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Most of the bridge structures in the world are built of reinforced concrete. With the growth of service life and the increase of urban
traffic and other factors, most bridges put into service have more or less damage. Traditional bridge damage detection methods
include the manual inspection method and bridge inspection vehicle method, which have many shortcomings. Moreover, the
detection of cracks in bridges is critical to the safety of transportation due to the extremely large number of bridges built in the
road networks across the world. To this end, this paper uses the most widely used CNN in deep learning to identify and classify
crack images and proposes a migration learning technique to solve the problem of the large amount of training data required for
training CNN. +e data augmentation and sliding window techniques are introduced to divide the collected crack data into
training establish and test set. +e experiments show that the method in this paper can classify the crack images better, extract and
locate the cracks of bridge crack units, and finally extract the crack coordinates of boxing. Compared with the customary image
recognition methods, the method used in this paper is easier to operate in practical engineering, and the accuracy of the obtained
results is higher.

1. Introduction

In China, the road networks have a very large number of
bridges built, and since the 1990s, the construction of
highway bridges has vigorously developed. According to the
Ministry of Transport, by 2020, there will be 832,500 bridges
in service nationwide [1], an increase of 27,200 bridges over
the same period last year, including more than 4,600 very
large bridges. By now, China has more than 1 million
highway and railroad bridges of all types, the largest number
in the world. Bridges are an important part of today’s
transportation system, and regular checks are needed to
ensure transportation safety. Bridge cracks are major
damage in the road networks that may cause an accident,
and the increasing stress on roads and bridges is alarming
[2, 3].

While China’s bridge construction industry has made
brilliant achievements, there is still a long-standing problem
of “emphasis on construction, not maintenance.” In the
natural environment, bridges are inevitably damaged by

various factors such as earthquakes, high-speed winds, and
freeze-thaw cycles caused by temperature differences. In
addition, the aging of concrete materials causes internal steel
bars to rust, carbonize, and deform and various human
factors such as increased traffic volume and vehicle overload.
+ese factors will lead to the decline of the bridge’s health
[4], affecting its service life. If there is no timely inspection
and maintenance work, the damage to the bridge is likely to
cause major traffic accidents. +e occurrence of these ac-
cidents will not only pose a threat to people’s lives but also
lead to incalculable losses of national assets. For example, on
August 14, 2018, a 200-meter-long section of the Moranti
Bridge in northwestern Italy collapsed during a storm (as
shown in Figure 1(a)), killing 43 people and seriously in-
juring many others and forcing the relocation of more than
600 people in the area. It is known that the bridge had been
in service for 51 years. In recent years, bridge accidents have
also occurred in China. For example, on December 26, 2010,
the bridge across the river in Yancheng City, Jiangsu
Province, collapsed after being hit by a passing vessel; on July
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26 of the same year, the bridge over the Yi River in Tangying,
Luanchuan, Henan Province, collapsed due to flooding
caused by heavy rains (as shown in Figure 1(b)), resulting in
the disappearance and death of more than 90 people.
+erefore, we should pay attention to the safety hazards of
bridges and keep a constant concern for the health and safety
of bridges.

In terms of management and maintenance of in-service
bridges, the NDT technology of Chinese bridges is still
lacking compared to that of developed countries and cannot
meet the huge road and bridge traffic network in China. In
this regard, how to combine current research hot issues
through technological innovation is the problem and
challenge faced by Chinese bridges at this stage of
development.

In order to guarantee the durability and stability of
bridge structures and minimize the incidence of bridge
accidents, experts and scholars in related fields are
committed to developing bridge health monitoring sys-
tems and studying bridge structure damage detection
technologies. In order to achieve all-weather safety
monitoring of bridge operation, judge the safety of the
overall bridge structure at any time, and make an effective
judgment and assessment of the location and degree of
damage in time when bridge damage occurs, at present,
some important bridges in the world have been designed
and installed with bridge health monitoring systems
according to relevant theoretical standards, such as the
Tsing Ma Bridge, Hangzhou Bay Bridge, and Hong Kong-
Zhuhai-Macau Bridge in China. Many other more ad-
vanced bridge health monitoring systems are being de-
veloped [5].

