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Task scheduling plays a critical role in the performance of the edge-cloud collaborative. Whether the task is executed in the cloud
and how it is scheduled in the cloud is an important issue. On the basis of satisfying the delay, this paper will schedule tasks on edge
devices or cloud and present a task scheduling algorithm for tasks that need to be transferred to the cloud based on the cat-
astrophic genetic algorithm (CGA) to achieve global optimum. +e algorithm quantifies the total task completion time and the
penalty factor as a fitness function. By improving the roulette selection strategy, optimizing mutation and crossover operator, and
introducing cataclysm strategy, the search scope is expanded. Furthermore, the premature problem of the evolutionary algorithm
is effectively alleviated. +e experimental results show that the algorithm can address the optimal local issue while significantly
shortening the task completion time on the basis of satisfying tasks delays.

1. Introduction

With the rise of edge computing, the convergence of cloud
computing and edge computing has become a major focus
[1–3]. Especially when we make great strides towards the
digital era of the Internet of Everything, edge-cloud col-
laboration has become an important application in many
scenes such as CDN, industrial Internet, energy, intelligent
transportation, and security monitoring. Cloud computing
and edge computing need to work closely together to better
match the various demand scenarios, thus maximizing the
value of edge computing and cloud computing collabora-
tion. Take the example of an IoT scenario. +e devices in the
Internet of +ings generate a large amount of data, and the
data are uploaded to the cloud for processing, which will
cause great pressure on the cloud. To share the pressure of
the central cloud node, the edge computing node can
be responsible for data calculation and storage within
its own scope [4–6]. Cloud computing excels in global,

non-real-time, long-cycle big data processing and analysis
and can play an advantage in long-term maintenance,
business decision support, etc. Edge computing is more
suitable for local, real-time, short-cycle data processing and
analysis. Edge computing can better support real-time in-
telligent decision making and execution of local business.
+ere are some high real-time performance applications,
such as industrial system detection applications, control
applications, executive applications, and emerging VR/AR
applications. Some scenarios require real-time performance
within 10ms or even lower [7, 8]. If data analysis and
processing are all implemented in the cloud, it is sometimes
difficult to meet the real-time requirements of the service. It
seriously affects the business experience of end customers.
But, usually more studies usually consider the process of
unloading, ignoring the assignment of tasks after unloading.

Tasks can be scheduled to the edge or the far cloud based
on energy consumption and time delay. For the problem that
needs to be processed in the cloud center, how to perform
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proper scheduling to achieve the goal is worthwhile research
question.

Task scheduling methods in the cloud center can be di-
vided into heuristic algorithms (such as RR and SJF), met-
aheuristic algorithms (based on biological incentives and
swarm intelligence), and hybrid task scheduling algorithms
[9]. In the scheduling process, various performance-based
performance indicators such as system utilization, execution
time, load balance, network communication cost, delay, and
the like are used [10]. +e heuristic task scheduling algorithm
can easily schedule tasks and provide the best solution.
However, it does not guarantee the best results and is easy to
fall into partial selection. +e metaheuristic algorithm is an
improved algorithm based on a heuristic algorithm, which is a
combination of random algorithms and local search algo-
rithm[11–13]. It enables the exploration and development of
search space and handles a large amount of search space
information. In addition, it can use learning strategies to
acquire and master information to effectively find approxi-
mate optimal solutions. Among them, genetic algorithm
(GA), particle swarm optimization (PSO), and ant colony
algorithm (ACO) are the most widely used evolutionary al-
gorithms in the task scheduling in recent years [14]. However,
these algorithms usually converge prematurely and are prone
to finite optimally. When approaching the optimal solution, it
may also swing left and right, making the convergence slower
[15]. In genetic algorithms, the crossover operators become
the main operators because of its global search ability and
mutation operator is to become the auxiliary operator because
of its local search ability. Genetic algorithms have the ability to
balance the global search space with the local search space.
Genetic algorithms always search for global and local spaces
through crossover and mutation operators. +ey cooperate
with each other and monitor each other. How to effectively
cooperate with the intersection and mutation operations,
make the convergence faster, and jump out of the local op-
timum in the solution process is a valuable research content of
the current genetic algorithm.

