
Research Article
Scalability ofOpenFOAMDensity-BasedSolverwithRunge–Kutta
Temporal Discretization Scheme

Sibo Li ,1 Roberto Paoli ,1,2 and Michael D’Mello 3

1Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
2Computational Science Division and Leadership Computing Facility, Argonne National Laboratory, Lemont, IL, USA
3Intel Corporation, Schaumburg, IL, USA

Correspondence should be addressed to Roberto Paoli; robpaoli@uic.edu

Received 5 December 2019; Revised 2 February 2020; Accepted 11 February 2020; Published 11 March 2020

Academic Editor: Manuel E. Acacio Sanchez

Copyright © 2020 Sibo Li et al.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Compressible density-based solvers are widely used in OpenFOAM, and the parallel scalability of these solvers is crucial for large-
scale simulations. In this paper, we report our experiences with the scalability of OpenFOAM’s native rhoCentralFoam solver, and
by making a small number of modifications to it, we show the degree to which the scalability of the solver can be improved.)e
main modification made is to replace the first-order accurate Euler scheme in rhoCentralFoam with a third-order accurate, four-
stage Runge-Kutta or RK4 scheme for the time integration.)e scaling test we used is the transonic flow over the ONERA M6
wing.)is is a common validation test for compressible flows solvers in aerospace and other engineering applications. Numerical
experiments show that our modified solver, referred to as rhoCentralRK4Foam, for the same spatial discretization, achieves as
much as a 123.2% improvement in scalability over the rhoCentralFoam solver. As expected, the better time resolution of the
Runge–Kutta scheme makes it more suitable for unsteady problems such as the Taylor–Green vortex decay where the new solver
showed a 50% decrease in the overall time-to-solution compared to rhoCentralFoam to get to the final solution with the same
numerical accuracy. Finally, the improved scalability can be traced to the improvement of the computation to communication
ratio obtained by substituting the RK4 scheme in place of the Euler scheme. All numerical tests were conducted on a Cray XC40
parallel system,)eta, at Argonne National Laboratory.

1. Introduction

With the continuous development of hardware and software
supporting high-performance computing, eventually lead-
ing to exascale computing capabilities in a near future, high-
fidelity simulations of complex flows that were out of reach
until a decade ago are now becoming feasible on super-
computer infrastructures. Direct numerical simulations
(DNS) and large-eddy simulations (LES) are natural can-
didates for high-fidelity simulations as they can capture all
relevant spatial and temporal characteristic scales of the
flow. Indeed, there is consensus in the computational fluid
dynamics (CFD) community that DNS/LES codes incor-
porating high-order time integration and spatial dis-
cretization methods are preferable for ensuring minimal
influence of numerical diffusion and dispersion on the flow

physics. While these numerical constraints have been tra-
ditionally integrated in the simulation of academic flows on
simple geometries, they are also being considered for in-
dustrial and more complex applications where accurate
prediction of local or instantaneous flow properties are
required (e.g., in combustion, multiphase and reacting
flows).

In this context, the OpenFOAM package [1] represents a
popular open-source software originally designed for use in
CFD. Its operation is composed of solvers, dictionaries, and
domain manipulation tools. It provides several different
kinds of solvers for different partial differential equations
(PDEs) and framework to implement third-party solvers for
customized PDEs.)e solvers integrated in the standard
distributions of OpenFOAM are robust, but they generally
lack precision with 2nd-order accuracy at most in both space

Hindawi
Scientific Programming
Volume 2020, Article ID 9083620, 11 pages
https://doi.org/10.1155/2020/9083620

mailto:robpaoli@uic.edu
https://orcid.org/0000-0002-1705-844X
https://orcid.org/0000-0003-2158-8870
https://orcid.org/0000-0002-4292-3175
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9083620

and time.)erefore, there is a growing interest in the CFD
community to develop and implement higher-order
methods in OpenFOAM for transient flow calculations.
)ese include, for example, numerical algorithms for DNS/
LES of incompressible flows [2], compressible flows [3–5],
and reacting flows [6].

In addition to high-order numerical schemes, parallel
efficiency and scalability are of course crucial for high-
performance computing of complex flows. Parallelism in
OpenFOAM is implemented by means of MPI (Message
Passing Interface) although previous scalability analysis of
incompressible OpenFOAM solvers showed limited speedup
[7, 8].)e improvement of scaling performance in Open-
FOAM has been a concern in many recent studies. In order
to optimize the performance, it is crucial to first conduct
performance analysis to find the bottleneck of the simulation
process. Culpo [7] found that the communication is the
bottleneck in scalability of solvers in OpenFOAM for large-
scale simulations. Duran et al. [9] studied the speedup of
icoFoam solver for different problem sizes and showed that
there is a large room for scalability improvement. Lin et al.
[10] proposed a communication optimization method for
multiphase flow solver in OpenFOAM. Ojha et al. [11]
applied optimizations to the geometric algebraic multigrid
linear solver and showed an improved scaling performance.

In this work, we are primarily interested in compressible
flow solvers for aeronautical applications. In the standard
distribution of OpenFOAM, rhoCentralFoam is the only
density-based solver for transient, compressible flows [12]. It
is built upon a second-order nonstaggered central scheme
based on KT (Kurganov and Tadmor [13]) and KNP
(Kurganov, Noelle, and Petrova [14]) methods.)ere are a
few studies that tried to improve the numerical algorithm of
density-based solver. Heyns et al. [15] extended the rho-
CentralFoam solver through the implementation of alter-
native discretization schemes to improve its stability and
efficiency. More recently, Modesti and Pirozzoli [4] devel-
oped a solver named rhoEnergyFoam relying on the AUSM
scheme by Liou and Steffen Jr. [16]. By advancing using a
low-storage third-order four-stage Runge–Kutta algorithm
for time advancement, their solver showed reduced nu-
merical diffusion and better conservation properties com-
pared to rhoCentralFoam in both steady and unsteady
turbulent flows.