+ere are various methods for testing bridges and a wide
range of objects to be tested. For example, bridge deflection,
stress-strain, displacement, cracks, and expansion joints are
all elements to be tested [6]. In this paper, cracks are chosen
as the object of study because the site and type of cracks
appearing in bridges can best reflect the characteristics of
bridge defects, and also crack damage is the most common
early breakage in bridge damage diagnosis. According to
some literature data, more than 90% of the damage of
concrete bridges is caused by cracks. Some bridge cracks are
affected by load, impact, harsh environment, and other
factors, gradually turning from small cracks to larger cracks,

thus extending to produce new cracks. Sometimes there are
even deep cracks and penetration cracks of larger widths.
+ese types of cracks are particularly harmful to bridges and
are an important issue that cannot be ignored in bridge
accidents [7].

To this end, this paper uses the most widely used con-
volutional neural network in deep learning to recognize and
classify crack images and proposes a migration learning
technique to solve the problem of the large amount of
training data required for training convolutional neural
networks.+ere are several deep learning algorithms used in
machine vision. However, CNN-based networks have been
more effective in the domain of image classification and
perform well on hard visual recognition tasks [8]. We in-
troduce the data augmentation technique and sliding win-
dow technique to divide the collected crack data into a
training set and test set. +e experiments show that the
method in this paper can classify the crack images better,
extract and locate the cracks of bridge crack units, and finally
extract the crack coordinates by boxing. Compared with the
traditional image recognition methods, the method used in
this paper is easier to operate in practical engineering, and
the accuracy of the obtained results is higher.

2. Related Work

In recent years, research on the detection and identification
of bridge crack images using machine vision technology has
gradually received attention from experts in the field of
bridge damage detection. It is based on machine vision
theory and aims to allow computers, drones, and other
auxiliary devices to replace human hands, which can per-
form long-distance, high-resolution, and low-cost automatic
inspection techniques for bridges [9].

+e core of machine vision in the early years was digital
image processing technology, which first appeared in the
1950s [10], and then gradually developed into a discipline,
with the rapid development of computer technology and
hardware devices, which in turn pushed the image pro-
cessing technology to a higher level, now known as machine
vision. Compared with several bridge inspection methods
introduced in the previous subsection, the crack image
detection method based onmachine vision has not only high
accuracy for crack detection but also has much lower

(a) (b)

Figure 1: Bridge collapse accident.
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detection cost in comparison. With the development of
drone technology, carrying high-definition cameras on
drones to inspect bridges can be completely independent of
environmental factors such as terrain and bridge type, saving
manpower and improving detection accuracy to avoid
manual errors.

+e image processing technique was used to detect the
deformation of bridge cracks [11]. It was found that this
method can accurately detect the deformation of bridge
cracks under different loads, and the feasibility of this
method was verified through experiments. Reference [12]
studied the quantification of concrete cracks using image
processing techniques, and the crack opening area was
projected by designing an image software method. +is
technique was verified by using relevant experiments.
Reference [13] proposed an image recognition technique
for pavement cracks based on a neural network algorithm
[14], in which operations such as median filtering and
segmentation image enhancement were used to identify
the cracks in the pavement cracks, identify the crack
subblocks in the areas with severe damage to the pave-
ment, and then further use the counting method to
measure the width of the cracks. However, this method
requires high pixel quality of the image. In [15], a study of
machine vision-based bridge apparent damage detection
was carried out [16], in which image data were first ac-
quired using a CCD camera, the images with defects in the
acquired data were quantified and segmented, the images
containing damage were identified by classification using
a histogram BP neural network, and finally crack defects
were quantified and estimated. A sample database of
defective images was established based on the acquired
data. Reference [17] designed an acquisition system for
bridge crack images, combined with image processing
techniques to annotate the acquired images, and then
performed image preprocessing and feature analysis, used
the projection feature method to determine whether the
images contained cracks, and realized feature extraction
of cracks. In [18], the projection method was used to
classify the crack images, the digital image processing
algorithm was used to achieve automatic recognition of
the crack images, the digital morphology method was used
to measure the size of the cracks semiautomatically, and
finally, based on the Visual C++ platform, a software that
can detect the condition of the bottom of the bridge was
developed.

