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In this paper, a bike repositioning problem with stochastic demand is studied.*e problem is formulated as a two-stage stochastic
programming model to optimize the routing and loading/unloading decisions of the repositioning truck at each station and depot
under stochastic demands. *e goal of the model is to minimize the expected total sum of the transportation costs, the expected
penalty costs at all stations, and the holding cost of the depot. A simulated annealing algorithm is developed to solve the model.
Numerical experiments are conducted on a set of instances from 20 to 90 stations to demonstrate the effectiveness of the solution
algorithm and the accuracy of the proposed two-stage stochastic model.

1. Introduction

Bike sharing system (BSS) as a means of sustainable and
carbon-free transportation can effectively solve the “the first
and last mile” problem of urban public transportation. BSS
has gained increasing popularity in recent years due to the
fact that it not only reduces urban pollution emissions and
traffic congestion but also is considered as an effective way to
improve the health of users [1]. A BSS consists of a depot and
several stations, which scatter in different streets of the city.
*e success of a BSS depends on the availability of bikes. Due
to the rental cycling of the user, there are often unbalanced
situations at some stations of the system, i.e., there are either
surplus or not enough bikes at these stations. In other words,
either when there are surplus bikes in a station, they will be
wasted as no users will need them, or in some stations where
there are not enough bikes, a user’s demand cannot be met.
To ensure the availability of bikes at all stations in the system,
the BSS needs to employ redistribution trucks to transfer
bikes from stations to stations, to balance the number of
bikes according to the demand in each station. *is problem

is commonly defined as the bike repositioning problem
(BRP) in the BSS.*emain objective of the BRP is to balance
the supply and demand of bikes across stations as a mean to
improve user satisfaction, while in the meantime, to reduce
the transportation cost of redistribution trucks as much as
possible. According to the classification of Berbeglia et al.
[2], the bike repositioning problem is essentially a many-to-
many pickup and delivery problem, and it is first proven to
be an NP-hard problem by Benchimol et al. [3].

Typically, existing work assumes the redistribution de-
mand at each station in the BSS is deterministic input pa-
rameters [4–21]. *at is to say, these models heavily rely on
that the loading and unloading quantities of redistribution
trucks at each station be given in advance. However, this
strong assumption generally could not hold in real-world
conditions where the demand in urban public transportation
commonly contains uncertainty and randomness [22]. As
pointed out by Fricker and Gast [23], the effect of the un-
certainty in user demand should not be neglected when
studying the performance of a BSS. *e authors have also
demonstrated that incorporating knowledge of future
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demands can lead to more accurate and robust decisions in
repositioning.

*e other challenge that might not have received enough
attention in BRP is the consideration of the holding cost of
the depot. In the BRP, bikes transferred from a bike surplus
station to another bike deficient station is required to achieve
the balance of supply and demand at all bike stations in the
BSS to satisfy the user’s demand. *is perfect balance of
supply and demand after repositioning operation must first
ensure the internal balance in the BSS, i.e., the number of
bikes at bike surplus stations should be equal to the number
of bikes at bike deficient stations. In the actual operation
process, some bikes might be lost or damaged after they are
put into use. *is happens quite often and will likely lead to
the inherent imbalance between supply and demand in the
BSS. For the bikes which cannot be balanced among the
stations in the BSS, they are either picked up from or de-
livered back to the depot at the cost of increasing holding
cost of the depot. Some BRP models have simply assumed
the capacity of the depot is sufficient. As such, some bikes
can be picked up from the depot to meet the demand of bike
deficient stations, and/or some bikes at bike surplus stations
can be brought back to the depot, in order to achieve a
perfect balance between supply and demand at all stations in
the BSS [4–7]. Unfortunately, these existing works have not
yet considered the holding cost of the depot in the BRP
model.

Stochastic programming is a technology to design
mathematical programming models with stochastic de-
mand, which helps decision makers to make more accurate
decisions when the effect of the randomness of demand
cannot be ignored. Although the optimization results ob-
tained from stochastic programming cannot satisfy all future
scenarios, they help to achieve better-than-average perfor-
mance in dealing with stochastic demand.

To address the abovementioned concerns, in this pa-
per, we take into account the stochastic nature of the BRP
by capturing and modeling the uncertainty of redistri-
bution demand within the system using stochastic pro-
gramming. In particular, we propose a two-stage stochastic
programming model for the bike repositioning problem
with stochastic demand (BRPSD). In the first stage, we
determine the routing decision, where “here-and-now”
decision must be made before the realization of redistri-
bution demand is known. *en, moving to the second
stage, we further determine the loading/unloading deci-
sions at each station and depot, where “wait-and-see”
decisions are made taking future uncertainty into account.
We incorporate the holding cost into the model such that
the overall objective of the BRPSD is to determine the best
routes of the repositioning truck and the optimal loading/
unloading quantities at each station and depot, such that
the expected total sum of the transportation costs, the
penalty costs at all stations, and holding cost of the depot
are minimized.

