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Copyright © 2019 Juan Carlos Preciado et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Different types of sensors along the distribution pipelines are continuously measuring different parameters in Smart WAter
Networks (SWAN). +e huge amount of data generated contain measurements such as flow or pressure. Applying suitable
algorithms to these data can warn about the possibility of leakage within the distribution network as soon as the data are gathered.
Currently, the algorithms that deal with this problem are the result of numerous short-term water demand forecasting (WDF)
approaches. However, in general, theseWDF approaches share two shortcomings.+e first one is that they provide low-frequency
predictions.+at is, most of them only provide predictions with 1-hour time steps, and only a few provide predictions with 15min
time steps. +e second one is that most of them require estimating the annual seasonality or taking into account not only data
about water demand but also about other factors, such as weather data, that make their use more complicated. To overcome these
weaknesses, this work presents an approach to forecast the water demand based on pattern recognition and pattern-similarity
techniques.+e approach has a twofold contribution. Firstly, the predictions are provided with 1min time steps within a time lead
of 24 hours. Secondly, the laborious estimation of annual seasonality or the addition of other factors, such as weather data, is not
needed.+e paper also presents the promising results obtained after applying the approach for water demand forecasting to a real
project for the detection and location of water leakages.

1. Introduction

+e current big data scenario is based on using a large
volume of data to get new insights and acquire knowledge
that support the daily decision-making process [1]. One of
the main sources of these data are IoT (Internet of +ings)
systems that collect and transfer a great amount of sensor
data [2]. +e use of these technologies for water manage-
ment allows gathering data in order to monitor water usage
and water waste, what is regarded as one of the application
areas of a smart city [3]. In this sense, the application of
information and communication technology (ICT) devices
to water distribution systems (WDSs) is considered a key
subarea of a smart city and introduces the concept of Smart
WAter Network (SWAN) [4]. A SWAN consists of a large

number of sensors that measure automatically and con-
tinously a wide range of parameters present in WDS.

It should be noted that WDSs are big and complex. Only
in Europe, there are more than 3.5 million kilometers of
pipes [5], and in the United States, around 159 billion liters
of water are withdrawn from water sources each day [6].+e
management of WDS implies to deal with different issues.
One of them is the problem of water pressure that could
affect significantly the level of service for the users and where
there are novel approaches such as [7] that proposes the
division of the network in subregions according to the
expected water peak demand.

Another huge problem managing WDS is to deal with
water loss. Water loss can be attributed to several causes,
including leakage, metering errors, and fraud although
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leakage is usually the major cause. It is estimated that the
amount of water in the world that is lost is more than 30
percent of production [8].

+e data obtained by the sensors that compose a SWAN
can be an important turning point to avoid this problem.
+is is due to the fact that the usual gathered data include
flow, pressure, or totalizer measurements. +e application of
water demand forecasting algorithms over all these data
allows detecting leakages at an early stage.

+ere are several works that present different approaches
to try to forecast the water demand applying different
techniques. Due to the necessity to detect a water leakage as
soon as this problem arises, the more suitable approaches are
those with a short-term forecast horizon, that is, how far the
prediction about the future demand is able to accurately
reach. +us, a short-term forecast horizon is generally
considered for a range between 1 and 48 hours.

+e existing short-term water demand forecast ap-
proaches can achieve good results. However, in general, they
have in common two important limitations that the ap-
proach proposed in this work reduces.

+e first limitation refers to its frequency, in other words,
how many predictions within this horizon the approach is
able to provide. +e usual time steps of most of the ap-
proaches are 1 hour, so that a frequency of 24 predictions per
day may be achieved. Only a few approaches provide higher
frequency being, at most, one prediction every 15minutes.
Considering that the sooner the prediction is able to detect
an anomaly, the better any improvement in the frequency of
the predictions could significantly reduce the loss of water.
Although the time horizon of our approach is on average
(24 hours), we are able to get a time step of one minute, that
is, a frequency of 1440 each day, without reducing the ac-
curacy of the prediction. Notice that this is not a trivial
contribution because we identified that neural networks
approaches were unfeasible with this frequency and more
classic methods such as ARIMA and dynamic harmonic
regression were even too computationally expensive.

+e second limitation concerns the data needed apart
from previous water demand. Most of the current ap-
proaches need extra data about weather (temperature,
rainfall, etc) or demand changes according to factors related
to weekly or annual seasonality, being particularly the es-
timation of the latter, annual seasonality, a very demanding
task. Our approach uses previous water demand data just
considering weekly seasonality reduction and thus the
complexity of its application. +erefore, it avoids the
troublesome estimation and inclusion of annual seasonality
or the usage of weather data.

Our approach is based on pattern similarity and is in-
spired by the work of Grzegorz Dudek [9–11] for short-term
load forecasting in the daily operation of power systems and
energy markets. It has been implemented using the model-
driven development (MDD) paradigm [12, 13] and has been
tested in one of the partner cities of the European project
SmartWater4Europe [5]. +e following goodness-of-fit
(GoF) parameters have been used to determine the per-
formance of the approach: MAPE (mean average percentage

error), RMSE (root mean squared error), and FOB (fraction
out of bounds).