In this work, we present a new OpenFOAM solver,
named rhoCentralRK4Foam, which is derived from rho-
CentralFoam by replacing its first-order time advancement
scheme with a third-order, four-stage Runge–Kutta scheme.
)e aim of developing this solver is twofold: (i) to improve
the scaling performance of rhoCentralFoam, especially in
large-scale simulations; (ii) to improve time accuracy and
overall time-to-solution using high-order Runge–Kutta
scheme [17]. Instead of trying to optimize the parallelism
embedded in OpenFoam, which has been shown to be very
hard to achieve (see, e.g., Culpo [7]), our proposed approach
is to select a different numerical integration scheme that shows
improved CPU and scalability performances with minimal
modification of the standard distribution.)e cases are
configured to solve the PDEs through the rhoCentralFoam

and rhoCentralRK4Foam solvers. We investigate the parallel
performance of rhoCentralFoam and rhoCentralRK4Foam on
Cray XC40 system)eta [18].)ese two solvers are bench-
marked on two cases, an inviscid transonic flow over the
ONERA M6 wing, and a supersonic flow over the Forward-
facing step to validate the new solver’s shock capturing ca-
pability.)e TAU (Tuning and Analysis Utilities) Perfor-
mance System analyzer [19] is used to collect the hotspot
profiles of the two solvers.)e strong and weak scaling tests of
the benchmark problems are conducted on)eta up to 4,096
cores. For the time-to-solution analysis, we considered the
Taylor–Green vortex problem and determined the time-to-
solution needed by the two solvers to get a solution with the
same accuracy (same numerical error) with respect to the
analytical solution.)e present study is also aimed at pro-
viding users a handle on parameter choices for performance
and scalability.

)e rest of the paper is organized as follows: in Section 2,
a description of numerical methods for the two solvers as
well as the hardware and profiling tools are presented.)e
benchmark test cases and the results for the scalability
analysis are presented in Section 3. In Section 4, we present
the results for the time-to-solution analysis. Section 5 shows
the conclusion.

2. Methods

2.1. Governing Equations and Spatial Integration.)e solver
rhoCentralFoam is the most widely used compressible flow
solver in the baseline distribution of OpenFOAM. It relies on
the full discretization of the convective fluxes through the
central TVD scheme (total variation diminishing) of KTand
KNP schemes. rhoCentralFoam solves the governing fluid
equations in an Eulerian frame of reference for three con-
servative variables, specifically density (ρ), momentum
density (ρu), and total energy density (ρE):

zρ
zt

+ ∇ · (ρu) � 0, (1)

zρu
zt

+ ∇ · (ρuu) � −∇p + ∇ · τ, (2)

zρE

zt
+ ∇ · (ρuE) + ∇ · (pu) � ∇ · (T · u) + ∇ · J. (3)

In the above equations, E ≡ e(T) + 1/2u · u, where e(T)

is the internal energy and T is the temperature; p is the
thermodynamic pressure, related to the temperature and
density through the equation of state for ideal gases:
p � ρRT, where R is the gas constant; and τ � 2μ[(1/2)(∇u +

∇Tu) − 1/3(∇ · u)I] is the viscous stress tensor under the
assumption of Newtonian fluid with dynamic viscosity μ
while I is the unit tensor. Finally, J � −λ∇T is the heat flux
vector where λ is the thermal conductivity.

)e governing equations are discretized using a finite
volume method where equations (1)–(3) are integrated over
a control volume represented by a grid cell of volume V.
Using Gauss theorem, all fluxes can be transformed into
surface integrals across the cell boundaries, which are

2 Scientific Programming

estimated by summing up the flux contributions from all
faces f of the cell.)e volume average of the state vector of
conserved variables Ψ ≡ [ρ; ρu; ρE] is given by

Ψ �
1
V

V
ΨdV. (4)

So the integral form of equations (1)–(3) can be
expressed as

dΨ
dt

� L(Ψ), (5)

where L(Ψ) denotes the operator returning the right-hand
side of equations (1)–(3) containing all inviscid and viscous
fluxes.)ese fluxes have to be estimated numerically using
the volume-averaged state variables Ψ of adjacent cells. In
particular, the convective fluxes are obtained as

V
∇ · (uΨ)dV �

S
uΨ · dS ≈

f∈S
uf · SfΨf �

f∈S
ϕfΨf,

(6)

where subscript f identifies the faces of the cell volume,
whereas the termsΨf, uf, Sf, and ϕf ≡ uf · Sf represent the
state vector, velocity, surface area, and volumetric flux at the
interface between two adjacent cells, respectively.)e
product ϕfρf is obtained by applying the KT scheme:

ϕfΨf �
1
2

ϕ+
fΨ

+
+ ϕ−

fΨ
−
f −

1
2
αmax Ψ−

f − Ψ+
f , (7)

where + and− superscripts denote surface values interpo-
lated from the owner cell and neighbor cell, respectively,
while αmax is an artificial diffusive factor (see [12] for details).
In the implementation of rhoCentralRK4Foam, the Eu-
lerian fluxes are firstly calculated explicitly as shown in
Algorithm 1 where “phi” represents ϕfρf, “phiUp” repre-
sents ϕfρfUf + Sfpf with pf � 1/2(p+

f + p−
f), and “phiEp”

represents ϕfρfEf + ϕfpf.