In this paper, stochastic redistribution demands are
modeled by a set of discrete scenarios, and a predefined
probability of occurrence is given for each scenario. *e
main contributions of this paper are summarized as follows:

(1) A general scenario-based two-stage stochastic pro-
gramming model for the bike repositioning problem
with stochastic demands (BRPSD) is introduced.*e
proposed model takes the inventory holding cost of
the depot into account in contexts where the loading
and unloading activities are allowed in the depot.

(2) An efficient metaheuristic, namely, simulated
annealing algorithm is proposed to solve the defined
BRPSD.

(3) *e necessity of considering redistribution demand
as a stochastic demand in the BRPSD is further
discussed with numerical experiments.

*e remainder of this paper is organized as follows. We
review the relevant literature in Section 2 and describe the
mathematical formulation of the problem in Section 3. In
section 4, we present the improved simulated annealing
algorithm to solve the model. *en, we present experimental
results in Section 5 and conclude this paper with discussions
on potential future research in Section 6.

2. Literature Review

To the best of our knowledge, Benchimol et al. first formalise
and address the BRP in [3]. Since then, various models and
solution algorithms for the BRP have been discussed over the
last decades.

We briefly review studies that are related to this paper,
including heuristic and metaheuristic solution methods, for
solving the deterministic BRP and models for the BRP with
stochastic demands.

2.1. Heuristic Solution Algorithm for the Deterministic BRP.
According to Pal and Zhang [8], the BRP can be categorized
into complete and partial repositioning problems according
to the rigor of a repositioning that needs to be performed. In
the former problem, the constraint for achieving a perfect
balance among stations is considered as a hard constraint,
and in the latter problem, it is a soft constraint.

In the complete repositioning problem, the optimal
inventory of each station must be met after the reposi-
tioning operation. An iterated local search algorithm was
first applied by Cruz et al. [9] to solve the single-vehicle
BRP and then used by Bulhões et al. [10] to solve the
multivehicle version of the BRP. Later, Pal and Zhang [8]
modeled a static BRP in a free-floating bike sharing system
and presented a hybrid nested large neighborhood search
with a variable neighborhood descent algorithm to tackle
the BRP. Dell’Amico et al. [11] developed a destroy and
repair metaheuristic algorithm, which makes use of ef-
fective constructive heuristic and several local search
procedures together for solving the BRP. Overall, the
objective of the complete repositioning problem is mainly
to pursue the minimum transportation cost by determining
routing decisions. It has been a challenge to apply such
methods in real-world systems effectively as there are other
equally important criteria that have been neglected in these
models.
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In the partial repositioning problem, the ideal inventory
of each station is not necessarily achieved after the repo-
sitioning operation. Nonetheless, the goal of these problems
is not only to pursue the minimum transportation cost by
determining routing decisions but also to minimize user
dissatisfaction by determining loading and unloading de-
cisions at each station. In the literature, a 3-step math
heuristic for the multivehicle BRP is proposed by Forma
et al. [6]. In their approach, stations are firstly clustered by a
saving heuristic. *en, the routes through the clusters are
constructed. Finally, the routing sequence through the
stations in each cluster and the sequence through the clusters
are determined. *e last two steps are formulated as a mixed
integer linear model solving by CPLEX. You [12] proposes a
two-phase heuristic for the multivehicle BRP under a
minimum service requirement over planning. In his pro-
posed model, each stage represents a decision process. In the
first phase, loading and unloading decisions for all stations
for each time slot are developed by a linear programming
model. *en, in the second phase, routing decisions are
developed by an iterative approach through two parameter
sensitive mathematical models.

In addition to the phased heuristic algorithm, many
heuristics and metaheuristic solution methods have been
presented to solve the deterministic BRP, to name a few, tabu
search [5,13], genetic algorithm [14], chemical reaction
optimization algorithm [15,16], artificial bee colony algo-
rithm [17], constraint programming [18,19], variable
neighborhood search [20], iterated local search [21], large
neighborhood search algorithm [7], etc. Nonetheless, the
practical applications of these existing approaches remain
difficult and often bring in unexpected results. *is is be-
cause uncertainty about user demands commonly exists in
real-world BRPs; however, it is not yet captured by such
deterministic models.

2.2. 4e BRP with Stochastic Demands. To the best of our
knowledge, limited literature considers stochastic demands
in the BRP. Two-stage stochastic programming with re-
course models have been successfully used in solving bike
repositioning problems as they allow the modeler to rep-
resent routing plans and loading and unloading activities
together via first- and second-stage decision variables.
Dell’Amico et al. [24] appear to be the pioneer paper that
proposed a scenario-based two-stage stochastic model for
bike repositioning problem, considering redistribution de-
mands of stations as random variables. *e authors provide
five exact procedures as well as a heuristic algorithm that
combines correlation-based constructive procedures with
VND local search approach to solve their BRPSD. *e
heuristic algorithm only considers transportation costs while
evaluating the local search move and only accept a feasible
solution where the feasibility of the local search move is
checked by an efficient strategy.

