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Techniques for analyzing and avoiding hazardous objects and situations on the seabed are being developed to ensure the safety of
ships and submersibles from various hazards. Improvements in accuracy and real-time response are critical for underwater object
recognition, which rely on underwater sonar detection to remove noises and analyze the data. .erefore, parallel processing is
being introduced for real-time processing of two-dimensional (2D) underwater sonar detector images for seabed monitoring.
However, this requires optimized parallel processing between the modules for image processing and the data processing of a vast
amount of data. .is study proposes an effective parallel processing method, called Task Partitioning, based on central and
graphical processing units for monitoring and identifying underwater objects in real time based on 2D-imaging sonar. .e
practicality of the proposed method is evaluated experimentally by comparing it to the sequential processing method. .e
experimental results show that the Task Partitioning method significantly improves the processing time for sonar images because
it reduces the average execution time to 1% and 5% of the sequential processing method and general parallelization, respectively.

1. Introduction

During navigation, vessels face various threats, such as
underwater mines and submarines/submersibles [1]. .e
safety of vessels can be assured by identifying hazards in the
water via real-time monitoring and surveillance of the
seabed environment. Most seabed environment monitoring
systems use sound waves (i.e., sonar), which have a relatively
innocuous effect on the underwater environment. Imaging
sonar, an underwater image acquisition technology, gen-
erates images by transmitting sound waves, ranging from
several tens of hertz to several megahertz, depending on the
purpose, and analyzes signals reflected from the seabed or
objects. To acquire the images, side-scan sonar [2], multi-
beam echo sounder [3], and synthetic aperture sonar [4] are
used. Sonar-based seabed environment monitoring has great
difficulty in detecting and identifying objects because of low
resolution and disturbances in the underwater environment

[5, 6]. .us, the information collected using sonar contains a
large amount of noise, making image processing expensive.
.erefore, the usability of imaging sonar on unmanned
platforms is low because of the time required to process
images.

.is study proposes an effective software method, called
the Task Partitioning, to enable real-time parallel processing
and the identification of objects on the seabed via sonar-
image analysis. Our proposed method partitions images
based on a multicore central processing unit (CPU), and it
performs parallel processing in task units, detecting objects
using a graphical processing unit (GPU). .is method
maximizes parallelism by piping jobs to CPUs and GPUs.
.e practicality of the proposed method is evaluated by
applying it to a sonar image analysis simulator and by ex-
perimentally comparing it with the sequential and parallel
processing methods [7]. .e experimental results show that
the proposed method significantly improves the processing
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time for removing the noises of the sonar images; our
method reduces the average execution time to 1% and 5% of
that of the sequential processing method and general par-
allelization method, respectively. Moreover, our method
showed an improvement of 164.5 times compared to se-
quential processing, and an improvement of 17.4 times
compared to general parallelization in terms of the time
consumed for identifying multiple undersea objects in 4K
images having 4096× 4096 resolution.

2. Background

2.1. Parallel Image Processing. .e popularity of multipro-
cessors and multicore systems has increased the demand for
improving the processing speed of image processing ap-
plications. However, hardware unit multiplexing (e.g., CPU)
for simple processing has mostly produced disappointing
results. Even so, it is well known that the image processing
problem can be solved by software parallel processing. By
parallel processing, the expected processing speed im-
provement value, SpeedUp‖, can be obtained using
Amdahl’s law [8], as follows:

SpeedUP‖(f, n) �
1

(1−f) +(f/n)
, (1)

where f denotes the parallel processing ratio during the
performance of a given application and n denotes the
number of CPU or GPU cores where the application is
executed. From Eq. (1), it can be seen that the processing
speed improvement by parallelization increases in pro-
portion to the ratio of code sections processed via multiple
parallel cores. For example, in a system using eight cores, the
performance improvement effects of the parallel-processed
sections are 40% and 80%, with SpeedUp‖ (0.4, 8)≒ 1.6 and
SpeedUp‖ (0.8, 8)≒ 3.3, respectively.