2.2. Time Integration. After calculating fluxes and gradients
according to equations (6) and (7), equation (5) can be
numerically integrated between time tn and tn+1 � tn + Δt
using multistage Runge–Kutta scheme. Denoting by Ns the
number of stages, this yields

Ψl

n � Ψ0n + αlΔtL Ψ
l−1
n , l � 1, . . . , Ns, (8)

where Ψ0n ≡ Ψ(tn) and ΨNs

n ≡ Ψ(tn+1). In the proposed
solver rhoCentralRK4Foam, we use a four-stage Run-
ge–Kutta scheme, which is obtained by setting Ns � 4 and
α1 � 1/4, α2 � 1/3, α3 � 1/2, and α4 � 1.)e implementa-
tion in OpenFOAM is reported in Algorithm 2, and the C++
code is publicly available at https://github.com/SiboLi666/
rhoCentralRK4Foam. Note that the original Euler scheme
implemented in rhoCentralFoam can be simply obtained
from equation (8) by setting Ns � 1 and α1 � 1.

2.3. Hardware and Profiling Tools.)e simulations were run
on supercomputer platform “)eta” at Argonne National

Laboratory.)eta is a Cray XC40 system with a second-
generation Intel Xeon Phi (Knights Landing) processor and
the Cray Aries proprietary interconnect.)e system com-
prises 4,392 compute nodes. Each compute node is a single
Xeon Phi chip with 64 cores, 16GB Multi-Channel DRAM
(MCDRAM), and 192GB DDR4 memory. To avoid any
possible memory issues with OpenFoam, the simulations
were run using 32 cores of each computing node (half of its
maximum capacity).

We assess the scalability and parallel efficiency of the two
solvers, rhoCentralFoam and rhoCentralRK4Foam, by an-
alyzing their speedup on the same grid and by monitoring
the portions of CPU time spent in communication and in
computation, respectively.)ese measurements are per-
formed with performance tools adapted to the machine. In
the strong scaling tests, the tools are set to start counting
after the initial setup stage is completed, in our case, after 20
time steps, lasting for an extra 75 time steps.)e strong
scaling tests are performed on)eta. In order to measure the
time spent in communication, we rely on the TAU Per-
formance system [19].)e TAU performance tool suite is an
open-source software developed at the University of Oregon
and offers a diverse range of performance. On)eta, the
OpenFOAM makefile is modified to utilize the TAU
wrapper functions for compilation. TAU can automatically
parse the source code and insert instrumentation calls to
collect profile and/or trace data, which allow us to measure
the total time spent in communication during the targeted
75 time steps and identify the hotspots for the two solvers.

3. Results for the Scalability Analysis

3.1. Test Cases Description. For the scalability analysis, we
tested the new solver rhoCentralRK4Foam in two different
benchmark cases: (i) the three-dimensional ONERA M6
transonic wing; (ii) the two-dimensional supersonic forward
facing step.)e two cases are steady flows; they are first used
for validating the new solver’s shock-capturing capability
and then used for detailed parallel performance analysis of
the solver in the next section. For the two cases, we used the
decomposePar tool in OpenFOAM to decompose the
generated mesh.)e scotch decomposition method [20] is
used to partition the mesh into subdomains. A brief de-
scription of the two cases is presented next.

3.1.1. Transonic M6Wing. In the ONERAM6 wing case, the
mean aerodynamic chord is c � 0.53m, the semispan is
b � 1m, and the computational domain extends to 20c.)e
angle of attack is 3.06°, and the free stream mach number is
Ma � 0.8395.)e Reynolds number in the original exper-
iment was Re � 11.72 × 106, and so the flow is certainly
turbulent; however, in order to capture the pressure dis-
tribution and the shock location along the wing, inviscid
calculations can be safely employed and are indeed cus-
tomary (see, for example, Modesti and Pirozzoli, [4]).)e
geometry is meshed using hexahedral elements, and three
grids with different sizes are generated: Grid1 has 1 million
cells (shown in Figure 1(a)), Grid2 has 5 million cells, and

Scientific Programming 3

https://github.com/SiboLi666/rhoCentralRK4Foam
https://github.com/SiboLi666/rhoCentralRK4Foam

Grid3 has 43 million cells.)e flow-filed analysis was
conducted on Grid1 (which is sufficient for grid conver-
gence), while Grid2 and Grid 3 were used for scaling
analysis. Figure 1(b) shows the pressure distribution on the
wing surface computed by using rhoCentralFoam and
rhoCentralRK4Foam. In Figure 1(c), the pressure coefficient
at the inner wing section (20% span) computed by the two
solvers is compared with the experimental data (blue circle
symbols [21]). We can observe that the newly developed
solver captures the main flow features. It generates a
pressure distribution on the wing surface similar to that
obtained with rhoCentralFoam and captures the shock lo-
cation precisely.

3.1.2. Supersonic Forward-Facing Step. Computations of
inviscid flow over a forward-facing step are used to
further verify the shock-capturing capability of

rhoCentralRK4Foam solver.)e flow configuration used by
Woodward and Colella [22] is considered in this work.)e
supersonic flow mach number is Ma∞ � 3.)e grid has
Nx × Ny � 240 × 80 cells in the coordinate directions.)e
shock pattern represented by density distribution shown in
Figure 2 confirms that the rhoCentralRK4Foam is capable of
capturing strong shocks for supersonic flows.