It should also be emphasized that this approach not only
reduces both aforementioned limitations but also presents
the next advantage: (a) it is relatively easy to implement; (b)
it is not highly time-consuming; (c) as the historical record
increases, the performance improves; and (d) the method is
robust enough to deal with minor data issues such as small
segments of missing data. +e latter avoids that it causes
“false alarms”.

+e rest of the paper is organized as follows. In Section 2,
we review previous work on water demand forecasting.
Section 3 describes the locations where the data were
gathered and the proposed algorithm. In Section 4, we
present the results and discussion. Finally, the conclusions
and future work are outlined in Section 5.

2. Related Work

Water demand has been a field where quantitative fore-
casting has been applied profusely because it meets the
twofold requirement [14] to use this kind of forecasting: (a)
there are historical numerical data about the variable to
forecast and (b) it is plausible to presuppose that some
features of the patterns recognized in the historical data are
recurring.

We found a number of water demand forecasting ap-
proaches proposed in the literature. In this sense, there are
works published during the 1990s that can be considered as
fundamentals in this field such as the ones by Shvartser et al.
[15] or Buchberger et al. [16, 17]. Donkor et al. [18] reviewed
the literature on urban water demand forecasting published
from 2000 to 2010, in order to identify the methods and
models that are useful for specific water utility decision-
making problems. More recently, Sebri [19] conducted a
meta-analysis to estimate in a statistical way how different
features of primary studies could influence the correctness of
urban water demand forecasts.

In this section, we focus on reviewing the most relevant
methods published since 2010 to date (to the best of our
knowledge) focused on short-term predictions (1–48 hours)
sorted according to the frequency used (from lowest to
highest).

To begin with, Adamowski et al. [20] tested if coupled
wavelet-neural network models (WA-ANNs) applied to
forecast daily urban water demand could provide promising
results during the summer months in the city of Montreal,
Canada. +ey used daily total urban water demand, daily
total precipitation, and daily maximum temperature, all of
them gathered during the summer period to conduct their
work. Concretely, they integrated artificial neural networks
together with discrete wavelet transforms to elaborate
coupled wavelet-neural network models. +ey stated that
their approach provided better results forecasting short-
term (24 hours) water demand than other techniques such
as artificial neural networks (ANN) alone, autoregressive
integrated moving average (ARIMA), multiple linear re-
gression (MLR), or multiple nonlinear regression (MNLR).
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However, their approach only provided one prediction for
the whole day.

Herrera et al. [21] focused their work on trying to
forecast the water demand in the next hour in an urban area
of a city in southeastern Spain. Not only did they use
previous water demand data but also temperature, wind
velocity, atmospheric pressure, and rain data. +ey con-
cluded that support vector regression (SVR)models were the
more adequate ones for this task, and multivariate adaptive
regression splines (MARS), projection pursuit regression
(PPR), and random forest (RF) could also be used. However,
the neural network that they used (feedforward neural
networks with one hidden layer in conjunction with the
backpropagation learning algorithm) seemed to provide
very poor results.

Odan and Reis [22] compared different ANNs to forecast
water demand.+ey used hourly consumption data from the
water supply system of Araraquara, São Paulo, Brazil, as well
as temperature and relative humidity data. +eir estimations
were made for the next 24 hours with a frequency of 1 for
each hour. Concretely, they analyzed a multilayer percep-
tron with the backpropagation algorithm (MLP-BP), a dy-
namic neural network (DAN2), and two hybrid ANNs. +e
more interesting finding of their work is that the different
variants of DAN2 that they used either to forecast the first
hour or the whole 24 hours did not need the use of weather
variables and achieved better results that the rest ones.

Ji et al. [23] used different factors along with a least-
square support vector machine (SVM) to forecast water
demand for one day with one-hour frequency. +e factors
that they have taken into account were flow data, the
maximum and the minimum temperature, precipitations,
holiday information, and information of incidents. +e
novelty of this work lies in the adjustment of the hyper-
parameters of the SVM system by using swarm intelligence
via a teaching learning-based optimization algorithm.

Hutton and Kapelan [24] were concerned about the
uncertainties that influenced the results of water demand
forecasts and proposed an iterative methodology based on
probabilistic that tried to decrease the effect of such un-
certainties during the development of hourly short-term
water demand prediction models. +ey used static calen-
dar data in addition to water demand data. On the one hand,
their approach exposed the unsuitability of simplistic
Gaussian residual assumptions in predicting water demand.
On the other hand, they concluded that a model whose
kurtosis and heteroscedasticity in the residuals are revised
iteratively using formal Bayesian likelihood functions allow
building better predictive distributions.

Candelieri et al. [25–27] have works that make use of
unsupervised (time series clustering) and supervised (sup-
port vector machines regression models) machine learning
strategies. +ese strategies were combined in a two-stage
framework in order to identify typical urban water demand
patterns and successively provide reliable one day forecasts
for each hour of the day. +ey used real data gathered from
different sources of Milan (Italy) to check their proposal.
+eir last work extended the previous ones by allowing also
anomaly detection.