Effective parallelization is difficult with image processing
because of the overhead, owing to the small dataset and short
running time. .ese difficulties are faced by most image
processing applications, which inherit the problem of load
balancing because of limited parallelism [9]. .erefore, ef-
fective parallel processing methods for image processing
applications are being researched..e key factor for effective
parallel image processing is the selection of a software
parallel processing method that is well matched to the CPU
and GPU architectures. .us, the target processor must be
selected after understanding the characteristics of the al-
gorithm, prior to the implementation. Furthermore, the
algorithm must be designed per the characteristics of each
processor [9–11].

2.2. Parallel Processing in ImageAnalysis. Parallel processing
technologies are applied to various fields, including image
processing and analysis and computer vision. First, Kim
et al. [7] applied CPU and GPU parallel processing for an
autonomous navigation robot’s object recognition, pro-
posing a parallel-processed keypoint detection method for
feature extraction. .ey compared the running speeds of
CPU and GPU parallel processing using the scale-invariant

feature transform (SIFT) algorithm [12]. In each imple-
mentation, several optimized methods, such as the OpenMP
[13], single-input multiple-data (SIMD) [14] structures, and
streaming SIMD extensions (SSE) [15], were used for the
CPU. CUDA (a parallel computing platform and pro-
gramming model developed by NVIDIA) [16] was used for
the GPU. .e study suggested that the keypoint detection
method could improve the performance 2.5 to 5 times,
compared to the extant methods.

Park et al. [17] applied parallel processing to a three-
dimensional (3D) visualization tool that simulated trawl
fishing using complex internal calculations of each func-
tional component of the gear and the underwater net. .e
3D simulator developed in the study applied parallel pro-
cessing to achieve an improved average processing perfor-
mance of 40%, including real-time display of user inputs.

A representative example of the application of parallel
processing in sonar image synthesis was SIGMAS+ [18] of
the NATO Undersea Research Centre, which implemented
each process using a structure optimized for GPU pro-
cessing, enabling approximately 50 times improved execu-
tion and speed performance rendering simple scenes.
However, when the results of [18] was used for object de-
tection and tracking, additional overhead was generated
because of the additional data conversion required owing to
the characteristic of GPU architecture, whose double pre-
cision operation performance was lower than single
precision.

Our research team developed an image analysis simu-
lator that detects and identifies underwater objects from
two-dimensional (2D) sonar images. For recognizing un-
derwater objects, the developed analysis simulator leveraged
a preprocessing unit that removes noise from sonar images,
using Sonar Image Creator, similar to SIGMAS+ object
detection. .e tool detects objects in the preprocessed im-
ages and object identification units, which identify the de-
tected objects. Figure 1 shows a schematic of the developed
2D Sonar Image Analysis Simulator (SIAS). For real-time
processing via the improved performance of SIAS, paral-
lelization, based on the results of [7], was applied to pre-
processing, object detection, and object identification units.
However, this method improved the average performance of
object recognition by 45%, which was insufficient for
achieving real-time capacity. .erefore, our study proposes
an effective parallelization method for improving the real-
time capacity of SIAS.

3. Optimized Parallelization Design for SIAS

3.1. Task PartitioningMethod. In a seabed environment that
is expressed using 2D sonar images, the image coordinates
are determined by the distance from the sensor. Although
parallelization is possible for an algorithm used during
preprocessing and object detection for analysis, there is a
section that parallelization cannot handle, owing to data
dependencies of the image area and processing step. .us,
each algorithm performs parallel processing as a paralleli-
zation series. Shapes consisting of multiple forks and joins
increase the frequent fork-join overhead and the sequential
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processing section ratio. However, for the acquired side-scan
sonar images, an empty image is output at the center, owing
to the distance to the seabed below the sensor. .e left and
right sides of the image are fully divided and can be regarded
as independent images. Task Partitioning performs parallel
processing by dividing the left and right independent images
into separate tasks during parallel processing for SIAS.

Task division by image portioning minimizes the se-
quence section processing of the algorithm because the left
and right images are independently processed in parallel. For
each task, to maximize the effects of parallelization, the
images that can be processed in parallel are allocated to the
threads corresponding to the maximum number of threads
supported by the CPU. For general parallelization, the use of
multiple threads decreases the parallelization efficiency
because, after parallelization, the thread waits until other
threads that branched simultaneously are completed.