3.2. Strong ScalingTests. In the strong scaling tests, we tested
the rhoCentralFoam and rhoCentralRK4Foam solvers on
three different mesh sizes of ONERA M6 wing. Here, we
present the scalability results by showing the speedup as well
as the speedup increment percentage for rhoCen-
tralRK4Foam for Grid1 up to 1024 ranks in Table 1, Grid2 up
to 2048 ranks in Table 2, and Grid3 up to 4096 ranks in
Table 3. Note that the scaling is presented as CPU time
normalized by the CPU time obtained with 128 ranks, which

Result: construct Eulerian fluxes explicitly
while runTime.loop() do
Saving quantities at preavious time steps if rk4 then
/∗)e following firstly constructs the Eulerian fluxes by applying the Kurganov and Tadmor (KT) scheme. ∗/
surfaceScalarField phi
(“phi,”
(aphiv pos∗ rho pos + aphiv neg∗ rho neg));
surfaceVectorField phiUp
(“phiUp,”
(aphiv pos∗ rhoU pos + xaphiv neg∗ rhoU neg)

+ (a pos∗p pos + a neg∗p neg∗mesh.Sf));
surfaceScalarField phiEp
(“phiEp,”
(aphiv pos∗ (rho pos∗ (e pos + 0.5∗magSqr(U pos)) + p pos)

+ aphiv neg∗ (rho neg∗ (e neg + 0.5∗magSqr(U neg)) + p neg)

+ aSf∗p pos − aSf∗p neg));
/∗)en, the divergence theorem (Gauss’s law) is applied to relate the spatial integrals to surface integrals.
∗/
volScalarField phiSum (“phiSum,” fvc: : di v(phi));
volVectorField phiUpSum2 (“phiUpSum2,” fvc: : di v(tauMC));
volVectorField phiUpSum3 (“phiUpSum3,” fvc: : laplacian(muEff, U));

else
end

end

ALGORITHM 1:)e Eulerian fluxes are calculated explicitly so that the ordinary differential equations system can be constructed and further
integrated in time by using explicit Runge–Kutta algorithm.

Result: Calculate the three conservative variables
for (int cycle � 0; cycle< rkloop.size; cycle + +){
/∗)e following calculates the three conservative variables, specifically density (ρ), momentum density (ρU) and total energy

density (ρE) ∗/
rho � rhoOl d + rk[cycle]∗ runTime.de ltaT∗(−phiSum);
rhoU � rhoUOl d + rk[cycle]∗ runTime.de ltaT∗(−phiUpSum + phiUpSum2 + phiUpSum3);
rhoE � rhoEOl d + rk[cycle]∗ runTime.de ltaT∗(−enFl + enFl2);

}

ALGORITHM 2:)e time integration of the resulting ordinary differential equations system is carried out by a third-order, four-stage
Runge–Kutta algorithm.

4 Scientific Programming

is the minimum number of ranks that fit the memory re-
quirements for the largest grid. For example, for 4096 ranks,
the ideal speedup would then be 4096/128� 32. It
can be observed that rhoCentralRK4Foam outperforms
rhoCentralFoam in speedup in each case. For the same grid
size, the speedup increment percentage increases as the

number of ranks increases. To better illustrate and analyze
the scaling performance improvement, the results reported
in the three tables are summarized in Figure 3. First, we can
observe that for the Grid3, there is a dramatic increase in
speedup when the number of ranks rises from 1024 to 2048
and from 2048 to 4096.)e speedup of rhoCentralRK4Foam

(a)

0.75 0.90 1.0 1.20.60
p

(b)

rhoCentralFoam
rhoCentralRK4Foam
Experiment

–1.0

–0.5

0.0

0.5

1.0

1.5

–C
p

0.2 0.4 0.6 0.8 1.00.0
(x – x1)/(xt – x1)

(c)

Figure 1: ONERAM6 transonic wing results: (a) computational mesh (Grid 1); (b) pressure distribution computed with the proposed solver
rhoCentralRK4Foam; (c) comparison of pressure coefficient at section located (20% span) computed with rhoCentralRK4Foam and the
original rhoCentralFoam.

1.90

3.40

4.90

0.400

6.40
rho

Figure 2: Density distribution in supersonic forward facing step simulations obtained using rhoCentralRK4Foam.

Scientific Programming 5

has a 1.6 times increase from 1024 ranks to 2048 ranks and a
1.7 times increase from 2048 ranks to 4096 ranks for Grid3.
)e reason is that rhoCentralFoam scales very slowly after
1024 ranks, eventually reaching a plateau, which is an in-
dication the solver attained its maximum theoretical
speedup. It is indeed instructive to estimate the serial portion
f of CPU time from the speedup of the two solvers using
Amdahl’s law [23]:

S Nr(�
Nr

1 + Nr − 1((1 − f)
, withf �

tp

tp + ts

, (9)

where tp and ts are the CPU time spent in parallel and serial
(i.e., not parallelizable) sections of the solver, respectively.
From the previous equations, we have

f �
1 − 1/S Nr((

1 − 1/Nr(
⟶ f � 1 −

1
S∞

, (10)

where S∞ ≡ S(Nr⟶∞) is the maximum theoretical
speedup obtained for Nr⟶∞. By measuring S∞, we can
directly evaluate f from equation (10) for the cases featuring
asymptotic speedup: for rhoCentralFoam (Grid3), this yields
f≃99.88%. We can also estimate f but best fitting S(Nc) to
Amdahl’s formula in equation (9) for rhoCentralRK4Foam,
which yields f≃99.98%. Of course, these results can be
affected by other important factors such as latency and
bandwidth of the machine that are not taken into account in
Amdahl’s model. We also observe that the scalability be-
comes better as the problem size increases as the workload of

communication over computation decreases. For example,
with 2048 ranks, the speedup for rhoCentralRK4Foam is
6.005 for Grid2 (5 million cells), while it becomes 9.115 for
Grid3 (43million cells). Moreover, we can also see that as the
grid size increases, the maximum speedup increment per-
centage also increases, which corresponding to 16%, 32%,
and 123% for Grid1, Grid2, and Grid3, respectively. As a
final exercise, the TAU performance tool was applied to
profile the code for Grid3 with 2048 ranks. Figure 4 also
shows the communication and computation time percent-
age for rhoCentralFoam and rhoCentralRK4Foam on Grid3
from 128 to 4,096 ranks. We can observe that the rho-
CentralRK4Foam solver takes less time to communicate,
which lead to the improved parallel performance found in
previous tests. In addition, among the MPI subroutines that
are relevant for communication (i.e., called every time step
in the simulation), MPI_waitall() was the one that employed
most of the time (see Figure 5), which is in line with previous
profiling (see, for example, Axtmann and Rist [24]).