Alvisi and Franchini [28] have the goal of estimating the
predictive uncertainty in water demand forecasting. To this
end, they joined short-term water demand predictions
provided by two or more models by means of the model
conditional processor (MCP). +en, MCP computed a
probability distribution of the real future demand according
to the different predictions of each particular model. +is
probability distribution, together with a predefined hourly
pattern based on the season and the day of the week, allows
them to estimate the expected hourly water demand for a
whole day as well as the associated predictive uncertainty.

Brentan et al. [29] considered that the result of the
applying fixed regression structure with time series can be
biased and prone to errors. +eir proposal tried to reduce
both of them when building a short-term (24 hours) hourly
water demand forecasting. To do this, firstly, they used
support vector regression (SVR) together with calendar data
to build a base forecasting, and secondly, they improved this
forecasting applying Fourier time series process.

Romano and Kapelan [30] proposed the use of evolu-
tionary artificial neural networks (EANNs) to perform
adaptive hourly water demand forecasting for the whole next
day. +eir goal is to provide near real-time operational
management by analyzing water demand time series and
weekly seasonality. +is approach was tested on a real-life
UK case study, and one of its main features was that it did
not need too much human intervention.

Gagliardi et al. [31] proposed two models based on
homogeneous Markov chain model (HMC) and non-
homogeneous Markov chain model (NHMC) to forecast
next day hourly water demand. +ey used water demand
data and weekly seasonality; concretely, they differentiated
between working and nonworking days.+ey recommended
the use of HMC to do this type of predictions because their
results showed that its performance was better than the one
obtained using NHMC.

Pacchin et al. [32] proposed a model based on moving
windows that predicted the hourly water demand during the
next day. +is model presented two different features with
respect to other similar models. On the one hand, it updated
the prediction taking into account the demand data of the
previous day. On the other hand, it did not need two much
historic data in comparison with other models since it was
able to do accurate predictions only using the data of three or
four previous weeks. It also should be pointed that they also
took into consideration the weekly seasonality.

Arandia et al. [33] proposed a methodology to predict
15min, hourly, and daily water demand either offline (using
historical data) or online (using a real-time feed of data).+eir
proposal joined seasonal ARIMA (SARIMA) and data as-
similation.+ey also used in their approachweekly seasonality
and daily periodicity and concluded than their methodology
showed a better performance using weekly seasonality.

Bakker et al. [34] presented a model to forecast 15min
water demand for the next two days. +eir model used static
calendar data in addition to six years of water demand data
gathered from different areas of the Netherlands. According
to this work, a frequency of 15minutes is more suitable than
1-hour frequency when detailed optimization is needed.

Scientific Programming 3



As we have seen, a number of approaches have been
widely used for forecasting; however, as it is shown in Ta-
ble 1, the frequency of these approaches is usually around 1
for each hour. Additionally, this table also shows the factors
that each proposal needs to work apart from the previous
water demandmeasurements. In most cases, the inclusion of
more factors to make the forecast, such as annual calendar
data or weather data, can be quite cumbersome. In turn, we
propose the application of pattern similarity-based tech-
niques proposed by Dudek [9–11] to the water demand
forecasting problem. +e main reason for selecting these
techniques is their ability to simultaneously cope with the
aforementioned difficulties: they remove the need to add
weather data or to determine the annual seasonality by
constructing the input and output patterns in which the
series has been normalized, and at the same time, since the
considered signal segments encompass a full day, the fre-
quency of the predictions is 1440 per day.

3. Materials and Methods

+is section describes the data sites used (taken from diverse
real-world locations with different characteristics) and the
preprocessing procedure carried out before starting the data
analysis. In addition, we describe some relevant concepts,
such as trends and seasonalities, before describing the input/
output patterns and the proposed algorithm.

3.1. Data Sites. +e algorithm has been tested in different
locations of one of the member cities of the European project
SmartWater4Europe. Concretely, this city is located in
northern Spain, and it has about 180.000 inhabitants, with a
population density of 1680 inhabitants per square km. With
respect to the climate, it has an average annual precipitation
of 546mm, and it has a range of daily mean temperatures
from 3.5°C in winter to 19.5°C in summer.

+e data were collected by the company responsible of
managing the water distribution of this city. +is company
has 58507 customers, the length of the distribution network
is 467.315metres, and the mean quantity of supplied water
each day per inhabitant is 392,39 litres.

To gather the data, the company used the following:

(i) 14 sectoral sensors spread throughout the network
pipes of the 3 sites (see below) that were able to
measure flow, pressure, and totalizer each minute.
+is means that each sensor measures 1440 times a
day and the company had been storing 20160
measurements (14×1440) each day for 10 years.

(ii) 1502 intelligent water meters spread throughout
industries and homes located in the 3 sites (see
below). In this case, each one performed 24 mea-
surements per week.