However, during task portioning, as those of the left and
right images are separated, the parallel threads in each task
can occupy the CPU without waiting. .us, performance
improvement by parallelization can be expected. Further-
more, the performance improvement efficiency of paralle-
lization can be maximized because 256-bit data can be
processed simultaneously using the SIMD register, which
performs the same command for multiple data in each
thread’s process. Figure 2 shows the Task Partitioning
concept applied to improve the efficiency of parallel pro-
cessing during SIAS preprocessing. In Figure 2, a tile is a
standardized image area that not only enables equal task
distribution to each thread but also limits the size of tasks
processed by the CPU.

By Task Partitioning, parallelization entails the image
division process for identifying variable vertical sections for
the inputted sonar image and the task division processes,
which allocate the segmented images by tile units to each
thread. First, during the image division, the central section of
the sonar image, based on the side-scan sonar, varies by the
photographing situation and is identified and converted to a

simplified 2D binary image. .e image division method is
shown in Algorithm 1, where it is divided into a port image
(InL) and a starboard (InR) image using the size and po-
sition of the identified image sections.

During task division, the preprocessing algorithm that
improves noise removal and accuracy of object identification
for the left and right images are divided during image di-
vision, and the algorithm for detection is divided so that they
both can operate as one task. .en, tasks are generated for
each image, and they are divided for parallel processing
based on the number of system cores. .e task division
process is shown in Algorithm 2, which applies Detectio-
n_Obj( ), a function for object detection that replaces the
preprocessing algorithm. .erefore, the required object is
identified in each divided image, and the search of each
section is performed in parallel per the number of threads
activated by the system or user.

3.2. Pipeline Method. Besides the processing speed im-
provement that can be obtained by the CPU task division,
additional performance improvements are possible by
allowing the GPU to process the algorithm. Single instruction
multiple thread (SIMT) [19] parallel processing, which uses a
many-core GPU, is more efficient than a CPU when the same
command is repeatedly used for each pixel or feature point,
such as with object detection and recognition. However, if the
Task Partitioning method is applied using a GPU for object
detection, it can decrease the gain from parallelization, owing
to the overhead caused by frequent context changes.

Meanwhile, preprocessing for noise removal and object
detection and recognition cannot use the two processing
resources of CPU and GPU simultaneously because of a
dependency in the processing sequence..us, the GPUmust
wait until sonar images are preprocessed by the CPU. Even if
parallel processing is carried out using both the CPU and
GPU, the time required for detecting the objects by using the
two processing resources satisfies the following equation:

Sonar image

Noise

Object detectionPreprocessing Object classification

[Recognition]
Clustering Identifying features

Sonar image creator

Amount detection

Tracking feature points

Feature extraction

Figure 1: Overall architecture of the 2D sonar image analysis simulator.
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∑
n

i�1
Tci + Tgi( ), (2)

where Tc and Tg denote the time required for processing
one frame using CPU and GPU, respectively. i denotes the
frame sequence of the inputted images.

To minimize the GPU wait time of two jobs with a
de�ned processing sequence, the pipeline method is si-
multaneously applied to the CPU and GPU tasks after al-
locating preprocessing to the CPU and object detection to
the GPU. When sonar images are inputted, the pre-
processing task is processed in parallel, based on the CPU,
and the image outputted after preprocessing is uploaded to
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Figure 2: Design of the Task Partitioning approach.

FUNCTION Img_Partitioning(I, InL, InR)
/∗Color transform∗/
If an Image I is not a binary Image then

�e Image I is converted to a new 2D Binary Image N with a threshold value
else

�e Image I is just copied to a new Image N
end if
/∗Labeling∗/
Find connected components in N
Calculate position of each group
Find the region of center in N
/∗Partitioning∗/
Divide N into InL and InR based on the center region
if InL is empty or InR is empty then

return FALSE
else

return Partitioned Images
end if

End FUNCTION

ALGORITHM 1

FUNCTION Task_Partitioning(InL, InR, T)
/∗Cn is the number of cores∗/
Check the number of cores
Create threads for detecting objects as Cn
for each object ti, i⟵ 1 to n, ti ∈ T do
Create Task