3.3. Weak Scaling Tests. In order to further analyze the
parallel scalability of rhoCentralRK4Foam solver, we con-
ducted a weak scaling analysis based on the ONERA M6
wing case and the forward-facing step case.)e grid size
ranges from 700, 000 to 44, 800, 000 cells in ONERA M6
wing case and from 1, 032, 000 to 66, 060, 000 cells in the
forward-facing step case.)e configurations of the weak
scaling test cases are the same as the one in the previous test
cases.)e number of ranks ranges from 16 to 1024 and 64 to
4096, respectively.)e number of grid points per rank stays
constant at around 43 × 103 and 16 × 103 for two cases,
which ensures that the computation workload is not im-
pacted much by communication. Denoting by τ the CPU
time for a given run, the relative CPU time is obtained by

Table 1: Normalized speedup for Grid1 (ONERA M6 wing) up to
1024 ranks.

#Ranks rhoCentralFoam rhoCentralRK4Foam % increment
128 1 1 0
256 1.341 1.367 1.939
512 1.594 1.814 13.802
1024 2.364 2.747 16.201

Table 2: Normalized speedup for Grid2 (ONERA M6 wing) up to
2048 ranks.

#Ranks rhoCentralFoam rhoCentralRK4Foam % increment
128 1 1 0
256 1.574 1.601 1.715
512 2.308 2.423 4.983
1024 2.916 3.575 22.599
2048 4.541 6.005 32.240

Table 3: Normalized speedup for Grid3 (ONERA M6 wing) up to
4096 ranks.

#Ranks rhoCentralFoam rhoCentralRK4Foam % increment
128 1 1 0
256 1.871 1.896 1.336
512 3.275 3.527 7.695
1024 5.098 5.809 13.947
2048 6.341 9.115 43.747
4096 6.895 15.39 123.205

rhoCentralFoam-Grid3 rhoCentralRk4Foam-Grid3
rhoCentralRk4Foam-Grid2

rhoCentralFoam-Grid1 rhoCentralRk4Foam-Grid1
Linear

0

6

12

18

24

30

36

Sp
ee

du
p

1024 2048 3072 40960
#ranks

rhoCentralFoam-Grid2

Figure 3: Strong scaling normalized speedups of rhoCentralFoam
and rhoCentralRK4Foam for three grids of the M6 wing test case.

6 Scientific Programming

normalizing with respect to the values obtained for 16 and 64
ranks: τ/τ#Ranks� 16, for 16 ranks and τ/τ#Ranks� 64, for 64
ranks.)e relative CPU time are recorded in Tables 4 and 5.
)e comparison of the two solvers is also plotted in Figures 6
and 7.)e weak scaling tests give us indication about how
well does the two solvers scale when the problem size is
increased proportional to process count. From Tables 4 and
5 and Figures 6 and 7, it can be observed that for lower MPI
tasks (16 to 64), both of the two solvers scale reasonably well.
However, for higher MPI tasks (128 to 1024), the rho-
CentralRK4Foam solver scales better. Remarkably, we can
observe a distinguishable relative time difference between
the two solvers as the number of ranks increases from 512 to
1024.)e profiling results from TAU show that in the test
case with 1024 ranks, rhoCentralRK4Foam spends around

40% time on computation while rhoCentralFoam only has
around 20% time spent on computation. As for the forward-
facing step case, we were able to conduct the tests at larger
cores count (up to 4096 cores) and it can be confirmed that
rhoCentralRK4Foam solver has better scaling performance
than rhoCentralFoam solver. Indeed, it scales better with
larger grid size and the relative time of rhoCentralRK4Foam
solver maintains at 1.063 with 4096 cores (the relative time is
1.148 with 1024 cores in ONERA M6 wing case). Generally,
the rhoCentralRK4Foam solver outperforms the rhoCen-
tralFoam solver at large-scale ranks due to communication
hiding.

rhoCentralFoam communication
rhoCentralRk4Foam communication

0

20

40

60

80

100

Ti
m

e p
er

ce
nt

ag
e (

%
)

600 1200 1800 2400 3000 3600 42000
#ranks

(a)

rhoCentralFoam communication
rhoCentralRk4Foam communication

0

20

40

60

80

100

Ti
m

e p
er

ce
nt

ag
e (

%
)

600 1200 1800 2400 3000 3600 42000
#ranks

(b)

Figure 4: Communication (a) and computation (b) time percentage for the strong scaling analysis (M6 test case, Grid 3).

128 256 512 1024 2048
0

2

4

6

8

10

12

14

4.
89

4.
68

3.
56

5.
19

4.
16

11
.4

2

10
.1

6

8.
83 9.

52

7.
66

M
PI

 w
ai

ta
ll

(%
)

rhoCentralFoam
rhoCentralRK4Foam

Figure 5: MPI waitall() time percentage for rhoCentralFoam and
rhoCentralRK4Foam for M6 test case (Grid3) up to 2,048 ranks.

Table 4: Relative time results τ/τ#Ranks� 16 of weak scaling test
(ONERA M6 wing).

#Ranks rhoCentralFoam rhoCentralRK4Foam
16 1 1
32 1.085 1.062
64 1.106 1.105
128 1.148 1.057
256 1.191 1.100
512 1.213 1.158
1024 1.255 1.148

Table 5: Relative time results τ/τ#Ranks� 64 of the weak scaling test
(forward-facing step).