Concretely, this company measured data of three dif-
ferent areas of this city whose characteristics are as follows.

(i) Site 1: Industrial Area. It is an industrial estate at the
outskirts of the city. In this area, there are almost no
domestic end users of the water supply.

(ii) Site 2: High-Density Population Area. It is a
neighborhood located in the center of the city. It is a
zone with high buildings where there are thousands
of families.

(iii) Site 3: Low-Density Population Area. It is a suburb
of the city. Most homes are either low-rise buildings
or single-family homes, so the density of users is
very low. It is important to note that the houses of
this area have private backyards. It may be assumed
that this is a factor which influences the water use
pattern of the area.

At each timestamp, the minimum, maximum, and av-
erage flows (measured in l/min) were recorded. Table 2
shows, as an example, the first six measurements obtained
by a sectoral sensor for the industrial area site. Note that the
variable timestamp reflects the local time (CET), and +01 or
+02 only reflects the difference from Greenwich Mean Time
(GMT) (or coordinated universal time, abbreviated to UTC).

3.2. Proposed Algorithm. Domestic water demand data
conform a time series with several seasonalities being the
daily, weekly, and annual seasonalities the most important.
In addition to these seasonalities, there are usually a long-
term trend component and a high-frequency noise term.

As was mentioned before, the signal was sampled at a 1-
minute frequency and we were considering a 24 hour
forecast horizon. +is means that, at any given moment, we
need to forecast the next 1440 values of our signal. +is rules
out the possibility of using, directly, classical time series
analysis methods such as ARIMA, exponential smoothing,
and Winter–Holts methods. Moreover, direct neural net-
work methods are also not feasible since for these methods
the output layers would have 1440 neurons and the input
layer would be much bigger, and therefore, the training of
such large number of weights would require far more data
than what is available.

+e main problem here is that, with this high sampling
frequency, the number of data needed in order to capture the
weekly and annual seasonalities is simply too large.
+erefore, we need to devise a method in which the sea-
sonalities can be treated in a different way.

Our approach here is based on the pattern-similarity
search proposed by Dudek in [9–11] for forecasting electric
load. +is method first splits the time series into segments of
length equal to the forecast horizon and then maps those
segments into two signals x and y—input and output sig-
nals—which will be used for a query-predict procedure.
+ose signals will be somehow normalized and will not be
affected by trends and large period seasonalities. +ey will
only contain the information within the forecast horizon
(24 hours), and each 24-hour segment will be considered as a
measure unit.
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In particular, the input and output signals are defined by
the following:

xi,t �
Fi,t −Fi������������


n
l�1 Fi,l −Fi 

2
 , t � 1, . . . , n, (1)

yi,t �
Fi,t+τ −Fi������������


n
l�1 Fi,l −Fi 

2
 , t � 1, . . . , n, (2)

where xi,t and yi,t denote the input and output signals for
day i at time t, respectively; Fi,t denotes the water flow of the
day i at time t; Fi denotes the average water flow of day i; τ is
the forecast horizon; n is the number of measurements in
each day (in our case, both τ and n are 1440).

On the one hand, the input signal x, also called the query
signal, represents the normalized pattern for a current day
with all its intraday information. On the other hand, the
output signal y, also called the forecast signal, represents the
normalized pattern of the following day (with our particular
value of the forecast horizon). +e normalization procedure
filters all the seasonalities and trends beyond the daily
frequency.

Now, the procedure would be as follows: for any given
day i0, we want to estimate the unknown value of the output
signal yi0

from the known input signal xi0
. Once we have the

estimation yi0
, we can predict the values of the water demand

for the forecast horizon using equation (2):

Fi0+1,t � Fi0 ,t+τ � Fi0
+ yi0 ,t
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. (3)

+erefore, the problem reduces to obtain the forecast for
the output signal yi0

. To make such forecast, we follow the
next procedure (shown in Figure 1):

(1) We select the k nearest neighbors (using the Eu-
clidean distance) of the query pattern xi0

from the
data in the history record from days of the same class
(same day of the week/holiday) such that the fol-
lowing day is not an atypical day (e.g., holiday).

(2) We compute the estimate yi0
via the following

equation:

yi0
�
1
k



j∈Θ xi0 

yj, (4)

whereΘ(xi0
) is the set of indices of the k x patterns nearest to

the query pattern xi0
obtained in the previous step.

(3) Finally, we transform yi0
to obtain the water flow

estimate according to equation (3).

Along with the estimation, we can obtain pointwise
confidence bands:

Ii0 ,t � Fi0+1,t ± T
∗
α/2

Si0 ,t�
k

√

������������



n

l�1
Fi0 ,l−Fi0

 
2




, t � 1, . . . , n,

(5)

where T∗α/2 denotes the two-tailed critical value for Student’s
t-distribution with k− 1 degrees for a confidence level α and
S2i0 ,t is the sample variance of the k output signals used for the
computation of yi0

.

Table 1: Related work comparison with respect to frequency, forecast horizon, and other factors or complex estimation needed to apply the
approach.