+is paper proposes a task scheduling strategy for edge-
cloud collaborative computing based on disaster genetic
algorithm. Considering the meaning of the cross operation,
the individual optimal retention, and the magnitude of the
mutation probability in the evolutionary process, the ability
to optimize convergence and the three genetic operators of
the genetic algorithm are improved. A penalty factor de-
termines the execution time objective function based on the
time delay. At the same time, a catastrophic strategy was
introduced to simulate the phenomenon of disasters in
biological evolution. During the first 1/2 iterations, pre-
mature aging may occur and the best chromosomes of
successive generations will not develop at all. +erefore, we
increase the probability of mutation, break the monopoly of
the original gene, make the individual away from the current
optimal solution into the group, increase the diversity of
genes, and create new survival individuals. +e algorithm we
proposed can jump out of the local optimum and effectively
alleviate the problem of premature convergence.

+e rest of this article is organized as follows. Section 2
introduces the related work. Section 3 introduces the task

classification strategy. Section 4 introduces the task sched-
uling model in the cloud center. Section 5 introduces the
CGA algorithm. Section 6 introduces the experimental and
comparison results. Finally, Section 7 summarizes this
paper.

2. Relevant Work

Research on edge-cloud collaboration is still in the initial
stage, but many domestic and foreign scholars have carried
out related research and achieved research results on the
task scheduling problem at the edge or cloud. Ke et al. [16]
proposed classifying tasks according to whether they meet
the delay and energy consumption. In the scheduling of
tasks in the cloud, genetic algorithms are widely studied for
their adaptability to various task scheduling problems. +e
genetic algorithm is appropriate for various task scheduling
problems. +e improvement of the genetic algorithm is
mainly to improve the genetic operator and to achieve the
purpose of improving the convergence speed and the
performance of the classical genetic algorithm. At present,
many corking algorithms have been proposed successively
after experimentation and demonstration by scholars.
Keshanchi et al. [17] proposed an improved heuristic-based
genetic algorithm, called N-GA. +e N-GA is used for the
static task scheduling in the cloud. Akbari et al. [18] im-
proved the performance of genetic algorithm by signifi-
cantly changing genetic operators to ensure the sample
diversity and reliable coverage of the entire space. In [19], a
hybrid metaheuristic algorithm is offered, which uses the
HEFT (Heterogeneous Earliest Completion Time) algo-
rithm combined with PSO and GA to improve perfor-
mance. Johnson proposed a rule-based genetic algorithm
(JRGA) [20] for a two-stage task scheduling in data centers.
In [11], the authors proposed a task scheduling scheme for
heterogeneous computing systems built on a genetic al-
gorithm, which maps each task to the processor according
to the assigned priority to shorten the manufacturing time
as much as possible. Goyal and Agrawal [21] proposed a
model for scheduling a group of independent tasks on
multiple machines and solved the question by combined
the GA and the electoral heuristic algorithm. +e goal of
this model is also intended to minimize the maximum time.
Kumar et al. [22] put forward a new task scheduling
method, which integrated min-min algorithm and min-
max algorithm in a genetic algorithm. +e goal of the
research is to shorten the generation time and execution
time to the greatest extent [23].

However, the methods mentioned above may still fall
into a local optimum when solving a multimode problem
[10]. +erefore, the algorithm needs some strategies to avoid
this limitation. Literature [24–28] mentioned an integer
genetic algorithm using a “catastrophe” operator. It is
designed to help to jump out of the local extreme points.+e
bionic significance of “catastrophe” operator and the im-
provement of disaster genetic algorithm in solving the above
problems are emphatically introduced. +ese operations can
mitigate the phenomenon of falling into a local optimum
and premature convergence.
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In addition, there are few studies that achieve the least
total time based on the delay of meeting each task.+erefore,
based on the research of genetic algorithms, this paper raises
a task scheduling algorithm called CGA based on cataclysm
strategy [29], which mainly considers the time delay to
achieve the minimum total execution time. And the effec-
tiveness of the proposed algorithm is checked by
experiments.

3. Task Classification

In the system, we consider a set of tasks to be performed,
each of which comes from an edge device which is denoted
as N � 1, 2, 3, . . . , N{ }. +e tasks include interactive gaming,
natural language processing, image location, etc [16]. Each
task should be completed within the deadline. Each task with
three attributes is defined as Taski � [datai, di,

expTi], i ∈ N. For Taski, di is the size of the input data for
the computation, which may include program codes, input
files, etc [16].expTi is the deadline for completion of a task.
datai is the length of the task.+erefore, we must first classify
the tasks that need to be processed to determine whether to
execute in the cloud. According to the ratio of the delay of
the task and the length of the task, the sensitivity of the task is
determined. And finally, the tasks in the cloud will be
scheduled to reduce total execution time.