References [19, 20] proposed an image preprocessing
method for solving the problem of the large amount of noise
in the acquired images due to the interference of light and
stains. Firstly, the image smoothing technique is used to
solve the problems such as varying illumination intensity
and shadows, then the linear filtering property based on
Hessian matrix is used to enhance the local features of
concrete cracks, and finally, the threshold segmentation
processing technique is used to separate and extract the
cracks. Solving the problems encountered in engineering
examples makes this something we need to learn. However,
the problems encountered in different environments are
different, and there are still many problems and challenges.

3. Traditional Bridge Damage
Detection Methods

+e traditional method of bridge damage detection is
manual inspection, which mainly involves inspectors ob-
serving bridges for damage such as cracks directly with the
naked eye or using auxiliary equipment such as binoculars,
telephoto cameras, and scaffolding [7]; recording the loca-
tion, thickness, and size of the cracks; and finally collating
them to assess the health of the bridge. Figures 2(a)–2(d)
show an example of manual inspection.

A bridge inspection work vehicle is a special vehicle
suitable for preventive inspection operations and disease
repair of large- and medium-sized bridges. According to the
special device, the bridge inspection test is mainly divided
into two types: truss type and basket type, as shown in
Figure 3.

Bridge inspection vehicles can play an auxiliary in-
spection role for the bottom of the bridge or some other
parts of the bridge that are difficult to observe directly.
However, there are still some problems such as high cost,
safety hazards for the workers, and effects on traffic. Using
the traditional methods, we may not be able to detect the
defects in real time, which imposes more risks to trans-
portation safety.

4. Migration Learning-Based
CNN Construction

+e convolutional neural network structure used in this
paper is a variant of the VGG structure, where a filter of size
3× 3 is used with a maximum pool, a step size of 2, and a
window size of 2× 2. ReLU is used as the activation function,
which helps to increase the nonlinearity of the network.
Compared to the prototype VGGNet, the configuration is
changed to a fully connected layer with 256 neurons before
the Softmax layer, making the network better compatible
with migration learning due to the lack of training data.

4.1.BatchNormalizationLayer. In this paper, we add a batch
normalization (BN) layer between the convolutional layer
and the pooling layer, which is also a layer of the neural
network, like the convolutional layer, activation function
layer, and pooling layer. Batch normalization is a network
training technique that can improve the performance of the
network model and suppress the occurrence of “gradient
dispersion” during network training, thus making it easier
and more stable to train deep network models.

+e specific operation of the batch normalization layer is
to insert a normalization layer before the input of each layer
of the network, and the data is normalized and then output
into the next layer of the network.+is avoids changes in the
input data distribution of the next layer due to parameter
updates during the training of the lower layer of the network.
+e key point of its algorithm is the transformation re-
construction, where the learning parameters c, β are ss
shown in equation (1).

Each x(k) will have a pair of parameters c(k), β(k):
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+e formula shows that the learned reconfiguration
parameters c, β can be recovered to the original one of the
learned features of a layer. +e final equation for the skin
normalized layer forward conduction process is
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4.2. Data Enhancement Techniques. In warp networks, ac-
quiring more data will make the trained neural network
model better, but data acquisition is often subject to various

(a) (b)

(c) (d)

Figure 2: Examples of manual detection.