Work
Related work comparison

Frequency Forecast horizon Other factors
Adamowski et al. [20] 1 for each day 24 hours Weather data during summer
Herrera et al. [21] 1 for each hour 1 hour Weather data
Odan and Reis [22] 1 for each hour 24 hours Weather data
Ji et al. [23] 1 for each hour 24 hours Weather, holidays, and incident data
Hutton and Kapelan [24] 1 for each hour 24 hours Annual calendar data
Candelieri et al. [25–27] 1 for each hour 24 hours Working days and seasons of the year
Alvisi and Franchini [28] 1 for each hour 24 hours Weekly seasonality and seasons of the year
Brentan et al. [29] 1 for each hour 24 hours Annual calendar data
Romano and Kapelan [30] 1 for each hour 24 hours Weekly seasonality
Gagliardi et al. [31] 1 for each hour 24 hours Weekly seasonality
Pacchin et al. [32] 1 for each hour 24 hours Weekly seasonality
Arandia et al. [33] 1 for each 15minutes 24 hours Daily and weekly seasonality
Bakker et al. [34] 1 for each 15minutes 48 hours Annual calendar data
Our proposal 1 for each minute 24 hours Weekly seasonality

Table 2: Structure of the raw data from the industrial area (first six
measurements).

Industrial area
Timestamp Average Maximum Minimum
2014-01-01 00:00:00 + 01 3.278 4.031 2.919
2014-01-01 00:01:00 + 01 3.591 5.064 3.049
2014-01-01 00:02:00 + 01 4.875 5.352 4.518
2014-01-01 00:03:00 + 01 4.263 5.074 3.475
2014-01-01 00:04:00 + 01 3.966 5.004 3.406
2014-01-01 00:05:00 + 01 3.771 4.031 3.188
· · · · · · · · · · · ·
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Once we have an estimation, we need to assess the
quality of the forecast in order to validate the prediction
model. We have considered three GoF parameters: the mean
average percentage error (MAPE), the root mean squared
error (RMSE), and the fraction out of bounds (FOB). e
�rst two parameters are well-known error measures. e
FOB for estimation at day i0 is as follows:

fobi0 �
NOBi0

NIBi0 + NOBi0
, (6)

where NOBi and NIBi are the number of measurements on
day i0 that lie outside and inside the con�dence band for the
given day i0, respectively.

e MAPE parameter is very widely used in forecasting
practice, but it becomes of little use when the actual values to
be forecast are very small (close to zero).e problem is that,
in our segments, there is a signi�cant fraction of the day for
which the water demand is indeed very small (night ours).
e RMSE is an absolute value of the deviance of the forecast
from the observed data. However, for small values of the
water �ow, it is di�cult to assess the goodness of �t when the
RMSE is small since the measure is not relative to the
magnitude of the quantity to be predicted. Finally, the FOB
can be regarded as a measure of the deviance of the observed
day from what could be considered an average day of the
same type. For small values of the FOB, we could say that the
observed water �ow corresponds to an “average” day, while
if the FOB is large, the observed data does not follow the
same pattern of other days of the same type in the historical
record (and this could be related to either measurement
anomalies or even water leaks).

4. Results and Discussion

4.1. Algorithm Parameters. Figure 2 depicts the average
water �ows vs. the day of the week for the three measure-
ment sites. It is clearly shown that, for the industrial area site,
there are at least four di�erent patterns: Monday–ursday,
Friday, Saturday, and Sunday. For the high-density pop-
ulation area, there are two patterns corresponding to the
labor days (Mon–Fri) and the weekends (Sat–Sun). Finally,
at the low-density population area, there are more irregular
patterns. erefore, we considered the most restrictive
pattern distribution (each day of the week to follow a dif-
ferent pattern, low-density population area) with the aim of
easing the development of the algorithm.

Moreover, another distinct pattern is shown on holidays
(Figure 3). Since the distribution of holidays varies from year
to year, the inclusion of a holiday pattern in a model based
on periodicities is di�cult and cumbersome to implement.

e algorithm was tested for all days from 15 February
2014 until 18 September 2016. We did not start with the �rst
measurements because we needed some weeks of historical
data for the k nearest neighbors approach. Since we searched
for the �ve nearest neighbors (see details below), we left a
margin of seven weeks of historical data. e parameters
considered for all sites were as follows: (a) the number of
nearest neighbors: k � 5 for all years, (b) the threshold limits:
min � 0.05 l/min, max � 100 l/min, and (c) the con�dence
level for the con�dence band estimation: 90% (i.e., α � 0.1).

e number of neighbors is an important parameter. If it
is too small, the resulting pattern will not be representative of
a true pattern for the forecasted day, but if it is too large, then
the neighbors might be “far away” from the query pattern,
and thus, we would be considering very di�erent days for the
estimation of our pattern.