Let fc
i represent the computing power assigned to the

Taski by the edge device. +us, we can get the time of the
local execution of Taski as

T
i
local �

datai

fc
l

. (1)

+e time transferred to the cloud is defined as

T
i
tran �

di

Rate
. (2)

Rate is the upload rate of tasks transferred to the cloud;
here the upload rate is a fixed value.

In order to facilitate subsequent task scheduling in the
cloud, tasks need to be sorted according to sensitivity. +e
task sensitivity can be defined as

senTi �
datai

expTi

. (3)

+e complete task classification process is illustrated in
Algorithm 1.

4. Task Scheduling Model in the Cloud Center

+e task scheduling problem in the cloud is how to rea-
sonably arrange each task to multiple virtual machines so
that all tasks can be completed in a shorter execution time
and meet the delay as much as possible [10]. Here, the
following assumptions are made:

(1) +ere is no interdependence between tasks and tasks
(2) +e size of the task and the computing speed of the

virtual machine are known

Definition 1. Virtual machines on physical machines:

PMi � VM1,VM2, . . . ,VMNVM , (4)

where PMi represents the host machine, Nvm represents the
number of virtual machines, and VMk represents the kth
virtual machine resource in the cloud environment.

Definition 2. Virtual machine resources:

VMK � IDVk,MIPSk , (5)

where IDVk is the serial number of the virtual machine and
MIPSk represents the computing power of the kth virtual
machine.

Definition 3. Task sequence:

T � TAsk1,TAsk2, . . . ,TAski, . . . ,TAskNtsk , i ∈ GC,

(6)

where Ntsk represents the number of tasks that need to be
performed in the cloud and Taski represents the ith task in
the task sequence.

Definition 4. Task expected completion time.
+e ECTmatrix is used to represent the completion time

of all tasks on each virtual machine resource.

ECT �

ECT1,1 ECT1,2 . . . ECT1,Nvm

ECT2,1 ECT2,2 . . . ECT2,Nvm

. . . . . . . . . . . .

ECTNtsk,1 ECTNtsk,2 . . . ECTNtsk,Nvm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

+e execution time required for each task to run on a
computing resource (virtual machine) is calculated as
follows:

ECTi,k �
datai

MIPSk

, k � 1, 2, . . . ,Nvm; i � 1, 2, . . . ,Ntsk.

(8)

Let the task set be assigned to the kth virtual machine;
then, the task completion time RT(k) on the kth virtual
machine is

RT(k) � 
l∈Nl

ECT(l, k), k � 1, 2, . . . ,Nvm,

∀l ∈ [1,Ntsk]mapped to kth VM, k � 1, 2, 3, . . . ,Nvm.

(9)

AllNTime is the maximum completion time for each
computing resource:

AllNTime � max(RT(K)), k � 1, 2, . . . ,Nvm. (10)

Definition 5. Matching matrix A.
We can get the matrix A:
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A �

a1,1 a1,2 . . . a1,Nvm

a2,1 . . . . . . . . .

. . . ai,j . . . . . .

aNtsk,1 . . . . . . aNtsk,Nvm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Among them, ai,j � 0, 1{ }. And the value of ai,j indicates
whether the task numbered i is executed on the virtual
machine numbered j, and if it is 1, it is executed.

5. CGA Algorithm

5.1.Algorithmic*ought. +e three genetic operations of the
genetic algorithm affect the convergence speed of the al-
gorithm. +is paper mainly considers satisfying the delay
and minimizing the total execution time, and improves the
selection operation and the crossover operation as well as the
mutation operation of the genetic algorithm to generate a
new generation of the population while simulating biological
evolution in the iterative process. +e catastrophic phe-
nomenon in the process makes the algorithm increase in-
dividual diversity without expanding the population size,
and it is easier to get rid of the optimal local trap. +e al-
gorithm flow chart is shown in Figure 1:

5.2. Basic Operations of the Algorithm

5.2.1. Encoding. In cloud computing scheduling problem,
the encoding of solutions usually uses binary coded and real
coded, where real coded is multi-to-one mapping pairing
encoding. +e task of this paper and the virtual machine are
coded by the mapping pairing method [2]. For example, if
there are M vms, that is, {v1, v2, v3, . . . , vM}, and N tasks,
that is, {Tak1,Task2,Task3, . . . ,Taskn}, the length of the
code will be N and the value of each gene will come from 1 to
M, as shown in Figure 2:

5.2.2. Fitness Function. +e fitness function represents the
degree of an individual’s fitness in the evolutionary process.
+e greater the fitness is, the easier it is to be retained in the
evolutionary process. +e fitness function will directly affect
the performance of the algorithm and whether it can achieve

the goal. In this paper, we need to consider the effect of time
delay and execution time on individual fitness.