#Ranks rhoCentralFoam rhoCentralRK4Foam
64 1 1
128 1.034 1.002
256 1.085 1.018
512 1.153 1.031
1024 1.186 1.041
2048 1.212 1.067
4096 1.203 1.063

Scientific Programming 7

4. Results for the Time-to-Solution Analysis

)e scaling analysis is an important exercise to evaluate the
parallel performance of the code on multiple cores; however,
it does not provide insights into the time accuracy of the
numerical algorithm nor into the time-to-solution needed to
evolve the discretized system of equations (equations
(1)–(3)) up to a final state within an acceptable numerical
error. For example, in the scaling study conducted on theM6
transonic wing, the number of iterations was fixed for both
solvers rhoCentralFoam and rhoCentralRK4Foam and
calculations were performed in the inviscid limit so that the
implicit solver used in rhoCentralFoam to integrate the

viscous fluxes was not active. In such circumstances,
comparing the two solvers essentially amounts at comparing
first-order (Euler) and fourth-order forward in time Run-
ge–Kutta algorithms. Hence, it is not surprising that the
CPU time for rhoCentralRK4Foam is about four times larger
than rhoCentralFoam (for the same number of iterations)
since it requires four more evaluations of the right-hand-side
of equations (5) per time step. For a sound evaluation of the
time-to-solution however, we need to compare the two
solvers over the same physical time at which the errors with
respect to an exact solution are comparable. Because the time
accuracy of the solvers is different, time step is also different
and so are the number of iterations required to achieve the
final state.

4.1. Test Case Description. For the time-to-solution analysis,
we consider the numerical simulation of Taylor–Green (TG)
vortex, a benchmark problem in CFD [25] for validating
unsteady flow solvers [26, 27] requiring time accurate in-
tegration scheme as the Runge–Kutta scheme implemented
in rhoCentralRK4Foam.)ere is no turbulence model ap-
plied in the current simulation.)e TG vortex admits an-
alytical time-dependent solutions, which allows for precise
definition of the numerical error of the algorithm with
respect to a given quantity of interest.)e flow is initialized
in a square domain 0≤x, y≤L as follows:

ρ(x, y, t) � ρ0, (11)

u(x, y, 0) � −U0 cos kx sin ky, (12)

v(x, y, 0) � U0 sin kx cos ky, (13)

p(x, y, 0) � p0 −
ρ0U2

0
4

(cos 2 kx + cos 2 ky), (14)

where u and v are the velocity components along x and y
directions, k ≡ 2π/L is the wave number, and U0, ρ0, and p0
are the arbitrary constant velocity, density, and pressure,
respectively.)e analytical solution for the initial-value
problem defined by equations (11)–(14) is

ρ(x, y, t) � ρ0, (15)

u(x, y, t) � −U0 cos kx sin kye
− 2]tk2

, (16)

v(x, y, t) � U0 sin kx cos kye
− 2]tk2

, (17)

p(x, y, t) � p0 −
ρ0U2

0
4

(cos 2 kx + cos 2 ky)e
− 4]tk2

, (18)

which shows the velocity decay due to viscous dissipation.
As a quantity of interest, we chose to monitor both the
velocity profiles u at selected location and the overall kinetic
energy in the computational box, which can be readily
obtained from equations (16)–(18) as

ε �
1
L2

L

0

L

0

u2 + v2

2
dxdy �

U2
0
4

e
− 4]tk2

. (19)

1.3

1.2

1.1

1.0

0 400
#ranks

Re
la

tiv
e t

im
e

rhoCentralFoam
rhoCentralRK4Foam

800 1200

Figure 6: Relative time τ/τ#Ranks� 16 of weak scaling tests for
ONERA M6 wing case.

0 1000 2000
#ranks

3000 4000 5000

Re
la

tiv
e t

im
e

rhoCentralFoam
rhoCentralRK4Foam

1.2

1.1

1.0

Figure 7: Relative time τ/τ#Ranks� 64 of weak scaling tests for
forward-facing step.

8 Scientific Programming

4.2. Comparison of Time-to-Solution. For the analysis of
rhoCentralFoam and rhoCentralRK4Foam solvers we con-
sider fixed box size L � 2πm and U0 � 1m/s and two values
of Reynolds number, Re � LU0/v, to test the effect of vis-
cosity.)e computation is done on a 160 × 160 points
uniform grid.)e simulations run up to t � 0.58 s for Re �

6.28 and t � 11.6 s for Re � 125.6, which corresponds to the
same nondimensional time t/tref � 0.0147 with tref ≡ L2/].
At this time, the kinetic energy ε decreased to 10% from the
initial value, as an illustrative example; Figure 8 shows the
velocity magnitude contour for the Re � 6.28. Figure 9
presents the computed velocity profile u(y) in the middle

of the box, x � L/2. rhoC stands for rhoCentralFoam solver
and rhoCRK4 stands for rhoCentralRK4Foam solver. It can
be observed that rhoCentralRK4Foam shows an excellent
agreement with the analytical profile for Δt � 10− 4 s (re-
ducing the time step further does provide any further
convergence for the grid used here). In order to achieve the
same level of accuracy with rhoCentralFoam, time step has
to be reduced by a factor of 5 to Δt � 2 × 10− 5 s compared to
rhoCentralRK4Foam.)e same behavior is observed for the
evolution of ε as shown in Figure 10.

In order to calculate the time-to-solution τ, we first
evaluated the CPU time τ0 per time step per grid point per

0.081275

0.16255

0.24383

4.939e – 10

3.251e – 01
U magnitude

Y

Z
X

Figure 8: Contour of velocity magnitude U ≡ (u2 + v2)1/2 for the Taylor–Green vortex at t/tref � 0.0147 for the case Re � 6.28.

rhoC-dt = 1e – 4s
rhoC-dt = 5e – 5s
rhoC-dt = 2.5e – 5s

rhoC-dt = 2e – 5s
rhoCRK4-dt = 1e – 4s
Analytical

–0.30

–0.15

0.00

0.15

0.30

u

1.57 3.14 4.71 6.280.00
y

(a)

rhoC-dt = 1e – 4s
rhoC-dt = 5e – 5s
rhoC-dt = 2.5e – 5s

rhoC-dt = 2e – 5s
rhoCRK4-dt = 1e – 4s
Analytical

1.57 3.14 4.71 6.280.00
y

–0.30

–0.15

0.00

0.15

0.30

u

(b)

Figure 9: Velocity distribution in the Taylor–Green vortex problem at t/tref � 0.0147. (a)Re � 6.28; (b)Re � 125.6.