4.2. Results. Figure 4 depicts a general perspective of all
three GoF parameters at the three sites. All of them showed
small global values: in 75% of the cases, the predictions
showed values of FOB, MAPE, and RMSE less than 0.20,
39%, and 7.86 l/min, respectively, for the industrial area site;
0.21, 50%, and 1.80 l/min for the high-density population
area site; and 0.25, 41%, and 5.82 l/min for the low-density
population area site (Table 3).

Although the errors showed small values in the overall
outcomes, a more thorough analysis is needed to determine
the causes for the cases in which the parameters took higher
values. To this aim, daily values were obtained and repre-
sented as scatter plots. For the sake of simplicity, values were
categorized in three di�erent levels: good, regular, and bad.
e results are shown in Figure 5.

4.3. Discussion. e pattern-similarity forecasting method
presented here proved very suitable for obtaining accurate
daily predictions for the water �ow values. However, we
found several cases in which predictions were worse than
what was expected or they simply delivered values com-
pletely di�erent from the actual measurements.

At the industrial area site, the most di�cult days to
forecast were Sundays (for example, Figure 6). e main

Original time series
Day i0

Preprocessing

X-Y pattern
encoding

Pattern search -
K nearest heighbors Y pattern estimation Y pattern decoding

Step 1 Step 2 Step 3

Flow estimation

Figure 1: Forecasting procedure.
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Figure 2: Mean �ow vs. day of the week. For each of the three sites, the average for each minute of each weekday for the whole period is
plotted. (a) Industrial area; (b) high-density population area; (c) low-density population area.
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reason for this di�culty was that there were several di�erent
patterns for Sundays, but on the other hand, all Saturdays
showed almost the same pattern. For any given Sunday, we
took the preceding Saturday X pattern and we looked for the
k nearest neighbors for this Saturday pattern. Since most of
that patterns were very similar, regardless of the corre-
sponding Y pattern (for next Sunday), there were cases in
which the k Y patterns were almost random and did not

re�ect the characteristic Y pattern for our day. In other
terms, a given X pattern had very di�erent possible Y
patterns linked to it.

Other di�culties arose when dealing with anomalous
days. e most common anomalous days were holidays. We
had an issue with the forecasting procedure, when the day we
wished to forecast, the following day, or the preceding day
was a holiday. Moreover, even if the prediction day was not a
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Figure 4: Distributions for the goodness of �t parameters values at the industrial area (a), the high-density population area (b), and the low-
density population area (c) sites over the entire period of study, 2014–2016.
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Table 3: 75% quantiles for the goodness-of-�t parameters at the three sites over the entire period.

SITE
GOF

FOB (ratio) MAPE (%) RMSE (l/min)
Industrial area 0.20 39 7.86
High-density population area 0.21 50 1.80
Low-density population area 0.25 41 5.82
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Figure 5: Daily values of the (a) FOB (fraction out of bounds), (b) MAPE (mean average percentage error), and (c) RMSE (root mean square
error) for the industrial area, the high-density population area, and the low-density population area sites. e values are gathered into three
di�erent categories: good (green shading) for values lower than 20%, regular (green shading) for values between 20 and 50%, and bad (red
shading) for values greater than 50%.
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holiday (nor the preceding or following day), but one of the k
nearest neighbors of the X pattern for the query day was
followed by an anomalous day, the results were distorted by
it (Figure 7).

Finally, the better the measurements are, the more ac-
curate the forecasts will be. If a particular day has gaps in the
measurements, although it is feasible to cope with the NAs
(days with nonavailable data), they will introduce errors and
mispredictions into the algorithm (Figure 8). Days with
missing data should be �agged as anomalous and not
considered in the forecasting procedure.

e high-density population area is the site where
predictions were most accurate. is is partly because in this
site which is an urban neighborhood in the center of the city,
there are a large number of inhabitants living in residential
buildings. is large number of people using the water
supply at once regularizes the water �ow time series. is is
seen in Figure 2 (middle plot). Two patterns (labor days and
weekends) can be observed, and they even look similar. Since
the signal is so regular, the statistical forecasting procedure is
more reliable, and thus, the GoF parameters showed very
good results (with the exception of the MAPE which, as we
stated above, was not considered due to its �aws when near-
zero values are measured).

In the high-density population area, one of the causes of
errors in the forecasting was misbehavior of the time series,
probably because of malfunctions in the measurement de-
vice. For example, on 24 July 2014, there was, at around 10
a.m., a jump in the signal. After the jump, the time series
continued to follow the normal pattern but maintained the
o�set (Figure 9).

Another type of misbehavior seen in the time series was
an increase in the random �uctuations of the signal. For
example, on 18 November 2015, a high-frequency random

component appeared and overlapped the signal (Figure 10).
is random noise made the FOB value increase to 0.51 (red
�ag). Nonetheless, the original signal was still well predicted
since both the forecasted and the measured values followed
the same pattern, and this is why the RMSE value stayed
small (RMSE� 2.8 l/min) although the FOB was high.

e low-density population area site was the most dif-
�cult to forecast. e reason for this was because this site is a
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Figure 6: A wrongly forecasted signal. In this case, the forecasted
day was on Sunday, 19 April 2015, at the industrial area site. For this
site, Saturdays are very similar and Sundays di�er depending on
other factors (e.g., the time of the year). is led to an improper
forecasting since the (k) Saturdays closest to 18 April 2015 do not
need to be followed by Sundays similar to the forecasted day.