However, the BRPSD differs from our problem in the
following three aspects. First, the objective of this model is to
minimize the expected total travel distance of the truck and
the penalty costs at all stations, while our problemminimizes

the expected total travel cost of the truck, the penalty costs at
all stations, and the handling cost at the depot. Second, in
our problem, we measure the local search move by using not
only transportation costs but also the expected total costs.
*ird, we develop a method to quickly determine the feasible
loading and unloading quantities at all stations and depot
under any given route.*erefore, it is not necessary to check
the feasibility of the solution in the local search.

*ere are also a few recent works that study a variation of
the stochastic BRP where the stochastic demand is defined
by origin-destination (OD) pair rather than the redistri-
bution of stations. For instance, Maggioni et al. [25] propose
two-stage stochastic programming models to determine the
optimal number of bikes to assign to each station and the
optimal number of transshipped bikes from one station to
another station, respectively. *ey use AMPL and CPLEX to
solve the model. Yan et al. [26] apply the time-space network
model to determine the optimal locations of bike stations,
bike fleet allocation, and bike routing. *eir solution al-
gorithm is based on a threshold-accepting-based heuristic.

From the abovementioned review of literature, we can
see that the current scholars have proposed a rich heuristic
algorithm to solve the deterministic BRP. Nonetheless, to the
best of our knowledge, there is no work yet that effectively
employs a metaheuristic algorithm to solve the BRP with
stochastic demand. *e study of this paper fills this theo-
retical gap.

3. Mathematical Formulation

*e bike sharing system studied in this paper comprises a
depot and a set of stations. Each station has a redistribution
demand for each scenario, indicating the difference between
the current inventory level and the optimal inventory level
for each scenario. For a certain scenario, if the redistribution
demand at a station is positive, the station is defined as a
pickup station; if the redistribution demand at a station is
negative, then the station is defined as a delivery station and
should be supplied with bikes from pickup stations; if the
redistribution demand at a station is equal to 0, then the
station is called a balanced station. Balanced stations must
also be visited.

We consider that only a single truck with a given capacity
is available in the BSS. *e truck collects bikes from pickup
stations and transports them to delivery stations. Some bikes
can be picked up from or delivered back to the depot, and
each station is allowed to be visited only once. In addition,
similar to Liu et al. [16], bikes are assumed to be parked
anywhere in the BSS; therefore, the station capacity con-
straint is removed.

*e decisions regarding the loading and unloading
quantities at all stations and the depot in each scenario are
made independently, according to the corresponding de-
mand scenario. However, the routing decisions of the truck
have to take into consideration all possible demand sce-
narios. *is means that routing decisions are the same for all
scenarios. Because the routing decisions to all scenarios are
the same but the loading and unloading decisions vary in
each scenario; there may exist a shortage or excess of bikes
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for each station in each scenario. In this context, the fol-
lowing two-stage bike repositioning problem with stochastic
demands (BRPSD) naturally arises. In the first stage, the
BRPSD aims to construct a route for the truck that starts
from and ends at the depot where each station is visited only
once. In the second stage, the BRPSD aims to determine the
optimal loading and unloading quantities at all stations and
the depot to ensure the feasibility of the solution after the
given route in the first stage.*e objective of the BRPSD is to
minimize the sum of the travel costs for the truck (first-stage
objective function) and the expected total penalty costs at all
stations and holding costs at the depot (second-stage ob-
jective function).

3.1. Two-Stage Stochastic ProgrammingModel. Our objective
is to determine the sequence of all stations to visit to
minimize the transportation cost, as well as the loading/
unloading decisions in each scenario to minimize the total
expected penalty costs and holding costs. We formulate the
problem as a two-stage stochastic programming problem.
Given the discrete probability distribution of the scenario
occurrences, the formulation for the SPBSD addressed in
this study is as follows:
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*e objective function (1) is defined as the weighted sum
of the transportation costs and the expected penalty costs at
stations and holding costs at the depot over all scenarios.
Constraint (2) states that the truck departs from the depot
only once and returns to the depot. Constraint (3) ensures
that the truck can visit a station only once. Constraint (4)
ensures that if the truck visits a station, it must leave that
station. Constraint (5) is the subtour elimination constraint
[27]. Constraint (6) ensures that the load on the vehicle
cannot be greater than the truck capacity. Constraint (7)
requires that the number of bikes loaded onto or unloaded
from the truck at a given station equals the difference be-
tween the truck load before and after the station visits.
Constraint (8) ensures the auxiliary variable is nonnegative.
Constraints (9)-(10) ensure that the excess/slack quantities
of bikes at station and the number of bikes on the truck are
nonnegative integers. Constraint (11) defines xij to be a
binary variable.

4. Solution Algorithm

When the number of scenarios equals 1, the studied BRPSD
reduces to the classical deterministic bike repositioning
problems, an NP-hard combinatorial optimization problem.
We employ simulated annealing (SA) to solve the studied
BRPSD. SA is a metaheuristic algorithm based on local
search, which can avoid falling into local optimization by
accepting poor solutions with less probability in the process
of iteration. It has been successfully applied to a variety of
deterministic combinatorial problems [28,29] and stochastic
combinatorial problems [30,31].