+e difference between execution time and deadline for
each task:

(1) Initialization
(2) Task set: Ν � 1, 2, 3, . . . , N{ };
(3) Categorized task sets: GC � GL � ϕ;
(4) For each task i ∈ Ν do
(5) Calculate senTi by datai/expTi, respectively;
(6) If (Tlocal > expTi) then
(7) i⟹GC;
(8) Else if (Tlocal ≤ expTi) then
(9) i⟹GL;
(10) End if;
(11) End for;
(12) Output: GC (Sort by sensitivity in ascending order), GL.

ALGORITHM 1: +e algorithm for classifying the tasks.

Start

Variation

Optimal solution

t = G

End

t. Bestfitness = (t − 1). Bestfitness

t >= 1/2 and Cat = 0

Crossover

Choice 

t = t + 1
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Chromosome coding and initialization of parameters
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Figure 1: Algorithmic flow.
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Figure 2: Encoding.
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i∈[1,i]

ai,jECTi,j + T
i
tran − expTi. (12)

Penalty factor based on whether delay is satisfied:

punish �

0, if 
i∈[1,i]

ai,jECTi,j + Ti
tran − expTi ≤ 0,


i∈[1,i]

bai,jECTi,j + Ti
tran − expTi




, if 

i∈[1,i]

ai,jECTi,j + Ti
tran − expTi > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Because the goal is to minimize the total execution time
of the task scheduling while meeting the deadline of tasks,
the fitness function of this paper is designed as

fitness �
1

AllNTime + 
Ntsk
i�1 punish

. (14)

5.2.3. Improve Roulette Choice. +e roulette selection
method is also called the proportional selection method.+e
basic idea is that the larger the individual's adaptability is, the
easier it is to be selected.+e traditional roulette method can
select the best individual, but it cannot guarantee that the
best individual will remain to the next generation, and the
subsequent crossover operation may destroy the best indi-
vidual. +erefore, this paper combines roulette with the best
individuals to save individuals with the greatest fitness in
each generation directly to the next generation and does not
participate in the crossover operation ormutation operation.
+e remaining individuals use traditional roulette to select
the progeny population. +e probability Ps(j) of individual
selection in traditional roulette is

Ps(j) �
fitness(j)


N
i�1fitness(i)

. (15)

5.2.4. Crossover. +e crossover operation of the traditional
genetic algorithm is to select the number of individuals to
cross according to the crossover rate, to generate a crossover
operation for each of the intersecting individuals using the
random function rand(1, n), and to map the two chromo-
somes to the segments after the location point are ex-
changed. Traditional crossover operations are prone to the
situation of the high similarity of crossover fragments, at
which time the crossover meaning becomes smaller. To this
end, this paper sets a cross threshold, and only if the
threshold is exceeded, the cross is considered meaningful.
Otherwise, no crossover occurs. +e threshold size repre-
sents the proportion of similar genes in the total gene. +is
operation is mainly based on the principle of preventing
inbreeding and optimizing offspring in the process of human
evolution. In this paper, we set the threshold to 0.8 and the
crossover probability higher than 0.7 to avoid slowing down
the speed of convergence rate caused by abandoning the
cross operation because the similarity is too high. +e
specific crossover operation is shown in Figure 3:

5.2.5. Variation. A mutation operator is a very important
operation. +ere are two purposes for introducing muta-
tions into genetic algorithms: one is to make the genetic
algorithm have local random search ability. When the
genetic algorithm is close to the optimal solution neigh-
borhood through the crossover operator, the local random
search ability using the mutation operator can accelerate the
convergence to the optimal solution [30]. In this case, the
mutation probability should take a smaller value. +e
second is to enable the genetic algorithm to maintain group
diversity to prevent immature convergence. At this time, the
mutation probability should take a larger value. +e
probability of variation usually takes a small value and
generally does not exceed 0.1.