40

Monday 2015-11-02

30

20

10

0

0 5 10 15 20 25

Measurement
Signal

Forecast

Fl
ow

 (l
/m

in
)

Figure 7: Forecasting at the industrial area on Monday, 2 No-
vember 2015.is day in particular was a holiday. In this case, since
the day before was a Sunday, the predicted values were the average
of (k) normal Mondays, which, obviously had a very di�erent
behaviour.
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Figure 8: Forecasting at the industrial area on Wednesday, 11
March 2015. e e�ect of missing data in both the prediction and
query days is visible in this �gure. When there are missing data in
the query day, the neighbors are improperly obtained since only the
remaining data are considered, and thus, one might obtain a
misleading neighbor which would yield erroneous forecasting
results. When the data are missing in the forecasting day, there
cannot accurate predictions.
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residential suburb of the city, where there are lots of single-
family homes with gardens. Moreover, the zone is not very
big, so the number of end users is very low compared to that
of the high-density population area (hundreds of end users
vs. thousands of end users). erefore, the weight of each
domestic user is very high and so is the variance in the
signals. is led to a highly irregular time series. For ex-
ample, Figure 11 shows the same week of July (8th to 14th)

for 2014, 2015, and 2016. No regular pattern can be easily
foreseen.

In this site, the overall results were fairly good. However,
the main characteristic of these signals, the sudden peaks in
the water �ow, remained largely unpredictable since their
distribution is, to a large extent, random.

For example, Figure 12 shows the forecast for two days.
e �rst one corresponds to 12 March 2014 and was �agged
as “green” in the FOP plot (Figure 5), while the second,
which is for 13 March 2014, was �agged as “red” in the same
FOP plot. It looks like the forecasts were more or less equally
good, but in the �rst case, the peaks happened to occur inside
the con�dence bands, while in the second case, they fell
outside those bands. is seems to be the reason why there
were di�erences in the FOB for almost the same type of
prediction even though the RMSE was, in both cases, very
small (RMSE� 4.21 l/min, RMSE� 4.43 l/min).

As we have seen, an advantage of the pattern-similarity
algorithm is that there is no need to estimate the annual
seasonality since the procedure of normalizing the signal
(obtaining the X–Y patterns) deseasonalizes the time series.

e pattern-similarity algorithm is easy to implement,
and it is not very time-consuming. e part of the algorithm
that takes the most time is the �ltering of the training data,
which are all days in the historical record of the same day of
the week as the query day, such that neither them nor the
next day are holidays (or anomalous days). e �ltering can
be accelerated by using database processing language tools
(such as SQL).

In addition, if we have a large enough historical record
with good data quality at our disposal, the patterns obtained
as the forecast of the water �ow on a given day are a good
prediction of what that day should be like (Figure 13).

Even when the day to be forecasted shows minor data
issues (small segments of missing data), the method is robust
enough to deal with them. is keeps the algorithm from
making false alarms (Figure 14).

Finally, as the historical record increases, the perfor-
mance of the algorithm will improve. e method is based
on obtaining statistical knowledge from previous data in
order to determine the most similar situation to the one
ahead, from the past data. erefore, as the historical da-
tabase gets larger, the forecast will get more accurate.

4.4. Comparison with Previous Work. In this section, we
compare our approach (STPS, short-term pattern similarity)
with another two similar ones: αβ-WDF (αβ water demand
forecast that was recently published by Pacchin et al. [32])
and GRNN (generalized regression neural network that was
published by Dudek [11]).

e αβ-WDF approach is based on a moving window in
which average parameters are obtained for similar days
(same day of the week) from one, two, and three weeks
earlier (a moving window of 3weeks). αβ-WDF and STPS
work in a very similar way; they both obtain average patterns
for the same day of the week as the query day. However,
since αβ-WDF takes into account three weeks prior to the
time at which the forecast is made, STPS selects the k nearest
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Figure 9: Forecasting at the high-density population area on
ursday, 24 July 2014. e water �ow jumped at 10:28 a.m. from
9.39 l/min to 19.03 l/min. is o�set of around 10 l/min was
maintained after the jump. erefore, although the RMSE was not
very high (RMSE� 6.81 l/min), the FOB put that day in red
(FOB� 0.63).e pointwise 95% con�dence band of the estimation
is depicted in grey.
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Figure 10: Forecasting at the high-density population area on
Wednesday, 18 November 2015. e water �ow measurements
show a very large random component that increases the variance by
a great amount. However, the general pattern of the series was well
predicted by the forecast. erefore, the RMSE remained low
(RMSE� 2.8 l/min), even when the FOB was high (FOB� 0.51).
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neighbors of the query pattern from the data in the history
record.