Our proposed algorithm, called SABRPSD, consists of two
phases: constructing the initial solution and improving the
initial solution by neighborhood search mechanism. *e
structure of this section is organized as follows. In Section
4.1, we propose the heuristic method to generate an initial
solution. During initialization, two main decisions must be
made: the routing decision (in Section 4.1.1) and the loading
and unloading decision (i.e., inventory decision) (in Section
4.1.2). *en, in Section 4.2, we describe in detail of the local
search operators used in this SABRPSD, namely, Swap, Re-
locate, and 2-opt. After that the main algorithm flow based
on the SABRPSD framework is presented in Section 4.3.

4.1. Construct Initial Solution. Since the BRPSD is a two-
stage decision-making process, the decision-making in this
paper is divided into two stages: routing decisions are de-
termined in the first stage, and the loading and unloading
decisions are determined in the second stage. *e process of
constructing the initial solution is as follows, which is
roughly divided into two main phases.

4.1.1. Construct the Initial Route for all Scenarios. Since the
route in all scenarios is the same, the greedy heuristic al-
gorithm is used to quickly construct the initial route by
ignoring the stochastic redistribution demand. In this work,
the nearest principle is used to construct the initial route by
inserting stations one by one.
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4.1.2. Determine Loading and Unloading Decision for Each
Scenario. For a given scenarioξ and the corresponding re-
distribution demand d

ξ
i at station i in the scenario, the

Second-Stage-Opt procedure uses a simple principle to
quickly generate the initial feasible loading and unloading
decision and then uses a reoptimize heuristic operator to
improve the initial loading and unloading decision. *e
details of the Second-Stage-Opt procedure are given as
follows.

Step 1: determine the initial loading and unloading
quantities of all stations and the depot. *e loading and
unloading quantities at each station are defined as the
corresponding redistribution demand. Because the
demand of the depot is 0, the loading and unloading
quantities are also defined as 0. As a result, the initial
solution of the BRPSD is generated, including two-
stage decisions, namely, the routing decision and the
loading and unloading decision. It is obvious that the
initial solution is often not feasible.
Step 2: adjust the loading and unloading quantities of
some stations to achieve a feasible initial solution. If the
number of bikes on the truck when it travels directly
from station i to station j in scenarioξy

ξ
ij >Q ory

ξ
ij < 0,

then the initial solution is not feasible. In this case, the
loading and unloading quantity of station i should be
adjusted. Setc � y

ξ
ij − Q, if y

ξ
ij >Q or c � y

ξ
ij, if y

ξ
ij < 0,

then the loading and unloading quantity of station i is
adjusted to subtract cfrom the original quantity.
Step 3 (reoptimize): the basic idea of the reoptimize
operator is to optimize the solution by a heuristic
method that adjusts the loading and unloading
quantities between stations and the depot [5,7]. In this
paper, some bikes can be collected from the depot to
meet the delivery demands of some stations, and also
some bikes collected from some stations can be de-
livered to the depot at the end of the repositioning. In
this procedure, there are two cases. In the first case, the
truck picks up extra bikes when it starts from the depot
and drops them off at some stations. In the second case,
the truck picks up more bikes from some stations and
drops them off when it ends at the depot.

4.2. Neighborhood Structure. In this paper, the local search
operator aims at routing decisions. *ree kinds of classical
operators Swap move, Relocate move, and 2-opt move are
used. *ese operators are also often used in other BRP
problems. Each new neighborhood solution is generated by
these three moves with equal probability. Note that, after a
local search operator is executed, the new solution needs to
be improved by Second-Stage-Opt procedure to obtain the
second-stage decision.

Swap-N1: randomly select two stations from the route
and then exchange them
Relocate-N2: randomly select one station, delete it from
the current route, and then insert it into another
position

2-Opt-N3: randomly select two stations, exchange the
positions of the two stations, and change the orien-
tation of the route between the two stations

4.3. 4e Proposed SABRPSD. Algorithm 1 provides the
pseudocodes of the SABRPSD. Parameter T0 denotes the
initial temperature; TE is the final temperature; α is the
coefficient used to control the cooling; Iiter indicates the
number of generated new solutions under a certain tem-
perature; and Maxiter is the max number of the accepted new
solutions under a certain temperature. In this section, we use
S0 and Sbest to denote the initial solution and the best so-
lution obtained so far, respectively. *e best objective value
F(Sbest) is set to be the objective function value of the best
solution Sbest.

As shown in Algorithm 1, in the inner loop of the
SABRPSD algorithm, a random new neighborhood solution
Snew is initially generated by Local search procedure to
improve the first-stage decision and then followed by Sec-
ond-Stage-Opt procedure to generate the second-stage de-
cision. *e stopping criteria for the inner loop are either it
has generated Iiter new solutions or accepted Maxiter new
solution under the current temperature T. When the current
temperature T decreases to TE, the SABRPSD algorithm
terminates.