Parallel execution with Detection_Obj(InL, ti)
Create Task

Parallel execution with Detection_Obj(InR, ti)
End FUNCTION

ALGORITHM 2
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the GPU memory and processed based on the GPU. When
the upload to the GPU memory is complete, the CPU re-
ceives the next sonar image and performs preprocessing.
Simultaneously, the GPU performs object detection for the
first sonar image. Figure 3 illustrates this method, applying a
pipeline between CPU and GPU. In the figure, the Waiting
Queue is a FIFO (first-in-first-out) data structure and is
employed by GPU to independently use image data pro-
cessed by CPU. .erefore, it can maximize the performance
improvement via parallelization by effectively reducing the
GPU wait time, if simultaneous processing is carried out by
the pipeline between CPU and GPU for all sonar images, for
which object detection must be performed. .e processing
time required for object detection of a sonar image when this
pipeline method is applied can be expressed as follows:

Tc1 + 􏽘
n

i�2
Tci + Tgn. (3)

.e GPU waits only during preprocessing of the first
inputted frame because there is no previous frame..en, the
CPU and GPU perform preprocessing and object detection
simultaneously, and only the GPU processing time for the
object detection of the last frame is added. Furthermore, the
dormant time of processors is minimized by the proposed
pipeline method. If the pipeline method is not applied, the
total wait time of processors is 􏽐

n
i�0Tci. However, if the

pipeline method is applied, it decreases to 􏽐
n−1
i�0 |Tci+1 −Tgi|.

4. Implementation and Evaluation

.e optimized SIAS parallel processing performance im-
provement method proposed in this study is evaluated by
experimentally comparing it with the existing sequential
processing methods and the parallel processing based on [7].
For this evaluation, a simulation system for sonar image
analysis comprising multicore and many-core CPUs is
constructed by applying the optimized parallel processing
method for the SIAS developed by our research team.

4.1. Implementation. For the preprocessing step, we de-
veloped a parallel version of the wavelet method [20] using
OpenMP APIs, and it was applied to the Task Partitioning
method. Figure 4 illustrates the implementation of CPU-
based parallel processing using the Task Partitioning method
for the preprocessing step. In the image segmentation phase,
two tasks for the left and right images were divided using the
#prama omp parallel and #prama omp section directives with
OpenMP. .e parallel directive enables the operation of
specified code sections in parallel, and the section directive
allocates the code sections to be performed by each task.
.en, the nowait clause is set in the section directive so that
when a task is completed, the section finishes without
waiting for the completion of other branched threads. .e
thread allocation for each tile in the partitioned task and the
phases of wavelet method, such as Wavelet Transform,
Ridgelet Transform, and .resholding, were implemented
by #prama omp parallel for directive. .e parallel for di-
rective makes the for loop perform the processing of each

divided tile in parallel with a specified number of threads.
For the specification of the number of threads to be operated
in parallel, the num_threads clause was used in accordance
with the number of logical threads of the CPU, as explained
in Section 3. To enable the simultaneous execution of the
instructions for eight float data types, the SIMD process for
each divided tile was implemented using the #pragma omp
for simd directive.

We employed the FASTmethod [21] and p-SIFTmethod
[22] for the object detection step and implemented a pattern
matching and a tracking feature-point technique to classify
the detected objects. Figure 5 depicts the parallel processing
phases based on GPU threads. To implement the object
recognition, the tasks to be performed for each element to be
parallelized by SIMT are divided into threads, per the
number of total elements..e GPU processes the threads for
the number of GPU cores simultaneously among the total
allocated threads. We implemented the GPU-based paral-
lelization, including SIMT, for the FASTmethod and p-SIFT
method using CUDA APIs.

For feature-point extraction during object detection,
threads for the number of pixels are allocated, and the
feature amount detection and matching are divided into
threads according to the number of feature points. In this
case, the number of pixels and the number of feature points
when a 4K-class image is inputted are larger than the
number of GPU cores in the system. .us, the usage effi-
ciency reduction in the dormant GPU during parallelization
is minimized. Data parallelization is impossible, and sequential
sections for GPU thread allocation and kernel activation
processed in the CPU are minimized via the use of an al-
gorithm optimized to SIMT GPU data parallelization,
having almost no effect on the processing speed of the
preprocessing algorithm occupying the CPU. .e object
classification step is performed immediately after the co-
ordinates and feature quantities of the detected candidate
objects are identified. In addition, we implemented a tem-
plate matching method in which multiple parallel threads
are used in consideration of candidate points of objects to be
compared to identify multiple objects simultaneously.