In this paper, two variability values are set. When the
number of iterations reaches 2/3, the mutation probability is
reduced by 0.02. Determine the number of individuals that
need to be mutated based on the probability of mutation,
randomly select two locations on the chromosome, and
exchange the values of the genes. +e genic value may have
not changed after the mutation operation was executed,
which is equivalent to no mutation operation, and the
variation operation is improved in order to ensure that the
variation operation can be executed even if it is already a
small probability event. If two genic values of mutation are
the same, add the first random number to 1 and let it
perform mutation operation with another gene point. If the
first random number is still the same, increment the value by
one until the value is different to ensure the mutation op-
eration (see Figure 4).

5.2.6. Catastrophe. After many generations of evolution, the
groupmay obtain a locally optimal solution. At this time, the
group implies a large amount of information related to the
local optimum, tending to premature convergence and the
possibility of jumping out by operators such as crossover
operation andmutation operation. It is possible to introduce
“catastrophe” strategy, obtain some useful global informa-
tion, and obtain a solution far away from the original locality
with a large probability so that a larger diversity can be
obtained at smaller group size. It can provide more op-
portunities to get rid of the original local optimal solution.
However, the catastrophe cannot go through evolution all
the time. We should consider avoiding the problem of
destroying the optimal solution and reoptimizing in the later
stage.
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+e genetic algorithm has the disadvantages of easy to
fall into local optimum and premature convergence [31].
Once it falls into local optimum, it will be difficult to jump
out. For this reason, we add the catastrophic strategy
mentioned in the literature [28] to this paper. By increasing
the mutation probability to stay away from the current
optimal, the solution that is far from the current optimal
solution is included in the population to jump out of the
optimal local solution. Catastrophic operation is shown in
Algorithm 2.

5.3. Task Classification and Scheduling Description

Step 1: classify all tasks from different devices according
to Algorithm 1.
Step 2: for tasks that need to be uninstalled to the cloud,
sort by sensitivity. +e initial coding is optimized
according to the computing power of virtual machine.
Step 3: chromosome coding and initialization of
parameters.
Step 4: calculate fitness.
Step 5: superposition algebras plus one.
Step 6: judge whether the optimal individual fitness of
(t − 1)th generation is equal to that of the tth gener-
ation, and if so, the catastrophe threshold is reduced by
one; otherwise, it will continue.
Step 7: perform selection operation, cross operation,
and mutation operation.
Step 8: generate the descendant population and de-
termine whether the catastrophe threshold cat is equal
to 0 (before t/2 iterations). If equal to 0, carry on the
catastrophe operation.
Step 9: if the number of iterations reaches the maxi-
mum, output; otherwise, turn to step 4.

6. Evaluation

In this experiment, for tasks that need to be processed in the
cloud, we used CloudSim 3.0 to implement the algorithms,
by adding the bindCloudletToVM method in the DAta-
centerBroker class; the CGA algorithm based on the ca-
tastrophe genetic algorithm is added to carry out the
simulation experiment. Data such as resource computing
power and task calculations are derived from data randomly
generated in MATLAB. We choose the different number of
tasks, and the experimental data of different iteration times
are analyzed and compared with the time-based differential
evolution algorithm (TDE) and simple genetic algorithm
under the same data conditions. +e TDE algorithm is based
on differential evolution (DE) task scheduling algorithm that
minimizes the completion time. +e differential evolution
algorithm is also a population-based heuristic search algo-
rithm. +ere is a great similarity between differential evo-
lution algorithm and genetic algorithm. +ey all include
mutation, crossover, and selection operations, but the
specific definition of these operations is different from the
genetic algorithm. +e experimental results are shown in
Figures 5–9.

Parameter setting: crossover probability crossover = 0.8,
maximum evolution algebra = 200, and mutation probability
is 0.03, and in order to avoid errors as much as possible, this
paper will perform ten times for each group of experiments
and finally get the total task completion time. +e experi-
mental values are taken as the average of ten experiments.

When the number of tasks is small, the optimal effect is
not obvious. However, the optimization of the algorithm is
more obvious when the number of tasks is large. But the
more tasks there are, the fewer tasks that are unloaded into
the cloud, because as the number of tasks increases, the task
takes longer to execute. With the increase of evolutionary
algebra, the proposed algorithm can converge more quickly
and save more time. Figures 5 and 6 show the changes of
total task execution time and adaptive value of CGA algo-
rithm, classical genetic algorithm, and TDE algorithm under
different iterations. It can be seen that the effect of the
classical genetic algorithm is the worst. +e CGA algorithm
uses less evolutionary algebra than other algorithms to get

Chromosome1′

Chromosome2′

1 2 5 2

1 2 5 2
1 5 4 2

2 3 4 5

2 3 4 5

2 2 4 3

2 2 4 3 1 5 4 2

Chromosome1

Chromosome2

Figure 3: Crossover.