(a) (b)

Figure 3: Example of a bridge inspection vehicle. (a) Truss-type bridge inspection vehicle. (b) Basket type bridge inspection vehicle.
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limitations in practice. Based on this problem, we propose
using the data augmentation technique, which is to create
fake data based on the real dataset and add it to the training
set. Since the dataset used in this paper includes only 2000
images, which is a small dataset, the data augmentation
technique is introduced here to suppress the overfitting
phenomenon. +e data enhancement in image recognition
makes the image produce random rotation, horizontal flip,
translation, reflection, random cropping, adjusting contrast,
and so on. Data enhancement operations are generally
performed after the data normalization process.

4.3. Transfer Learning Network Structure. In transfer
learning, due to the difference in the types of images con-
tained in the source and target domains, the most common
approach when performing knowledge transfer is to remove
the original initial fc layer and then use an adaptive fc layer
in the target domain.+e dimensionality of the new adaptive
layer is selected based on the complexity of the image
features, but determining the size of the dimensionality still
depends on experience and selecting a more appropriate
dimensionality by cross-validation.

Compared to the VGG-16 network with a training
dataset of over 450,000 images, our cracked ImageNet
currently has only 2,000 well-defined labeled images. In the
absence of data, in order to avoid serious overfitting
problems, we place a relatively small number of nerve fc
layers. In the first adaptation layer, 256, 1024, and 4096
neurons were used for precomputation, and the results were
not significantly different. +erefore, considering the
computational cost, in the final design, two adaptive fc layers
are used.+e first one has 256 neurons, and the second one is
the softmax layer.+e detailed network structure is shown in
Figure 4.

5. Experimental Verification

Before the network training, we performed two sets of image
recognition classification experiments to verify the method’s
feasibility.

5.1. Damage Detection. For the classification problem with
supervised learning, we usually divide the labeled data into
two sets: one for training and the other for testing. A total of
2000 cracked images were collected using a UAV and a
handheld DSLR camera to randomly generate a training set
and a test set. Some of the collected image data are shown in
Figure 5. +e ratio of the training set and test set is set to 4 :1
based on experience. In other words, out of 2000 original
images, 1600 are used for the training and 400 are used for
the testing process. +e 1600 images used for training were
first cropped into smaller images with 224× 224 pixels
resolution, as shown in Figure 6. Before training, each image
is labeled with defective or nondefective labels. Choosing a
relatively small crop size can facilitate the training of the
neural network. It makes it possible to capture finer features,
such as scratches and shadows. However, smaller images

make it more complicated to label classes and also require
more computational power.

5.2. Sliding Window Technology. Since the input training
data is cropped to a smaller image of 224× 224 pixels res-
olution for easy training of the network, this causes some
cracks to appear on the four edges of the image, as shown in
Figure 7. As the image data passes through the CNN, the
input image becomes smaller, meaning that cracks on the
edges have less chance of recognition than cracks in the
middle of the image. Secondly, not being sure if these
features are real cracks may affect the occurrence of false
labeling when labeling the training set. Even if the neural
network classifies these images, its recognition accuracy
decreases due to the difficulty in identifying the crack fea-
tures. To solve this problem, we use a sliding window
technique in the training step for detecting all locations
located in the image space.

As shown in Figure 8, a schematic diagram of the scheme
using the sliding window technique for scanning is shown.
+e length of time that the network processes the image data
is related to the substance of the step size of the sliding
window scan in the sea. It also affects the recognition ac-
curacy of the image if an inappropriate window step size is
chosen. +rough testing, this paper sets the step size to 256,
and in order to reduce the error rate of crack recognition, a
complete scan is set to contain three scanning processes.+e
size of the scanning window is fixed at 256× 256, and the
first scan starts from the top left corner of the image with the
coordinate mark (0, 0), the second scan starts from the
coordinate (96, 96), and the third scan starts from the co-
ordinate (176, 176), thus gradually scanning the whole
image.