Scientific Programming 9

core for both solvers. We used an Intel Xeon E5-2695v4
processor installed on)eta and Bebop platforms at
Argonne National Laboratory and reported the results of the
tests in Table 6. Even though τ0 depends on the specific
processor used but the ratio τ0rhoCentralRK4/τ

0
rhoCentral does not

and so is a good indication of the relative performance of the
two solvers. In the present case, this ratio is consistently
found to be 3 for all Reynolds number; we made additional
tests with much higher Reynolds up to Re ∼ 105 to confirm
this (see Table 6). Denoting by tf the physical final time of
the simulation, by Niter the number of iterations and by
Npoints the number of grid points, the time-to-solution for
the two solvers can be obtained as

τ � τ0 × Niter × Npoints, withNiter �
tf

Δt
, (20)

and is reported in Table 7. It is concluded that to achieve the
same level of accuracy, τrhoCentralRK4 is about 1.5 to 1.6 times
smaller than τrhoCentral. Additionally, as we discussed in the
scaling analysis, rhoCentralRK4Foam can achieve up to
123% improvement in scalability over rhoCentralFoam
when using 4096 ranks.)us, the reduction in time-to-
solution for rhoCentralRK4Foam is expected to be even
larger for large-scale, time-accurate simulations utilizing
thousands of parallel cores.

5. Conclusion

In this study, we presented a new solver called rhoCen-
tralRK4Foam for the integration of Navier–Stokes equations
in the CFD package OpenFOAM.)e novelty consists in the
replacement of first-order time integration scheme of the
native solver rhoCentralFoam with a third-order Run-
ge–Kutta scheme which is more suitable for the simulation
of time-dependent flows. We first analyzed the scalability of
the two solvers for a benchmark case featuring transonic
flow over a wing on a structured mesh and showed that
rhoCentralRK4Foam can achieve a substantial improvement
(up to 120%) in strong scaling compared to rhoCen-
tralFoam. We also observed that the scalability becomes
better as the problem size grows. Hence, even though
OpenFOAM scalability is generally poor or decent at best,
the new solver can at least alleviate this deficiency. We then
analyzed the performance of the two solvers in the case of
Taylor–Green vortex decay and compared the time-to-so-
lution, which gives an indication of the workload needed to
achieve the same level of accuracy of the solution (i.e., the
same numerical error). For the problem considered here, we
obtained a reduction of time-to-solution by a factor of about
1.5 when using rhoCentralRK4Foam compared to rho-
CentralFoam due to the use of larger time steps to get to the
final solution with the same numerical accuracy.)is factor
will be eventually even larger for larger-scale simulations
employing thousands or more cores, thanks to the better
speedup of rhoCentralRK4Foam.)e proposed solver is
potentially a useful alternative for the simulation of com-
pressible flows requiring time-accurate integration like in
direct or large-eddy simulations. Furthermore, the imple-
mentation in OpenFOAM can be easily generalized to
different schemes of Runge–Kutta family with minimal code
modification.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by Argonne National Laboratory
through grant #ANL 4J-30361-0030A titled “Multiscale

rhoC-dt = 1e – 4s
rhoC-dt = 5e – 5s
rhoC-dt = 2.5e – 5s

rhoC-dt = 2e – 5s
rhoCRK4-dt = 1e – 4s
Analytical

0.00

0.05

0.10

0.15

0.20

0.25

ε

0.1 0.2 0.3 0.4 0.5 0.60.0
Time (s)

Figure 10: Evolution of total kinetic energy.

Table 6: CPU time per time step per grid point per core τ0.

τ0rhoCentral τ0rhoCentralRK4 τ0rhoCentralRK4/τ
0
rhoCentral

Re � 6.28 1.230e− 06 s 3.590e− 06 s 2.919
Re � 125.6 1.120e− 06 s 3.630e− 06 s 3.241
Re � 1260 1.189e− 06 s 3.626e− 06 s 3.046
Re � 12600 1.187e− 06 s 3.603e− 06 s 3.035
Re � 126000 1.191e− 06 s 3.622e− 06 s 3.044

Table 7: Time-to-solution τ for rhoCentralFoam and rhoCentral-
RK4Foam.

τrhoCentral τrhoCentralRK4 τrhoCentral/τrhoCentralRK4Δt � 2 × 10− 5 s Δt � 10− 4 s

Re � 6.28 848 s 532 s 1.59
Re � 125.6 826 s 539 s 1.53

10 Scientific Programming

modeling of complex flows.” Numerical simulations were
performed using the Director Discretionary allocation
“OF_SCALING” in the Leadership Computing Facility at
Argonne National Laboratory.

References

[1] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial
approach to computational continuum mechanics using
object-oriented techniques,” Computers in Physics, vol. 12,
no. 6, pp. 620–631, 1998.

[2] V. Vuorinen, J.-P. Keskinen, C. Duwig, and B. J. Boersma,
“On the implementation of low-dissipative Runge-Kutta
projection methods for time dependent flows using Open-
FOAM,” Computers & Fluids, vol. 93, pp. 153–163, 2014.

[3] C. Shen, F. Sun, and X. Xia, “Implementation of density-based
solver for all speeds in the framework of openFOAM,”
Computer Physics Communications, vol. 185, no. 10,
pp. 2730–2741, 2014.