Chromosome1:

Chromosome1′: 3 2 1 6

4

4

3

3

1 2 3 6

Figure 4: Variation.

(1) Input: Catastrophe threshold cat;
(2) cat� a;
(3) For (t� 0; t<G/2; t++)
(4) {
(5) If (t. Bestfitness� (t− 1). Bestfitness)
(6) {
(7) cat� cat− − ;
(8) }
(9) If (cat� 0)
(10) +e first third variation;
(11) Else
(12) Continue circulation;
(13) }

ALGORITHM 2: Catastrophic operation.
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better average fitness. Among them, this paper also opti-
mizes the initial population, and CGA algorithm can find the
optimal solution faster. As we all know, the solution found

by genetic algorithm may not be optimal, but the experi-
mental results show that the CGA algorithm is better than
the other two algorithms, and it is easier to jump out of the
local optimum and find the optimal solution. Figures 7 and 8
are comparisons between CGA algorithm and TDE algo-
rithm. We can see that CGA algorithm can achieve the goal
of this paper better.

According to the experimental results, it can be seen from
Figure 9 that the delay satisfaction rate of the experiment is
above 95%, which can meet the demand. And the perfor-
mance of CGA algorithm is better than the TDE algorithm. In
addition, the CGA algorithm is superior to the TDE algorithm
in the task completion time and convergence speed of the
evolutionary process, and its convergence speed is signifi-
cantly better than the TDE algorithm and the traditional
genetic algorithm. As the number of iterations increases, the
CGA algorithm can find the optimal solution better andmake
the convergence rate faster. +e mutation strategy called
cataclysm policy is designed to help the population jump out
of the local extreme points [27]. It can be seen that the
catastrophic strategy in this paper does not slow down the
convergence rate and destroy the optimal direction. Instead, it
can help the operation to continuously optimize the pop-
ulation and is not easy to fall into the local optimum.

7. Conclusion and Future Work

+e task scheduling in edge-cloud collaborative scenario is
considered to be one of the critical challenges. Whether the
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task is executed in the cloud and how it is scheduled in the
cloud is an important issue. In the past, many heuristics and
metaheuristic task scheduling strategies have been used in
cloud computing or edge computing. Genetic algorithms
have unique advantages that traditional methods do not
have in solving complex problems such as big space, non-
linearity, and global optimization. +ey have been widely
used in more and more fields. In this paper, we proposed a
task scheduling strategy under deadline constraint, where
tasks on edge devices could select the execution place in-
cluding cloud and local devices. And the goal is to minimize
the execution time of all tasks. +e CGA algorithm as an
alternative method to solve the task scheduling problem; this
algorithm adds cataclysm strategy to it. We have considered
the constraint of time [5] and optimized the task scheduling.
+e algorithm CGA was inspired by the behavior of the
extinction in the Ice Age, and it is used as a global opti-
mization algorithm [10].

+e CGA algorithm we proposed was simulated in the
CloudSim environment, and the main objective was to
minimize the execution time and meet delay. +e results are
compared with the results of existing heuristic methods such
as the traditional genetic algorithm (GA) and the time-based
differential evolution algorithm (TDE). From the experi-
mental results, we can also get the conclusion that the
proposed CGA can efficiently schedule the tasks to the VM
and achieve our goals.

In the future, we will consider improving the algorithm
under conditions that are closer to the actual environment so
that the algorithm can be applied to dynamic and real-time
task scheduling in edge-cloud collaboration. Besides, we
want to build a multi-objective version of CGA for opti-
mizing the task scheduling problem in the cloud. Study of
workflow scheduling using CGA is another future investi-
gation. And we can also mine or forecast its potential re-
lationships [32–34]. In addition, the method of task
scheduling can consider many other parameters, such as the
use of memory, peak of the demand, and overloads [10].
Besides, we can combine the Markov chain with the parallel
computing framework and apply it in our model [35, 36].

