Industry and Engi-
neering, pp. 157-162, San Francisco, CA, USA, November
2009.

[48] B. Gil and P. Trezentos, “Impacts of data interchange formats
on energy consumption and performance in smartphones,” in
Proceedings of the 2011 Workshop on Open Source and Design
of Communication, OSDOC 11, pp. 1-6, Lisboa, Portugal,
2011.

[49] M. W. Kim, D. G. Yun, J. M. Lee, and S. G. Choi, “Battery
lifetime extension method using selective data reception
onsmartphone,” in Proceedings of ICOIN, Y. Kim, C. Kim, and
P. Tantatsanawong, Eds., pp. 468-471, Bali, Indonesia, Feb-
ruary 2012.

[50] P. Miranda, M. Siekkinen, and H. Waris, “TLS and energy
consumption on a mobile device: a measurement study,” in
Proceedings of the 16th IEEE Symposium on Computers and
Communications, ISCC 2011, pp. 983-989, Corfu, Greece,
June-July 2011.

[51] K. Kapetanakis and S. Panagiotakis, “Evaluation of techniques
for web 3d graphics animation on portable devices,” in
Proceedings of International Conference on Telecommunica-
tions and Multimedia, TEMU 2012, pp. 152-157, Crete,
Greece, July-August 2012.

[52] B.D.Mandyam and N. Ehsan, “Mobile systems I'V,” Technical
Report, World Wide Web Consortium, Cambridge, MA,
USA, 2012.

https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
http://dl.acm.org/citation.cfm?id=2735522.2735546
http://dl.acm.org/citation.cfm?id=2735522.2735546
http://developer.android.com/studio/command-line/adb.html?hl=es-419
http://developer.android.com/studio/command-line/adb.html?hl=es-419
http://mkweb.bcgsc.ca/color-summarizer/
http://mkweb.bcgsc.ca/color-summarizer/

D. | Advances in !

s . WNultimedin
Applied v
Computational

Intelligence and Soft
El_:_@guting-r -

The Scientific Mathematical Problems E ’Miu”:l s ;
World Journal in Engineering

(24 [~4

Modelling &
Simulation

in Engineering Intelligence

Hindawi

Reconfigurable Submit your manuscripts at

_Eomputing www.hindawi.com

Journal of

Computer Networhs
and Communications
International Journal of

Advances in

Scientific ' e Engineering : i
Civil Engineering

Programming Interaction Mathematics

I International Journal of
Journal of Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