[4] D. Modesti and S. Pirozzoli, “A low-dissipative solver for
turbulent compressible flows on unstructured meshes, with
OpenFOAM implementation,” Computers & Fluids, vol. 152,
pp. 14–23, 2017.

[5] S. Li and R. Paoli, “Modeling of ice accretion over aircraft
wings using a compressible OpenFOAM solver,” Interna-
tional Journal of Aerospace Engineering, vol. 2019, Article ID
4864927, 11 pages, 2019.

[6] Q. Yang, P. Zhao, and H. Ge, “ReactingFoam-SCI: an open
source CFD platform for reacting flow simulation,” Com-
puters & Fluids, vol. 190, pp. 114–127, 2019.

[7] M. Culpo, Current Bottlenecks in the Scalability of OpenFOAM
on Massively Parallel Clusters, Partnership for Advanced
Computing in Europe, Brussels, Belgium, 2012.

[8] O. Rivera and K. Furlinger, “Parallel aspects of OpenFOAM
with large eddy simulations,” in Proceedings of the 2011 IEEE
International Conference on High Performance Computing
and Communications, pp. 389–396, Banff, Canada, September
2011.

[9] A. Duran, M. S. Celebi, S. Piskin, and M. Tuncel, “Scalability
of OpenFOAM for bio-medical flow simulations,”Ce Journal
of Supercomputing, vol. 71, no. 3, pp. 938–951, 2015.

[10] Z. Lin, W. Yang, H. Zhou et al., “Communication optimi-
zation for multiphase flow solver in the library of Open-
FOAM,” Water, vol. 10, no. 10, pp. 1461–1529, 2018.

[11] R. Ojha, P. Pawar, S. Gupta, M. Klemm, and M. Nambiar,
“Performance optimization of OpenFOAM on clusters of
Intel Xeon Phi™ processors,” in Proceedings of the 2017 IEEE
24th International Conference on High Performance Com-
puting Workshops (HiPCW), Jaipur, India, December 2017.

[12] C. J. Greenshields, H. G. Weller, L. Gasparini, and J. M. Reese,
“Implementation of semi-discrete, non-staggered central
schemes in a colocated, polyhedral, finite volume framework,
for high-speed viscous flows,” International Journal for Nu-
merical Methods in Fluids, vol. 63, pp. 1–21, 2010.

[13] A. Kurganov and E. Tadmor, “New high-resolution central
schemes for nonlinear conservation laws and convection-
diffusion equations,” Journal of Computational Physics,
vol. 160, no. 1, pp. 241–282, 2000.

[14] A. Kurganov, S. Noelle, and G. Petrova, “Semidiscrete central-
upwind schemes for hyperbolic conservation laws and
Hamilton–Jacobi equations,” SIAM Journal on Scientific
Computing, vol. 23, no. 3, pp. 707–740, 2006.

[15] J. A. Heyns, O. F. Oxtoby, and A. Steenkamp, “Modelling
high-speed viscous flow in OpenFOAM,” in Proceedings of the
9th OpenFOAM Workshop, Zagreb, Croatia, June 2014.

[16] M. S. Liou and C. J. Steffen Jr., “A new flux splitting scheme,”
Journal of Computational Physics, vol. 107, no. 23, p. 39, 1993.

[17] D. Drikakis, M. Hahn, A. Mosedale, and B.)ornber, “Large
eddy simulation using high-resolution and high-order
methods,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 367,
no. 1899, pp. 2985–2997, 2019.

[18] K. Harms, T. Leggett, B. Allen et al., “)eta: rapid installation
and acceptance of an XC40 KNL system,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 1, p. 11,
2019.

[19] S. S. Shende and A. D. Malony, “)e TAU parallel perfor-
mance system,” Ce International Journal of High Perfor-
mance Computing Applications, vol. 20, no. 2, pp. 287–311,
2006.

[20] C. Chevalier and F. Pellegrini, “PT-Scotch: a tool for efficient
parallel graph ordering,” Parallel Computing, vol. 34, no. 6–8,
pp. 318–331, 2008.

[21] V. Schmitt and F. Charpin, “Pressure distributions on the
ONERA-M6-wing at transonic mach numbers,” in Experi-
mental Data Base for Computer Program Assessment and
Report of the Fluid Dynamics Panel Working Group 04,
AGARD, Neuilly sur Seine, France, 1979.

[22] P. Woodward and P. Colella, “)e numerical simulation of
two-dimensional fluid flow with strong shocks,” Journal of
Computational Physics, vol. 54, no. 1, pp. 115–173, 1984.

[23] G. M. Amdahl, “Validity of the single processor approach to
achieving large-scale computing capabilities,” in Proceedings
of the 1967, spring joint computer conference on—AFIPS’67
(Spring), vol. 30, pp. 483–485, Atlantic, NJ, USA, April 1967.

[24] G. Axtmann and U. Rist, “Scalability of OpenFOAM with
large-leddy simulations and DNS on high-performance
sytems,” in High-Performance Computing in Science and
Engineering, W. E. Nagel, Ed., Springer International Pub-
lishing, Berlin, Germany, pp. 413–425, 2016.

[25] A. Shah, L. Yuan, and S. Islam, “Numerical solution of un-
steady Navier-Stokes equations on curvilinear meshes,”
Computers & Mathematics with Applications, vol. 63, no. 11,
pp. 1548–1556, 2012.

[26] J. Kim and P. Moin, “Application of a fractional-step method
to incompressible Navier-Stokes equations,” Journal of
Computational Physics, vol. 59, no. 2, pp. 308–323, 1985.

[27] A. Quarteroni, F. Saleri, and A. Veneziani, “Factorization
methods for the numerical approximation of Navier-Stokes
equations,” Computer Methods in Applied Mechanics and
Engineering, vol. 188, no. 1–3, pp. 505–526, 2000.

Scientific Programming 11