5.3. Comparison of Results. +e experiments in this section
first use the 1600 small sample dataset to train on the or-
dinary convolutional neural network (CIFAR-10 model) for
100 epochs, the loss value stabilizes, and then use 400 test
samples to test the network model, using the validation
accuracy and network loss value as the criterion. +en, the
pretrained migration learning model is retrained with 1600
small samples, and the loss value does not decrease after 100
iterations of training. +e results are shown in Figure 9.

Based on the variation curves of the accuracy and loss
values in Figure 9, it can be observed that a certain degree of
overfitting occurs. For both binary classification tasks, we
observe about 10% overfitting (obtained from the difference
between the training accuracy and the test accuracy). Since
the training accuracy in the task reaches more than 90%, we
can conclude that the main reason for the overfitting is the
small amount of training data since the CNN architecture
used in this paper already has enough complexity to cope
with the classification problem.

+e training is performed on the variant VGG model in
this paper using a small sample dataset of 1600 images. +e
prediction results are compared with the prediction step
curves of the model pretrained by migration learning, as
shown in Figures 10(a) and 10(b).
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Figure 4: Overall execution flow of the migrated learning network structure.
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Figure 5: Example of some of the acquired fracture images. (a) Example of a lossy dataset. (b) Example of lossless dataset.

crack1 crack2 crack3 crack4 crack5

crack12 crack13 crack14 crack15 crack16

crack23 crack24 crack25 crack26 crack27

crack34 crack35 crack36 crack37 crack38

crack45 crack46 crack47 crack48 crack49

crack56 crack57 crack58 crack59 crack60

crack67 crack68 crack69 crack70 crack71

crack78 crack79 crack80 crack81 crack82

crack89 crack90 crack91 crack92 crack93

crack100 crack101 crack102 crack103 crack104

Figure 6: Example of a cropped image of a smaller crack.
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Figure 7: Example of image edge cracks.
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Figure 8: Schematic diagram of the sliding window scanning scheme.
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Figure 9: CIFAR-10model training results. (a) Accuracy values for 100 iterations of epoch training. (b)+e loss value of 100 iterations of the
training epoch.
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In Figure 10(a), it can be found that the initial correct
rate of prediction using the model directly on the data
without migration learning is 24.7% when classifying the
crack dataset, while the initial correct rate after using mi-
gration learning is 62.3%. After about 50 epoch iterations of
training, the highest correct rate of 99.1% was achieved with
migration learning. After about 70 iterations of epoch
training, the recognition rate with zero-based learning also
reaches the highest value of 97.4%.+rough Figure 10(b), the
loos value of pretraining by migration learning decreases
faster, indicating that the network is trained faster. It is
observed through the loss curve that the network is trained
for the prediction process, and no significant overfitting
occurs in the field.+e iterative training curves are smoother
and faster for both the 2-category task and the 5-category
task. +e comparison from Figures 10(a) and 10(b) also
shows that the degree of overfitting increases for all clas-
sification tasks as the number of tasks increases.

6. Conclusions

+is paper details the local details of using migration
learning methods in CNNs. Firstly, image recognition ex-
periments are used to verify the feasibility of neural networks
to recognize cracked images.+en, the construction of all the
migration learning neural network structures used in this
paper is carried out, and a detailed network configuration
table is given. Finally, the data are trained in the network
using data augmentation techniques. +e obtained results
show that the migration learning approach can effectively
avoid the occurrence of the overfitting phenomenon and
also suppress the phenomenon of the network falling into
local optimal solutions during gradient descent. More im-
portantly, it greatly improves the network training speed and
saves computational power and time cost. In the future, we
intend to use a large-scale dataset to train the model to
improve its accuracy. Moreover, we intend to use other deep

learning algorithms and traditional learning algorithms and
conduct a detailed analysis of the performance of various
models in this domain.

Data Availability

+e datasets used are available from the corresponding
author on reasonable request.
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