
Research Article
Research on Visual Image Texture Rendering for Artistic
Aided Design

Yahui Xiao

Changsha Normal University, Changsha 410000, China

Correspondence should be addressed to Yahui Xiao; sunny@csnu.edu.cn

Received 17 June 2021; Revised 21 July 2021; Accepted 2 August 2021; Published 9 August 2021

Academic Editor: Muhammad Usman

Copyright © 2021 Yahui Xiao.&is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

&e rendering effect of known visual image texture is poor and the output image is not always clear. To solve this problem, this
paper proposes a visual image rendering based on scene visual understanding algorithm. In this approach, the color segmentation
of known visual scene is carried out according to a predefined threshold, and the segmented image is processed by morphology.
For this purpose, the extraction rules are formulated to screen the candidate regions. &e color image is fused and filtered in the
neighborhood, the pixels of the image are extracted, and the 2D texture recognition is realized by multilevel fusion and visual
feature reconstruction. Using compact sampling to extract more target features, feature points are matched, the coordinate system
of known image information are integrated into a unified coordinate system, and design images are generated to complete art-
aided design. Simulation results show that the proposed method is more accurate than the original method for extracting the
information of known images, which helps to solve the problem of clearly visible output images and improves the overall
design effect.

1. Introduction

Software design and hand-drawn design are usually used in
art design. With the rapid development of multimedia
technology, art design is more and more inclined to be
combined with computer technology, resulting in various
auxiliary design tools and software design functions [1].
Various software design tools can improve the quality of
work by reducing the cost of manual design. At the same
time, designing samples using 2D and 3D software design
models enrich the creativity of visual effect [2] and can better
represent the designer’s design concept and innovative ideas,
change the original form of artistic design, improve the
working mode of artistic design, and bring earth-shaking
changes to traditional artistic design.

In computer science, the scene visual understanding is
one of the most widely used technologies in the field of art
design. Visual comprehension of scene allows the use of
computer to replace human eyes and brain to perceive,
recognize, and understand 3D scenes and objects in the real
world [3, 4]. It is used to analyze the complex distribution of

objects in the scene’s image by combining with natural
language processing for accurately describing the infor-
mation obtained in a reasonable manner.&emain objective
of visual comprehension is to allow the designers to extract
the scene information. Applying the visual comprehension
algorithm to the visual scene of artistic aided design can help
the designer to solve the problem when the output image is
not clear because of the imprecise information.

With the development of image processing technology,
2D texture recognition of color image is carried out by using
image processing technique from computer vision. More-
over, 2D texture feature extraction and analysis method of
color images is combined to analyze the texture feature of
color images, improve the image quality and detection
ability of color images, study the 2D texture recognition
method of color images, and improve the accurate analysis
and 3D feature resolution ability of color multitexture
image. In [5], the authors used a combination of macro- and
local aspects to obtain multiscale data information for
building an image information model.&e authors in [6] put
forward a method of image segmentation based on the

Hindawi
Scientific Programming
Volume 2021, Article ID 1190912, 8 pages
https://doi.org/10.1155/2021/1190912

mailto:sunny@csnu.edu.cn
https://orcid.org/0000-0003-0338-0988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1190912

induction and application of multifeature information in
remote sensing images. &is method combines the features
of spectrum, texture, and shape, respectively. In [7], the
authors put forward a method of remote sensing image
segmentation by combining spectral and texture features,
which can improve the segmentation efficiency and accuracy
of different objects.

Edge sharpening feature decomposition, scale decom-
position, and multimode feature reconstruction methods are
used to realize 2D texture recognition of color images [8].
However, the traditional methods for 2D texture recognition
face numerous challenges such as low precision and bad self-
adaptive ability. Hence, in this study, 2D texture rendering
based on computer vision is proposed to detect the saliency
areas of the 2D texture image.

&e rest of this paper is organized as follows. In Section
2, graphics rendering is discussed which is the building block
of 2D texture rendering. In Section 3, color multitexture
image acquisition and regional fusion filtering is discussed.
&e experimental results and analysis are provided in Sec-
tion 4. Finally, this paper is concluded and future research
directions are provided in Section 5.