Figure 6 shows the process of the optimized paralleli-
zation implementation for SIAS. .e CPU-based Task
Partitioning method for the preprocessing step and the GPU
parallel processing are applied. As shown in the figure, the
pipeline method was implemented in which the object
detection step shares the images generated by the pre-
processing step using the Waiting Queue. We also used the
#pragma omp task directive of OpenMP to enable the two
tasks to operate independently for the pipeline method and
activate the nested parallelism by using the omp_set_nested
command to enable additional thread allocation within the
task for image preprocessing.

.e SIAS system uses Intel i7 quadcore CPUs, 16 GB
RAM, and a Nvidia GEFORCE GTX graphic card for GPU.
It operates on Windows 10 OS. Furthermore, the installed
CPU operates in eight logical threads with four physical
cores, and the GPU has 768 cores. .e SIAS software was
implemented using C++ and CUDA languages. OpenMP 5.0
was used for the CPU parallelization API, and CUDA
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Toolkit 7.5 was used for the GPU parallelization. Finally, the
programs for the SIAS were compiled using the LLVM 5.0
compiler [23].

4.2. ExperimentandAnalysis. �e test images were side-scan
sonar images with 4096× 4096 resolution, created using
Sonar Image Creator so that 20 types of objects, consisting of
�ve units each of four types (i.e., mine, �shing reef, tire, and
drum), could be inserted. We veri�ed the accuracy of the
new SIAS with parallel algorithms and measured the total
time for recognizing 20 multiple targets in the inputted
image.

To verify the accuracy of new SIAS, we compared to the
original images and the prior version of SIAS which uses

sequential algorithms. Figure 7 shows the result of object
recognition with the SIAS. Figure 7(a) is a synthetic image
created by the Sonar Image Creator of the SIAS, and
Figure 7(b) is the results of identifying multiple underwater
objects in Figure 7(a) through the SIAS with parallel pro-
cessing. As resulted in Figure 7(b), the SIAS correctly
identi�es multiple underwater objects even if the parallel
processing, including Task Partitioning and pipeline
methods, is applied. From the �gure, we see that the SIAS
using parallel algorithms provides the accuracy of recognition
because it identi�es 20 multiobjects on the seabed with
recognition rates of 80% or more.

To examine the parallelization performance improve-
ment of the developed SIAS, the processing speeds were
measured and experimentally compared with sequential

Denoising image

Feature extraction

FAST method

Feature amount detection

p-SIFT method

Object detection Object classification

Pattern matching and
tracking feature points

Figure 5: GPU-based parallel processing for object detection and object classi�cation steps.
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Figure 3: Process of the pipeline approach.
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Figure 4: CPU-based parallel processing using the Task Partitioning method.
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processing (SQ) using no parallelization, CPU-based general
parallel processing (PP), and Task Partitioning and GPU
parallel methods (TG). �e pipeline method was applied to
Task Partitioning and GPU parallelization (TP).

�e experiment results are summarized in Table 1 and
Figure 8. �e simple combination of Task Partitioning and
GPU parallelization (TG) achieved a speedup of approxi-
mately 92.1 times, compared to sequential processing.

(a) (b)

(c)

Figure 7: �e results of multiple objects recognition under the parallel version of SIAS. (a) Original image generated by Sonar Image
Creator of SIAS. (b) �e recognized results by the parallel version of SIAS. (c) �e recognized objects by the parallel version of SIAS.