As Dudek states [35], GRNN is a method equivalent to
the STPS in terms of data preprocessing. It is also based on
the X-Y pattern similarity that eliminates the seasonal
components and also considers the nearest k neighbors.
However, the prediction is made using a neural network of a

single neuron in the intermediate layer using radial basis
functions as weights. In this way, the result of the prediction
is also an average of certain Y patterns, but with weights
given by a Gaussian kernel (for further details, please refer
[35]).

Other recently developed well-known approaches are
based on ANNs, e.g., feedforward neural networks or long
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Figure 11: Comparison of the same week of July over the three sampled years (a) 2014, (b) 2015, and (c) 2016 at the low-density population
area site.

–25

0

25

50

Wednesday 2014-03-12

Fl
ow

 (l
/m

in
)

Signal
Measurement
Forecast

0 5 10 15 20 25

(a)

0

0

10

20

30

40
Thursday 2014-03-13

Fl
ow

 (l
/m

in
)

5 10

Signal
Measurement
Forecast

15 20 25

(b)

Figure 12: Comparison of two forecasts at the low-density population area site. e �rst one (a) was �agged as “green” in the FOB plot
(FOB� 0.18), while the second (b) was �agged as “red” (FOB� 0.58). e pointwise 95% con�dence band of the estimation is depicted in
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short-term memory networks. Unfortunately, we could not
apply these approaches to our study. From an engineering
perspective, a 24 h forecast is commonly considered to be a
short-term forecast; however, for data series with a high
frequency, the number of predicted values is huge (1440
values). In our study, a method based on ANNs would
require an output layer with 1440 nodes as well as an ele-
vated number of nodes within both the hidden and input
layers; therefore, the required data to train the ANN would
be huge.

In the comparison study, we considered data from the
year 2015 (in which the historical data is complete), and we
computed the two error parameters proposed by Pacchin et al.
[32]: MAPE and RMSE. Note that, since the number of data
predicted for each day was high (1440 values) and because
during an important fraction of the day, the water con-
sumption values were very low (close to zero), and the value of
theMAPE could become very high; therefore, for these special
cases, we considered the RMSE to present a more adequate
value to determine the goodness of the prediction.

In Figure 15, we present the measured values and the
predicted values of the three approaches for a randomly-

picked day: 1 June 2015 at the high-density population area.
Figure 16 illustrates the goodness of the methods under
study in the three scenarios (industrial area, high-density
population area, and low-density population area). It can be
observed that our approach (STPS) and GRNN present
better results than αβ-WDF for the three scenarios.

5. Conclusions and Future Works

is paper has presented an approach based on pattern-
similarity techniques to forecast water demand. is work
faces two important challenges that have been traditionally
neglected in previous approaches, namely, a high frequency
of predictions (based on measurements in terms of minutes)
and the need for external data such as annual seasonality or
weather that increments the complexity of the approaches.
In that sense, on the one hand, the approach presented here
is based on 1min steps predictions, and, on the other hand, it
does not require estimating annual seasonality since it de-
termines this seasonality by constructing the X and Y pat-
terns in which the series has been normalized.

In order to validate the approach, the study was applied
over three di�erent sites of a city in northern Spain. e
results obtained provided interesting insights, such as the best
predictions obtained in high-density population areas, the
di�culties for identifying patterns for Sundays in industrial
areas, or the higher random behaviour in low-density areas.

Additionally, our pattern-similarity approach (STPS)
was also compared to other similar techniques that have
been previously used for water forecasting, i.e., αβ-WDF
and GRNN. e results obtained evidenced that αβ-WDF
was the approach with worst results whilst GRNN and
STPS behave similarly. is similar behaviour is normal
since, in both cases, the estimation is obtained by an average
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of some past values. However, while GRNN uses a weighted
average where the weights are obtained by the Gaussian radial
basis, in STPS, we use a simple average what is easier to
compute. us, the main di�erence relies on the fact that, in
GRNN, the abovementioned average is computed from some
�xed previous days (one, two, or even three weeks before),
while the STPS averages the last k nearest neighbors.
erefore, in cases in which the past weeks were, by any
chance, nontypical (e.g., Christmas or Easter week), our
method is providing better results due to its higher �exibility
because in such cases it will look for similar days in the whole
recorded history, whereas GRNN will be using only the past
few weeks.

As future work, we intend to handle some weaknesses
identi�ed in the current method. Firstly, predictions
success is reduced when anomalous days are considered.
Anomalous days refer to two di�erent situations: holidays
and days with a behaviour di�erent from what is con-
sidered usual. e former may be solved by constructing
training sets from which to obtain the nearest neighbors
since historical record contains enough data. To tackle the
complexity of the latter, once these types of anomalous
days have been identi�ed, they could be just removed from
the possible training subsets in the forecasting of other
days.

Secondly, in order to improve the results for data sites
where apparently there is not regularity, such as the low-
density population area in our study, shorter prediction
horizons could be considered, e.g., 4–6 hours. However, this
is an issue that remains currently untested.

Finally, another interesting line of further work is the
application of the proposed approach for water distribution
in di�erent cities.
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