2. Graphics Rendering

Rendering pipeline is a conceptual model in computer graphics
that describes the steps a graphics system needs to perform for
rendering a 3D scene onto a 2D screen [9]. For this purpose, we
first discuss graphical rendering process in Section 2.1 followed
by vertex processing and 3D observation in Section 2.2.

2.1. Graphical Rendering Process. Commonly referred to as a
rendering pipeline, it is a series of data processing for appli-
cation’s data into the final rendering of an image [10]. &e
rendering process is shown in Figure 1. First, the vertex and
attribute required for the geometry is set on the client side of the
application, and then, the data are entered into a series of shader
stages for processing. &e output of one element is used as an
input for the next stage/element, resulting in an image that can
be rendered to a 2D screen. Next, the rendering pipeline can be
divided into several main stages, namely, vertex processing,
rasterization, slice processing, and output integration operation.

During the vertex processing phase, vertices and
primitives, such as conversion operations, stored in the
buffer are processed. In the rasterization phase, the updated
pixels are passed to the rasterized unit upon clipping [11, 12]
by converting each pixel into a set of slices. Here, the slice is
defined as a set of data, i.e., pixels that can not only be placed
in the frame cache but also can be culled out and the pixels in
the color buffer defined as a memory space that stores the
pixels displayed on the screen. During chip processing, the
chip testing is mainly carried out, and then, the color value of
the chip is determined by various operations of the chip
shader. During the output merge phase, the pixels in the slice
and color buffers are compared or merged, and the color
values of the pixels are updated [13].

2.2. Verx Processing and 3DObservation. Vertex processing
and 3D observation perform various 3D geometric
transformation operations on each input vertex stored in
the buffer. &e vertex processing stage is programmable.
Based on the vertex processing transformation operation,
3D objects can be transformed from object space to
clipping space. &e transformation pipeline flow is shown
in Figure 2.

Each object has a local coordinate system, or it can be
assumed that each object is defined in its own object space.
Also, multiple objects can be integrated into a single world
space provided that the coordinate transformation takes the
form

x′ � axxx + axyy + axzz + bx,

y′ � ayxx + ayyy + ayzz + by,

z′ � azxx + azyy + azzz + bz.

(1)

&e coordinates x′, y′, and z′ are derived from the linear
transformations of the original coordinates x, y, and z, which
are called affine transformation. Translation, rotation,
scaling, reflection, and tangent are special cases of affine
transformations. Any affine transformation can always be
expressed as a combination of these five transformations
[14].

In the 3D homogeneous coordinate representation, the
3D translation of the coordinate position can be expressed in
a matrix form using

x′

y′

z′

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 0 0 tx

0 0 0 ty

0 0 1 tz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

z

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In the 3D scene environment, the model object can be
transformed by translating its vertex coordinates.

&e three-dimensional rotation operation requires defining
the corresponding rotation axis. First, the three-dimensional z-
axis rotation needs to be obtained using equation (3). Next, the
secondary coordinate is obtained using equation (4):

Enter geometry and
attributes

RAM

Stream
output

Geometry

Texture

Cache

Calculation

Frame buffer

Vertex processing

Subdivision shader

Primitive processing

Cut

Fragment processing

Pixel processing

Vertex

Vertex

Snippet

Pixel

Primitive

Figure 1: Rendering a graph.

2 Scientific Programming

x′ � x cos θ − y sin θ,

y′ � x sin θ + y cos θ,

z′ � z,

(3)

x′

y′

z′

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

cos θ −sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

z

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where θ is the angle of rotation.
&e equation for rotating around the other two axes can

be replaced by the coordinate parameters x, y, and z in
equation (3):

x⟶ y⟶ z⟶ x. (5)

Using equation (5), the transformation equation for
rotation around the x and y axes can be obtained as follows:

x′ � x,

y′ � y cos θ − z sin θ,

z′ � z sin θ + z cos θ,

x′ � z sin θ + x cos θ,

y′ � y,

z′ � z sin θ + x cos θ.

(6)

&ree-dimensional scaling can be represented by the
following matrix:

x′

y′

z′

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

tx 0 0 0

0 ty 0 0

0 0 tz 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

z

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Among them, the scaling parameters tx, ty, and tz are
arbitrary positive values that are prespecified. &e display of

the scaling transformation relative to the origin is expressed
as

x′ � x · tx,

y′ � y · tx,

z′ � z · tz.