5. Numerical Examples

In this section, numerical examples are conducted to ex-
amine the validity and efficiency of the proposed model and
solving algorithm. In addition, the necessity of considering
stochastic demands is examined by analyzing the expected
value of perfect information (EVPI) and the value of the
stochastic solution (VSS).

In this study, we consider the instances as in [24] to
conduct the numerical experiments (the instances are
available at http://www.or.unimore.it/site/home/online-
resources). *e size of the instances ranges from 20 to 90
stations.*ere are a total of 20 instances and 30 scenarios for
each instance. In any instance, the first station is chosen to be
the depot. To better analyze the impact of relevant pa-
rameters on the solution of the stochastic model, for a given
set N0, station i and station j belong the set N0, and we
redefine the parameter transportation time tij as tij � tij/min
{tij}.

*e SABRPSD was coded inMatlab, and all computational
experiments were carried out on a computer with an Intel
Core i5-4590 CPU @ 3.30GHz and 4GB RAM. Each in-
stance was run 10 times, the best and average of the solu-
tions, and the average computing time of 10 runs were used
to evaluate the performance of the algorithm solution.

*e SABRPSD proposed in this study relies on five pa-
rameters, namely, the initial temperature T0; the final
temperature TE; the coefficient used to control the cooling α;
the number of generated solutions under a certain tem-
perature Iiter; and the number of accepted solutions under a
certain temperature Maxiter. After some preliminary ex-
periments, the results from the algorithm were obtained by
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setting T0 � 20, TE � 0.1, α� 0.97, Iiter � 3∗ |N0|, and
Maxiter � |N0|.

5.1. 4e Performance Comparison between Lingo and SA
Algorithm. In terms of the quality of the solution and the
calculation efficiency, Tables 1–4 show the comparison
results obtained by Lingo and SABRPSD under different
truck capacity Q, the holding cost Ch, and the number of
stations. *e CPU (in seconds) indicates the average
computing time of the SABRPSD or the computing time for
Lingo, respectively. GapBest (%) and GapAvg (%) indicate
the performance of the SABRP relative to that of Lingo
based on the best and average objective values, respectively.
When |N0| ≥ 50, Lingo is not able to obtain any feasible
solutions for the problems, and thus, the results are not
shown in the tables. It also generally fails to obtain any
global optimal solutions within 3600 seconds even for
small-size problems (with four exceptions for the results
obtained under instance Washington (20)2). From
Tables 1–4, we can see that SABRPSD is significantly faster
than Lingo in all instances, i.e., it has better time efficiency
to solve the BRPSD compared to Lingo. For the various
sizes of problems from small to large, the average com-
puting time of the SABRPSD varies from 66.14 s to 70.22 s.

As shown in Tables 1–4, all of the values of GapBest and
GapAvg are negative. *is implies that the SABRPSD performs
better than Lingo. *e absolute values of the average GapBest
and GapAvg values obtained by the SABRPSD for the tests with
Q� 20 are larger than those with Q� 10. As the capacity of
the repositioning truck increases, the objective function
value decreases. *is may be explained by the fact that if the

truck capacity increases, the truck can load/unload more
bikes at one station, resulting in an expansion of the solution
space. Overall, we can draw the conclusion that the proposed
SABRPSD can obtain better feasible optimal solutions much
faster than Lingo.

5.2. 4e Necessity of Considering Demand as a Stochastic
Parameter. To evaluate the performance of the stochastic
model we proposed in this paper, we use the two concepts of
the evaluation approach: the expected value of perfect in-
formation (EVPI) and the value of the stochastic solution
(VSS) [32–34]. EVPI measures the maximum amount a
decision maker would be ready to pay in return for perfect
information about the future, and VSS measures the amount
of cost saving when the decision maker uses expected values
of stochastic parameters instead of stochastic parameters in
the model (the amount of cost due to ignoring the uncer-
tainty). EVPI is defined as the difference between the wait-
and-see solution (WS) and the here-and-now solution (HN).
In the EVPI, the WS solution is the expected value of the
foresight. We obtain the value by averaging the results of
each stochastic scenario. *e HN solution is the objective
value of this two-stage stochastic model. VSS is defined as
the difference between the expected results of using the
expected value problem solution (EEV) and the here-and-
now solution. In the VSS, the value of EEV is obtained by
inputting the optimal solution of the optimization problem
associated with the mean value of stochastic demands into
the two-stage stochastic model. *e gaps GapVSS and
GapEVPI for VSS and EVPI are calculated by VSS/HN and
EVPI/WS, respectively.

Obtain the initial solution S0.
Set the parameter for the simulated annealing, T0, TE, α, Iiter, Maxiter
Set Sbest⟵ S0; Scurrent⟵ S0; T⟵T0.
While T≥TEdo
m⟵ 0; n⟵ 0;
While m≤ Iiter ＆ n≤Maxiter do
S⟵ Local search (Scurrent, Nk);
Snew⟵ Second-Stage-Opt (S);
Δ⟵ F(Snew)− F(Scurrent);

If Δ≤ 0 then
Scurrent⟵ Snew, n⟵ n+ 1;
If F(Scurrent)≤ F(Sbest) then

Sbest⟵ Scurrent;
end

else
If e−Δ/T ≥ random then

Scurrent⟵ Snew, n⟵ n+ 1;
end

end
m⟵m+ 1;
end
T⟵ α ⃞T;

end
Return: Sbest

ALGORITHM 1: SABRPSD.
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*e test instance Chicago 20(1) used for explaining the
total costs of WS, HN, EEV, EVPI, and VSS is a small-size
instance consisting of 20 stations. We set the truck capacity
Q� 10, Ch � 1, Cd � 1, and Ct � 1.