Data Availability

Because this paper only deals with time and static tasks, we
used randomly generated data to export it as a dataset for the
length of tasks.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+e authors would like to thank International Networks
Service and Bio-Computing Innovation Team from the
college of Computer Science and Technology in China
University of Petroleum (East China) for their discussion
and technical support. +is study was supported by the

National Natural Science Foundation of China (nos.
61572522, 61873281, and 61572523).

References

[1] M. Satyanarayanan, “Edge computing,” Computer, vol. 50,
no. 10, pp. 36–38, 2017.

[2] Y. Mao, C. You, J. Zhang et al., “Mobile edge computing:
survey and research outlook,” 2017, http://arxiv.org/abs/1701.
01090.

[3] Y. Yu, “Mobile edge computing towards 5G: vision, recent
progress, and open challenges,” China Communications,
vol. 13, no. 2, pp. 89–99, 2017.

[4] G. Ananthanarayanan, P. Bahl, P. Bodik et al., “Real-time
video analytics: the killer app for edge computing,” Computer,
vol. 50, no. 10, pp. 58–67, 2017.

[5] J. Liu, Y. Mao, J. Zhang et al., “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in
Proceedings of the 2016 IEEE International Symposium on
Information *eory (ISIT), Barcelona, Spain, July 2016.

[6] Z. Ke, Y. Mao, S. Leng et al., “Optimal delay constrained
offloading for vehicular edge computing networks,” in Pro-
ceedings of the 2017 IEEE International Conference on Com-
munications (ICC), Paris, France, May 2017.

[7] Y. Yin, W. Xu, Y. Xu, Li He, and L. Yu, “Collaborative qos
prediction for mobile service with data filtering and slopeone
model,” Mobile Information Systems, vol. 2017, Article ID
7356213, 14 pages, 2017.

[8] Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, “Network location-
aware service recommendation with random walk in cyber-
physical systems,” Sensors, vol. 17, no. 9, p. 2059, 2017.

[9] T. Jena and J. R. Mohanty, “Disaster recovery services in
intercloud using genetic algorithm load balancer,” Interna-
tional Journal of Electrical and Computer Engineering, vol. 6,
no. 4, p. 1828, 2016.

[10] M. A. Elaziz, S. Xiong, K. P. N. Jayasena, and L. Li, “Task
scheduling in cloud computing based on hybrid moth search
algorithm and differential evolution,” Knowledge-Based Sys-
tems, vol. 169, pp. 39–52, 2019.

[11] Y. Xu, J. K. Li, and K. Li, “A genetic algorithm for task
scheduling on heterogeneous computing systems using
multiple priority queues,” Information Sciences, vol. 270,
pp. 255–287, 2014.

[12] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “Amulti-objective
ant colony system algorithm for virtual machine placement in
cloud computing,” Journal of Computer and System Sciences,
vol. 79, no. 8, pp. 1230–1242, 2013.

[13] J.-F. Li and J. Peng, “Task scheduling algorithm based on
improved genetic algorithm in cloud computing environ-
ment,” Jisuanji Yingyong/Journal of Computer Applications,
vol. 31, no. 1, p. 184186, 2011.

[14] J. Xue, L. Li, S. Zhao, and L. Jiao, “A study of task scheduling
based on differential evolution algorithm in cloud comput-
ing,” in Proceedings of the International Conference on
Computational Intelligence Communication Networks, Bho-
pal, India, November 2014.

[15] C. Zhu and J. Ni, “Cloud model-based differential evolution
algorithm for optimization problems,” in Proceedings of the
Sixth International Conference on Internet Computing for
Science Engineering, Henan, China, April 2012.

[16] Z. Ke, Y. Mao, S. Leng et al., “Energy-efficient offloading for
mobile edge computing in 5G heterogeneous networks,” IEEE
Access, vol. 4, no. 99, pp. 5896–5907, 2016.

8 Scientific Programming

http://arxiv.org/abs/1701.01090
http://arxiv.org/abs/1701.01090


[17] B. Keshanchi, A. Souri, and N. J. Navimipour, “An improved
genetic algorithm for task scheduling in the cloud environ-
ments using the priority queues: formal verification, simu-
lation, and statistical testing,” Journal of Systems and Software,
vol. 124, pp. 1–21, 2017.

[18] M. Akbari, R. Hassan, and S. H. Alizadeh, “An enhanced
genetic algorithm with new operators for task scheduling in
heterogeneous computing systems,” Engineering Applications
of Artificial Intelligence, vol. 61, pp. 35–46, 2017.