(8)

When the object is modeled, it has its own local coor-
dinate system and belongs to its own object space. In the
rendering pipeline, the first task is to integrate the model
objects of the independent object space into the world space,
i.e., the world coordinate system. &e world space can be
regarded as the coordinate system of the entire virtual scene.
&e integration process is to apply model conversion, i.e., a
model conversion matrix (Mmod) is obtained by multi-
plying the matrices of the above series of affine transfor-
mations, and the position coordinates of the model object in
the object space are multiplied byMmod to obtain the model
object in the position coordinates of world space.

3. Color Multitexture Image Acquisition and
Regional Fusion Filtering

In this section, first, we discuss the color multitexture image
acquisition for rendering followed by plane projection of the
area to be mapped. Finally, we discuss the procedure to
calculate the coordinate of texture.

3.1.ColorMultitexture ImageAcquisition. To realize the two-
dimensional texture recognition of color images based on
computer vision, first, we build a color multitexture image
acquisition model [15], use the local window feature de-
tection method to extract the contour feature pointsQ and P
of the color multitexture image, and combine the correla-
tion. According to the fusion rule [16], the maximum value
pixel A of the two-dimensional edge pixel feature compo-
nents of the color multitexture image is

pixel A � max
8

i�1
(Q − P)⎛⎝ ⎞⎠. (9)

Object space Model
conversion World space

Clipping space Projection
conversion View space View

conversion

Perspective
division

Normalized
coordinate space

Viewport
transformation Screen space

Figure 2: Transformation pipeline flow.

Scientific Programming 3

Using the local information entropy fusion model for
color multitexture image collection, extract the contour
points of the color multitexture image, perform local in-
formation entropy fusion processing on the color multi-
texture image, extract the active contour model of the color
multitexture image, and combine the color multitexture
image &e regional features of the active contour are
matched with edge pixel features, and the local information
entropy rect(t) is extracted, and the output of the pixel
feature quantity collected by the color multitexture image is
reflected:

u(t) �
1
��
T

√ rect
t

T
 exp −j 2πK ln 1 −

t

t0
 . (10)

In equation (10), the pixel feature quantity |t|≤ 1 and K
are the number of pixels and j represents the singular point
of the boundary of the color multitexture image. Assume
that the position information associated distribution length
of the color multitexture image is L � xmax−xmin and the
width is W � ymax−ymin and H � zmax−zmin. Set the number
of super-pixels to obtain the one-dimensional histogram
distribution of the color multitexture image, determine the
number of super-pixels K, and combine the scattering model
to obtain the 2D texture feature of the color multitexture
image. Splines’ biorthogonal wavelet transform method is
used to obtain the texture high frequency component,
according to the USV decomposition result, which realizes
the feature decomposition and 2D texture recognition of the
color multitexture image.

3.2. Plane Projection of the Area to Be Mapped. Assume that
the three noncollinear points in the area to be mapped are
point P, point M, and point N, where P controls the source
point of texture mapping that corresponds to the coordinate
origin of the two-dimensional texture image, and the vectors
PM and PN control the direction of texture image μ and axis
v, respectively.

From the plane equa-
tionA(x − xo) + B(y − yo) + C(z − zo) � 0, it is known
that, to determine a plane, one needs to know the coordinate
ruler P(xo, yo, zo) of any point on the plane and the plane
normal vector M A, B, C{ }. Given that the three vertices of
the plane are P, M, and N, set the vectors M1 � M − P and
M2 � N − P, and then, calculate the cross product of the
vectors to obtain the plane normal vector M � M1 × M2. In
this way, a plane composed of points P,M, andN is obtained,
which serves as the reference plane T of the projection.

Knowing that the coordinate of any point in the area to
be mapped is Qi(xi, yi, zi), the coordinate Qi

′(xi
′, yi
′, zi
′) of its

projection point on the reference plane T needs to be ob-
tained. According to the simultaneous equations,

A x − xo(+ B y − yo(+ C z − zo(� 0,

xi
′ � xi + kA,

yi
′ � yi + kB,

zi
′ � zi + kC.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

&e value of k can be obtained using

k �
A xo − xi(+ B yo − yi(+ C zo − zi(

A
2

+ B
2

+ C
2 . (12)

&us, the projected coordinate Q can be obtained in this
fashion, i.e., Qi

′(xi
′, yi
′, zi
′).