In this test instance, the total costs can be solved by the
SABRPSD as follows: WS� 145.31, HN� 153.40, and
EEV� 161.31. *en, calculate VSS�EEV−HN� 7.90,
EVPI�HN−WS� 8.09, GapVSS� 5.15%, and GapEVPI� 5.57%.
Both values of EVPI and VSS lead to the conclusion that

managers must pay 5.57%more of the total cost of the stochastic
solutions to obtain the perfect redistribution demand infor-
mation about the future. Ignoring the uncertainty will let
managers in a situation where they have a risk to pay at least
5.15% higher if they only focus on a scenario only (deterministic
solutions).

*e results of the sensitivity analysis on GapVSS and
GapEVPI for the truck capacity Q, the holding cost Ch, the
penalty cost Cd, and the travel cost Ct are explained in the

Table 2: Comparison of the results between Lingo and SABRPSD (Q� 10 and Ch � 1).

Instance
Lingo SABRPSD GapBest (%) GapAvg (%)

Optimal value CPU Best value Average value CPU
Washington (20)1 668.94 3600 662.46 662.50 12.63 −0.97 −0.96
Washington (20)2 576.79 663 576.79 576.79 24.63 0.00 0.00
Chicago (20)1 164.14 3600 164.14 164.14 19.19 0.00 0.00
Chicago (20)2 136.83 3600 135.19 135.22 16.13 −1.20 −1.17
Washington (30)1 447.37 3600 393.75 393.75 34.19 −11.99 −11.99
Washington (30)2 501.14 3600 414.52 417.24 28.02 −17.28 −16.74
Chicago (30)1 300.48 3600 299.42 300.05 34.42 −0.35 −0.14
Chicago (30)2 299.76 3600 242.00 242.69 33.23 −19.27 −19.04
Washington (40)1 736.88 3600 688.63 692.12 60.31 −6.55 −6.07
Washington (40)2 911.88 3600 855.64 863.20 38.21 −6.17 −5.34
Chicago (40)1 576.94 3600 449.41 449.41 47.47 −22.10 −22.10
Chicago (40)2 538.80 3600 243.16 245.98 50.99 −54.87 −54.35
Washington (50)1 581.86 588.84 85.98
Washington (50)2 647.38 650.63 75.82
Chicago (50) 353.99 354.51 69.17
Washington (66) 676.54 683.93 90.98
Chicago (66) 6192.78 6468.38 120.21
Washington (80)1 733.58 744.35 114.69
Washington (80)2 736.77 745.27 183.02
Washington (90) 984.90 996.38 228.76
Avg 3355 68.40 −11.73 −11.49

Table 1: Comparison of the results between Lingo and SABRPSD (Q� 20 and Ch � 1).

Instance
Lingo SABRPSD GapBest (%) GapAvg (%)

Optimal value CPU Best value Average value CPU
Washington (20)1 639.15 3600 639.16 639.17 10.15 0.00 0.00
Washington (20)2 576.79 159 576.79 576.79 24.58 0.00 0.00
Chicago (20)1 166.24 3600 153.40 153.40 20.85 −7.72 −7.72
Chicago (20)2 115.19 3600 113.46 113.46 14.04 −1.50 −1.50
Washington (30)1 450.19 3600 387.78 388.03 30.77 −13.86 −13.81
Washington (30)2 520.39 3600 403.12 405.09 25.22 −22.53 −22.16
Chicago (30)1 518.02 3600 265.71 266.96 54.21 −48.71 −48.47
Chicago (30)2 204.14 3600 202.21 204.14 29.48 −0.94 0.00
Washington (40)1 797.87 3600 634.07 638.52 44.71 −20.53 −19.97
Washington (40)2 1036.51 3600 826.68 831.62 29.94 −20.24 −19.77
Chicago (40)1 1287.45 3600 424.34 424.34 52.13 −67.04 −67.04
Chicago (40)2 478.01 3600 213.10 215.92 48.37 −55.42 −54.83
Washington (50)1 546.18 554.30 105.62
Washington (50)2 603.40 611.72 77.76
Chicago (50) 326.32 328.59 70.84
Washington (66) 682.51 685.62 101.87
Chicago (66) 6243.75 6494.41 122.49
Washington (80)1 719.65 732.09 121.20
Washington (80)2 678.58 684.66 159.47
Washington (90) 925.21 938.56 196.93
Avg 3335 66.14 −24.15 −23.85
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Table 3: Comparison of the results between Lingo and SABRPSD (Q� 20 and Ch � 0).