[19] K. Amin and A. Ghaffari, “Hybrid task scheduling method for
cloud computing by genetic and de algorithms,” Wireless
Personal Communications, vol. 97, no. 4, pp. 6301–6323, 2017.

[20] Y. Xiong, S. Huang, M. Wu, J. She, and K. Jiang, “A johnson’-
rule- based genetic algorithm for two-stage-task scheduling
problem in data-centers of cloud computing,” IEEE Trans-
actions on Cloud Computing, vol. 7, no. 3, pp. 597–610, 2017.

[21] T. Goyal and A. Agrawal, “Host scheduling algorithm using
genetic algorithm in cloud computing environment,” Inter-
national Journal of Advances in Engineering & Technology,
vol. 1, no. 1, pp. 7–12, 2013.

[22] P. Kumar and A. Verma, “Independent task scheduling in
cloud computing by improved genetic algorithm,” Interna-
tional Journal of Advanced Research in Computer Science and
Software Engineering, vol. 2, no. 5, pp. 111–114, 2012.

[23] H. Aziza and S. Krichen, “Bi-objective decision support
system for task-scheduling based on genetic algorithm in
cloud computing,” Computing, vol. 100, no. 2, pp. 65–91, 2018.

[24] L. Xin-Rong and G. Yang, “Application of catastrophic
adaptive genetic algorithm to reactive power optimization of
power system,” in Proceedings of the 2010 International
Conference on Artificial Intelligence and Computational In-
telligence, vol. 2, pp. 450–454, IEEE, Sanya, China, October
2010.

[25] M. Wang, B. Li, Z. Wang, and X. Xie, “An optimization
strategy for evolutionary testing based on cataclysm,” in
Proceedings of the Computer Software Applications Coirference
Workshops, Seoul, South Korea, July 2010.

[26] Z. X. Cai, “Application of grey theory in forecasting the
diaphania pyloalis cataclysm,” Science of Sericulture, vol. 35,
pp. 869–871, 2009.

[27] S. X. Lv, Yu R. Zeng, and L. Wang, “An effective fruit fly
optimization algorithm with hybrid information exchange
and its applications,” International Journal of Machine
Learning Cybernetics, vol. 9, no. 10, p. 16231648, 2018.

[28] S. C. Xiao, S. D. Sun, and H. Guo, “Cataclysm genetic al-
gorithm for solving vechicle scheduling problem with time
windows,” Application Research of Computers, vol. 31, no. 12,
2014.

[29] Z. Wang and Y. Chen, “Binary decision diagram variable
ordering based on catastrophe genetic algorithm,” Computer
Engineering Applications, vol. 51, no. 3, pp. 55–60, 2015.

[30] A. W. Mohamed, H. Z. Sabry, and T. Abd-Elaziz, “Real pa-
rameter optimization by an effective differential evolution
algorithm,” Egyptian Informatics Journal, vol. 14, no. 1,
pp. 37–53, 2013.

[31] K. Chandrasekaran and U. Divakarla, Load Balancing of
Virtual Machine Resources in Cloud Using Genetic Algorithm,
National Institute of Technology Karnataka, Surath Ned,
Mangalore, Karnataka, 2013.

[32] H. Gao, W. Huang, X. Yang, Y. Duan, and Y. Yin, “Toward
service selection for workflow reconfiguration: an interface-
based computing solution,” Future Generation Computer
Systems, vol. 87, pp. 298–311, 2018.

[33] H. Gao, D. Chu, Y. Duan, and Y. Yin, “Probabilistic model
checking-based service selection method for business process
modeling,” International Journal of Software Engineering and
Knowledge Engineering, vol. 27, no. 06, pp. 897–923, 2017.

[34] Y. Yin, L. Chen, y. xu, and J. Wan, “Location-aware service
recommendation with enhanced probabilistic matrix factor-
ization,” IEEE Access, vol. 6, pp. 62815–62825, 2018.

[35] S. Pang, T. Ding, A. Rodrfguez-Patdn, T. Song, and Z. Phen,
“A parallel bioinspired framework for numerical calculations
using enzymatic p system with an enzymatic environment,”
IEEE Access, vol. 6, pp. 65548–65556, 2018.

[36] H. Gao, S. Mao, W. Huang, and X. Yang, “applying proba-
bilistic model checking to financial production risk evaluation
and control: a case study of Alibaba’s Yu’e Bao,” IEEE
Transactions on Computational Social Systems, vol. 5, no. 3,
pp. 785–795, 2018.

Scientific Programming 9