3.3. Texture Coordinate Calculation. After projecting the
vertices in the area to be mapped onto the reference plane T, a
coplanar three-dimensional point set is obtained. According to
this coplanar point set, a two-dimensional coordinate system S-
T can be established, as shown in Figure 3.

&e origin of the S-Tcoordinate system is the first point P
of the three vertices in the reference plane. Take the side
PM�M−P as the horizontal axis, the length of the horizontal
axis is |PM|, and the length of the longitudinal axis is |PN′|:

PN′

 � |PN| · cos α, (13)

where α is the angle between the vector PN and the ordinate.
Given that the projection coordinate of the point Qi(xi, yi, zi)

on the plane is Qi
′(xi
′, yi
′, zi
′), the vector |PQ′| can be calcu-

lated. Assuming that the angle between the vector |PQ′| and
the transverse coordinate positive vector S of the texture
coordinate Xu is θ, the coordinates of Qi

′(xi
′, yi
′, zi
′) in the two-

dimensional coordinate system can be obtained as

SQi
� L cos θ,

TQi
� L sin θ,

⎧⎨

⎩ (14)

where

L �

����������������������������

xi
′ − xo(

2
+ yi
′ − yo(

2
+ zi
′ − zo(

2

,

cos θ �
PQ′ · S

PQ′

 · S
,

sin θ �
��������
1 − cos θ2

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

Since, the angle is in the range [0, π], the sinusoidal value
will be negative, so the sinusoidal value must be absolute to
get the correct coordinates.

Using the above calculation, every projection point in the
plane can get the coordinate points in the ST coordinate
system. &e texture coordinate system u-v is located in the
range of [0, 1]; hence, it is necessary to normalize the co-
ordinate points. If Smax and Tmax are the maximum values of
SQi

and TQi
, respectively, the final texture coordinates of the

fixed points of the model obtained by proportional trans-
formation are shown using

UQi
�

SQi

Smax
,

VQi
�

TQi

Tmax
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

4 Scientific Programming

&e texture coordinates’ system schematic is shown in
Figure 4.

As shown in Figure 4, the user needs to change the
mapping position, i.e., change the point P, which controls
the origin of the texture mapping. It corresponds to the
coordinate origin in the texture space, and the user needs to
change the mapping direction, i.e., change the pointM and
point N, which control the direction of the texture map-
ping, respectively. In this figure, vectors PM and PN cor-
respond to the u- and v-axis in the texture space, and the
user needs to change the mapping size, namely, change the
point M and point N, which control the size of the texture
mapping.

3.4. Comparison of Changes to the Parameters. &ree pa-
rameters, P, M, and N, are used to control the effect of local
texture mapping in determining the coordinates of vertices.
Here, P is the origin of texture mapping and corresponds to
the origin of texture image in the 2D coordinate system. It
controls the position of local texture mapping. &e vector
PM
⇀

(S-axis) of pointM and point P controls the direction of
the u-axis of the texture image, which corresponds to the x-
axis in a two-dimensional coordinate system. &e change in
the direction of PM

⇀
also affects the axial direction of S-axis,

according to its determination that results in the rotation of
the texture map. By changing the size of vector PM

⇀
, the

stretching and shrinking of texture can be achieved. Simi-
larly, the vector PN

⇀
(T-axis) of pointN and point P controls

the direction of the texture image axis, and the stretching
and shrinking effects in the longitudinal direction can be
achieved by changing its size. If the texture image is no
longer required to be rotated, one can fix the S-axis in the
positive direction so that the mapping direction does not
change.

4. Experimental Analysis

&is paper chooses Windows 10 as the experimental device,
the model is CubiB171 N 8GL009BCN BN5000, the CPU
memory is 6GB, and the experimental platform is MAT-
LAB9.0, and this paper takes Figure 5(a) as the experimental
object, takes the visual communication effect as the foun-
dation, and uses the designed method to render and analyze
the system performance.