Instance
Lingo SABRPSD GapBest (%) GapAvg (%)

Optimal value CPU Best value Average value CPU
Washington(20)1 645.10 3600 627.85 627.90 13.76 −2.67 −2.67
Washington(20)2 556.26 40 556.26 556.26 33.82 0.00 0.00
Chicago(20)1 134.73 3600 134.73 134.73 20.53 0.00 0.00
Chicago(20)2 100.80 3600 99.60 99.76 17.95 −1.19 −1.04
Washington(30)1 414.18 3600 369.72 369.72 32.90 −10.73 −10.73
Washington(30)2 432.25 3600 392.72 393.61 27.89 −9.15 −8.94
Chicago(30)1 489.71 3600 249.47 249.80 35.62 −49.06 −48.99
Chicago(30)2 321.25 3600 189.40 191.21 31.73 −41.04 −40.48
Washington(40)1 721.11 3600 617.41 622.76 50.49 −14.38 −13.64
Washington(40)2 1021.87 3600 814.77 819.79 42.10 −20.27 −19.78
Chicago(40)1 412.36 3600 408.94 408.94 57.98 −0.83 −0.83
Chicago(40)2 397.27 3600 201.52 203.18 50.88 −49.27 −48.86
Washington(50)1 526.11 534.88 109.26
Washington(50)2 592.72 595.78 79.45
Chicago(50) 321.13 324.60 69.87
Washington(66) 656.99 663.09 105.25
Chicago(66) 6243.75 6494.41 122.49
Washington(80)1 702.93 716.69 126.66
Washington(80)2 661.88 673.31 171.68
Washington(90) 914.40 924.30 204.03
Avg 3303.33 70.22 −16.55 −16.33

Table 4: Comparison of the results between Lingo and SABRPSD (Q� 10 and Ch � 0).

Instance
Lingo SABRPSD GapBest (%) GapAvg (%)

Optimal value CPU Best value Average value CPU
Washington(20)1 665.08 3600 654.91 655.01 10.76 −1.53 −1.52
Washington(20)2 566.26 30 566.26 566.26 25.00 0.00 0.00
Chicago(20)1 155.17 3600 155.17 155.17 19.20 0.00 0.00
Chicago(20)2 127.97 3600 127.97 127.97 17.38 0.00 0.00
Washington(30)1 449.66 3600 382.56 382.56 33.10 −14.92 −14.92
Washington(30)2 442.69 3600 410.45 411.18 28.40 −7.28 −7.12
Chicago(30)1 292.28 3600 289.57 290.67 33.25 −0.93 −0.55
Chicago(30)2 236.60 3600 234.10 234.10 32.92 −1.06 −1.06
Washington(40)1 818.25 3600 681.61 685.40 61.54 −16.70 −16.24
Washington(40)2 859.04 3600 853.74 857.84 47.10 −0.62 −0.14
Chicago(40)1 500.44 3600 442.74 442.74 47.85 −11.53 −11.53
Chicago(40)2 349.26 3600 239.51 240.61 53.41 −31.42 −31.11
Washington(50)1 571.78 579.44 106.77
Washington(50)2 638.40 640.92 75.32
Chicago(50) 352.67 354.72 72.96
Washington(66) 664.31 671.87 89.90
Chicago(66) 6175.14 6472.54 117.22
Washington(80)1 728.64 739.63 114.94
Washington(80)2 722.88 743.14 183.62
Washington(90) 984.90 996.38 228.76
Avg 3303 69.97 −7.17 −7.02

Table 5: Results of different vehicle capacities (Q).

Q WS HN EEV VSS GapVSS (%) EVPI GapEVPI (%)
10 153.86 164.14 168.57 4.43 2.70 10.28 6.68
15 147.66 156.87 163.24 6.37 4.06 9.22 6.24
20 145.31 153.40 161.31 7.90 5.15 8.09 5.57
25 144.69 151.60 160.97 9.37 6.18 6.91 4.78
30 144.35 150.87 160.41 9.54 6.32 6.53 4.52
Avg 7.52 4.88 8.21 5.56
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Table 6: Results of different holding costs (Ch).

Ch WS HN EEV VSS GapVSS (%) EVPI GapEVPI (%)
0.5 137.68 144.73 150.29 5.56 3.84 7.05 5.12
0.75 141.89 149.73 155.80 6.07 4.05 7.84 5.53
1 145.31 153.40 161.31 7.90 5.15 8.09 5.57
1.25 147.43 157.02 166.82 9.79 6.24 9.60 6.51
1.5 148.80 160.64 172.32 11.69 7.28 11.84 7.96
Avg 8.20 5.31 8.91 6.16

Table 7: Results of different penalty costs (Cd).

Cd WS HN EEV VSS GapVSS (%) EVPI GapEVPI (%)
0.5 120.92 125.00 128.24 3.24 2.59 4.08 3.38
0.75 133.14 139.57 144.77 5.21 3.73 6.43 4.83
1 145.31 153.40 161.31 7.90 5.15 8.09 5.57
1.25 157.43 167.19 177.84 10.65 6.37 9.76 6.20
1.5 169.50 180.97 194.37 13.40 7.41 11.47 6.77
Avg 8.08 5.05 7.97 5.35

Table 8: Results of different travel costs (Ct).