Sonar image
creation

Preprocessing
Noise reduction
and correction 
wavelet method

Target model
creation and

image synthesis

Signal generation

CPU-based Task Partitioning

Feature extraction

FAST method

Feature amount detection

p-SIFT method

Pattern matching and
tracking feature points

Object detection and classification 
GPU-based parallel processing

Multiobjects
recognition

Waiting Queue

0.4
0.3
0.2
0.1
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Figure 6: Optimized parallel processing with the pipeline method for SIAS.
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However, the pipeline application of Task Partitioning and
GPU parallelization (TP) achieved a speedup of 164.5 times,
compared to sequential processing (SQ). Furthermore, when
the optimized parallel method was applied, TG and TP
achieved speedups of 9.7 times and 17.4 times, respectively,
compared to the parallel CPU processing (PP). When the
parallelization e£ects were analyzed by steps, TG and TP
showed the same results during the preprocessing step and
improved by 70.1 times compared to SQ. It also improved
20.3 times compared to PP. From the results of the pre-
processing step shown in Figure 8, we see that the Task
Partitioning method is practical for sonar image processing
because it dramatically reduces an average execution time to
5% and 1% that of PP and SQ, respectively.

In the object detection step, PP and TP showed 110 times
faster processing compared to SQ, and TG improved by 113
times compared to SQ, showing the most e£ective results.
Finally, during the object classi�cation step, PP, TG, and TP
all showed three times higher results than SQ. In the TG and
TP results of Table 1, TP has a slightly time delay, about 2ms,
compared to TG in GPU parallelization for the pipeline
method. Nevertheless, it con�rms that SIAS is optimized by

the pipelined approach because TP reduces the overall ex-
ecution time of TG by about 90ms throughminimizing CPU
and GPU latencies.

�e test results from Table 1 and Figure 8 con�rm that
the CPU-based Task Partitioning method signi�cantly im-
proves the processing speed of parallelization and practical
for sonar image processing because the Task Partitioning
method reduces the average execution time to 1% and 5%
that of the sequential processing method and the general
parallelization, respectively. Furthermore, because of the
application of GPU parallelization and the pipeline method,
the total processing time approached 100ms. �us, it can be
used for sonar imaging-based seabed monitoring systems by
providing real-time performance.

5. Conclusion

Sonar technologies, which have relatively low e£ects on the
underwater environment, have been widely used to secure
the safety of vessels by identifying underwater hazards via
real-time monitoring and surveillance of seabed environ-
ments. However, owing to the nature of the underwater
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Figure 8: Measured run-time results of SIAS under parallel processing methods. (a) Preprocessing; (b) object detection; (c) object
classi�cation; (d) total run time for SIAS.

Table 1: Experimental results of SIAS under parallel processing methods.

SQ (ms) PP (ms) TG (ms) TP (ms)
Preprocessing 6,310 1,832 90 90
Object detection 12,100 109 107 109
Object classi�cation 9 3 3 3
Total 18,419 1944 200 112
SQ: sequential process; PP: parallel process on CPU; TG: Task Partitioning on CPU+parallel processing on GPU; TP: Task Partitioning on CPU+parallel
processing on GPU with the pipeline method.

8 Scienti�c Programming



environment, the collected sonar signals contain large
amounts of noise. .us, a significant time delay occurs
because of the process of removing noise to obtain calibrated
underwater information. In this study, the time delay of
underwater environment monitoring via sonar imaging
analysis was significantly improved by applying the Task
Partitioning method, a new parallelization method based on
CPU- and GPU-based parallel processing methods. .e
CPU and GPU are used simultaneously through a pipeline.
When the proposed method was experimentally compared
to the existing methods using SIAS, a simulator system for
identifying underwater objects based on sonar imaging, the
proposed method showed an improvement of 164.5 times
compared to sequential processing and 17.4 times compared
to general parallelization in terms of the time consumed for
identifyingmultiple objects in 4K images having 4096× 4096
resolution. During image preprocessing, which removes
unnecessary noises, and during calibration, CPU-based Task
Partitioning drastically improved parallel processing speed
by effectively supporting SIMD and multithreading. .e
empirical results showed that our method is practical for
sonar image processing, reducing the average execution time
to 1% and 5% of the sequential processing method and
general parallel processing method, respectively. Finally, this
improvement of optimized parallelization is significant
because it can be used for the sonar imaging-based un-
derwater real-time monitoring system and can be applied to
ensure the safety of ships and submersibles from various
hazards in the water.
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