In order to verify the performance of this system, the
images rendered in this system are compared with the
images rendered in Linux graphics rendering system [6] and
fluid cloud simulation rendering system [7].&e comparison
results are shown in Figure 5.

As can be seen from Figure 5 and 5(b) is a picture
rendered through the methodology proposed by this paper.
Figure 5(c) is an image rendered by the Linux graphics
rendering system [6] which has color differences, many color
stripes, and serious distortion. Figure 5(d) is an image ren-
dered through the fluid cloud simulation rendering system,
on which many noise spots appear, resulting in blurred image
rendering, which cannot be accurately displayed, resulting in
a part of the chromatic aberration and a lower effect than that
of the Linux graphics rendering system. Figure 5(b) is the
poster image after the system rendering. It can be seen from
the image that, after the system rendering, the poster image is
clear, there is no noise interference, the color difference is
rectified by the filter, and the color is more real. Compared
with the other two kinds of rendering systems, this system has
better rendering effect on the poster image and has excellent
rendering effect.

When the system is rendering, it will be affected by
factors, such as operation wait time. Compared with the
other two systems, the result is shown in Table 1.

As can be seen from Table 1, the waiting time of all
rendering operations in this system is not more than 0.5 s,
followed by fluid cloud simulation rendering system, the
maximum waiting time is 0.90 s, the system with the longest
waiting time is the Linux graphics rendering system, and the
maximum waiting time is 1.12 s. &e average waiting time of

a
L

N’

P(0,0) L·cosθ

L·sinθ

N

Q'i (SQi ,TQi)

θ

Figure 3: Schematic diagram to construct the S-T coordinate system.

Qi' (SQi ,TQi)

(0.0,0.0)

(0.0,1.0)

(1.0,0.0)

Figure 4: Texture coordinates’ system.

Scientific Programming 5

the system is 0.18 s, which is better than that of the Linux
graphics rendering system and the fluid cloud simulation
rendering system. It proves that the system has the best
performance, and the poster image is better.

After image processing, the pixel change is affected by
image size change. Comparing the pixel change of the system
and other two systems in different image sizes, the result is
shown in Figure 6.

Figure 6 shows that no matter how the size of the
poster image changes, the poster image rendered by this

system keeps a stable pixel, while the image pixel change
of the Linux graphics rendering system and the fluid cloud
simulation rendering system fluctuates greatly, and there
is no obvious trend change, which shows that the image
pixel change of these two systems does not vary according
to the image size, and at the same time, it indicates that the
rendering effect of these two systems is extremely un-
stable. Compared with other systems, the rendering effect
of this system is more stable, and the rendered poster
image is more effective.

(a) (b)

(c) (d)

Figure 5: Render contrast effect. (a) Original image. (b) Images rendered by this paper. (c) Images rendered by [6]. (d) Images rendered by [7].

Table 1: Render operation waiting time.

Rendering operation System waiting time in
this paper

Linux graphics rendering system
waiting time

Liquid cloud simulation rendering system
waiting time

Image rendering exchange
waiting 0.13 0.53 0.42

Hardware submission
waiting 0.24 0.80 0.63

Image rendering processing
waiting 0.15 0.77 0.54

Image data waiting 0.31 1.12 0.90
Image buffer waiting 0.15 0.43 0.27
Wait for completion 0.28 0.76 0.67
Average value 0.18 0.67 0.53

6 Scientific Programming

5. Conclusions

In this paper, an artistic aided design method based on scene
vision comprehension algorithm is proposed. &e proposed
approach can effectively extract the known scene image
information, detect the salient region texture features of the
collected color multitexture images by super-resolution
fusion method, and identify the 2D texture features
according to the texture and color feature components of the
color multitexture image. &e proposed approach is helpful
to solve the problem of unclear output image, improve the
output quality of the images, and improve the visual effect of
artistic aided design. To verify the efficiency of this approach,
a comparison is made with the images rendered in Linux
graphics and fluid cloud rendering. Simulation results show
that the proposed method is more accurate than the existing
methods for extracting the information of known images,
which helps to solve the problem of clearly visible output
images and improves the overall design effect.

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

&e author declares that he has no conflicts of interest.

References

[1] L. Liu, W. Xu, M. Habermann et al., “Neural human video
rendering by learning dynamic textures and rendering-to-
video translation,” IEEE Transactions on Visualization and
Computer Graphics, vol. 2, 2020.