Ct WS HN EEV VSS GapVSS (%) EVPI GapEVPI (%)
0.5 96.81 104.30 113.72 9.42 9.04 7.49 7.74
0.75 121.09 128.84 137.51 8.68 6.74 7.75 6.40
1 145.31 153.40 161.31 7.90 5.15 8.09 5.57
1.25 169.49 177.97 185.10 7.13 4.01 8.49 5.01
1.5 193.61 202.07 208.90 6.83 3.38 8.47 4.37
Avg 7.99 5.66 8.06 5.82
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Figure 1: Continued.
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following. *e value of the four parameters are increased by
−50%, −25%, +25%, and +50%, respectively. Tables 5–8
summarize the total costs of WS, HN, EEV, EVPI and
VSS, GAPEVPI, and GAPVSS obtained from all tests. Figure 1
shows the sensitivity analysis on the results for the four
parameters. Under current settings, the abovementioned
four parameters have a significant impact on the solutions.
From Tables 5–8, consistent with theoretical results, it can be
founded thatWS<HN<EEV in all tests.We can see that the
average GAPVSS are all greater than the average GAPEVPI.
*e GAPEVPI of the stochastic model in all tests is non-
negative, indicating the problem of the BRPSD is stochastic
by nature. Besides, the GAPVSS in all tests is nonnegative for
the BRPSD, indicating that the problem in the study is
suitable for the stochastic model.

From Figure 1, we can see that the increase of Ch, Cd, and
Ct rends the increase of HN. We also see that the increase of
Q rends the decrease of HN. *e parameter that has the
greatest impact onHN is the unit transportation costCt.*is
is likely because the contribution of transportation cost to
the total objective cost is greater than the penalty cost and
the holding cost.

From Figure 1, we can see that, as Q increases, GAPEVPI
tends to decrease, but GAPVSS increases. It is also noticed
that GAPEVPI and GAPVSS tend to increase when Ch and Cd
increase. However, the value of GAPEVPI and GAPVSS
contradicts the increase of Ct. *e influence of the change of
the abovementioned four parameters on GAPVSS is signif-
icantly greater than that of GAPEVPI.

*e results illustrate that the GAPEVPI increases when Ch
and Cd increase andQ and Ct decrease, which means that the
decision makers are willing to pay more to get accurate
redistribution demand information about the future.
GAPVSS increases by increasing the values ofCh,Cd, andQ or

decreasing the values of Ct, and consequently, the decision
makers can obtain more cost saving resulting from the two-
stage stochastic model.

6. Conclusions

In this paper, a general scenario-based two-stage pro-
gramming model is proposed for bike repositioning prob-
lems with stochastic redistribution demands. In the
proposed model, the first-stage decisions correspond to the
routing decisions and the second-stage decisions correspond
to the loading and unloading decisions. *e model aims to
find the best routes and the ideal quantities of loading and
unloading at each station and depot in order to minimize the
weighted sum of the expected transportation costs, penalty
costs, and holding costs. *en, a simulated annealing al-
gorithm is proposed to solve the model. Number examples
are performed to evaluate the proposed model and algo-
rithm, followed by a detailed sensitivity analysis that studies
how the change of several important parameters affects the
performance of the proposed model and solution algorithm.
*e proposed model and algorithm have important theo-
retical and practical significance for the BSS operators, which
can reduce the operation costs of the BSS and improve user
satisfaction. On the contrary, in addition to bike sharing,
other sharing facilities in the sharing economy, such as car
sharing, also need to be relocated, so this kind of problem
has a strong application background.

In the future, we will apply robust optimization model to
solve the bike repositioning problemwith stochastic demand
in the bike sharing system [35]. We also consider envi-
ronmental issues by adding the carbon emissions to the
objective function of the two-stage stochastic programming
model [36–38].
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Notations

Sets

N: *e set of stations
N0: *e set of nodes, including the stations (indexed by i,

i ∈ N) and the depot (indexed by 0)
Ξ: Set of scenarios, indexed by ξ ∈ Ξ

Parameters

Ct: *e travel cost per unit travel time
tij: *e travel time from station i to station j
Cd: *e penalty cost per bike at the station
Ch: *e holding cost per bike at the depot
Q: *e truck capacity
M: A very large number
d
ξ
i : *e relocation demand at station i in scenario ξ

pξ : *e occurrence probability of the scenario ξ

Decision Variables

xij: Binary variable that equals to 1 if the truck travels
directly from station i to station j and 0 otherwise

y
ξ
ij: *e number of bikes on the truck when it travels

directly from station i to station j in scenario ξ
s
ξ+
i : *e excess quantities of bikes at station i after relocation

operation in scenario ξ
s
ξ−
i : *e slack quantities of bikes at station i after relocation

operation in scenario ξ
qi: Auxiliary variables associated with station i used for

subtour elimination constraints.
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