[2] A. Panotopoulou, X. Zhang, T. Qiu, X.-D. Yang, and
E. Whiting, “Tactile line drawings for improved shape un-
derstanding in blind and visually impaired users,” ACM
Transactions on Graphics, vol. 39, no. 4, pp. 1–89, 2020.

[3] S. Chen and Z. Jiu, “A method of stereoscopic display for
dynamic 3D graphics on android platform,” Journal of Web
Engineering, vol. 19, pp. 818–829, 2020.

[4] A. Kerim, C. Aslan, U. Celikcan, E. Erdem, and A. Erdem,
“NOVA: Rendering virtual worlds with humans for computer
vision tasks,” Computer Graphics Forum, vol. 6, 2021.

[5] D. Beattie, W. Frier, O. Georgiou, B. Long, and D. Ablart,
“Incorporating the perception of visual roughness into the
design of mid-air haptic textures,” in Proceedings of the ACM
Symposium on Applied Perception 2020, pp. 1–10, Barcelona,
Spain, September 2020.

[6] M. Colombo, A. Dolhasz, and C. Harvey, “A texture super-
pixel approach to semantic material classification for acoustic
geometry tagging,” in Proceedings of the Extended Abstracts of
the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–7, Yokohama Japan, May 2021.

[7] K. Rematas and V. Ferrari, “Neural voxel renderer: Learning an
accurate and controllable rendering tool,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 5417–5427, Seattle, WA, USA, December 2020.

[8] J. Wu, “Two-dimensional texture recognition method of color
image based on computer vision,” Journal of Jixi University,
vol. 20, no. 1, pp. 31–36, 2020.

[9] M. Salgado, H. Hettiarachchi, T. U. Munasinghe,
K. Fernando, and N. C. Cooray, “Assist: rendering, pipeline
management, and pipeline tracking software,” in Proceedings
of the 2020 2nd international conference on advancements in
computing (ICAC), Malabe, Sri Lanka, December 2020.

[10] M. Kim and N. Baek, “A 3d graphics rendering pipeline
implementation based on the opencl massively parallel pro-
cessing,”@e Journal of Supercomputing, vol. 3, pp. 1–17, 2021.

[11] J. Chen, Z. Tian, X. Wu, and X. Lou, “Hardware modeling of
GPU geometric pipeline rasterization based on UML &
SystemC,” Application of Electronic Technique, vol. 45, no. 1,
pp. 23–26, 2020.

[12] W. Guo, Z. Wu, R. Xu, Q. Zhang, and M. Fujigaki, “A fast
reconstruction method for three-dimensional shape mea-
surement using dual-frequency grating projection and phase-
to-height lookup table,” Optics & Laser Technology, vol. 112,
pp. 269–277, 2019.

0

20

40

60

80

100

690×43205120×28803440×14403840×2160

Im
ag

e p
ix

el
/d

pi

Image size

Reference [6] Algorithm

Experimental algorithm

Reference [7] Algorithm

1920×1080

Figure 6: Image rendering effects of different sizes.

Scientific Programming 7

[13] J. W. Lee, J. H. Kim, Y. H. Lee, Y. J. Jeon, B. S. Jeong, and
J. H. Choi, U.S.PatentNo.10,466,530, U.S.patent and trade-
mark office, Washington, DC, USA, 2019.

[14] Z. H. A. N. G. Pingmei, J. I. N. Lizuo, and L. I. Jiu-xian, “Image
stitching based on affine transformation and image block,”
Information Technology & Informatization, vol. 5, no. 1,
pp. 61–65, 2020.

[15] P. Tiwari, S. N. Sharan, K. Singh, and S. Kamya, “Content
based image retrieval using multi-level 3D color texture and
low level color features with neural network based classifi-
cation system,” International Journal of Circuits, Systems and
Signal Processing, vol. 15, pp. 265–270, 2021.

[16] K. M. Hosny, T. Magdy, and N. A. Lashin, “Improved color
texture recognition using multi-channel orthogonal moments
and local binary pattern,” Multimedia Tools and Applications,
vol. 80, pp. 1–16, 2021.

8 Scientific Programming

