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.is paper presents a methodology for the sizing of a heavy-duty fuel cell commercial vehicle..e parameters scanning model and
the long-term stochastic drive cycle are adopted for this proposed sizing framework. .e dynamic programming algorithm is
employed as the energymanagement strategy to assess the performance of sizing..e efficacy of this framework is evaluated, and a
detailed analysis for the hydrogen consumption is given in the results. In addition, a prediction analysis based on the price
performance of the next decade is also given in this work.

1. Introduction

.e energy and environment are two limitations for the
transportation industry [1, 2]. .e heavy-duty commercial
vehicle is imperative to turn to new energy for its high fuel
consumption and emission. As a fuel-renewable and envi-
ronment-friendly on-board propulsion system, hydrogen
fuel cells are of great significance for alleviating the current
energy and environment dilemma.

Restricted by the dynamic properties of fuel cell, fuel cell
vehicles (FCVs) are always equipped with at least two energy
sources: a fuel cell stack and a battery pack or a super-
capacitor, which are also known as fuel cell hybrid electric
vehicles (FCHEVs) [3]. .erefore, FCHEV is generally
treated as a particular electric vehicle which equipped with
two or three power sources [4]. Many approaches are
presented in the literature to optimize the vehicle operating
cost, which can be divided into two levels: the optimization
level and the design level. .e optimal operation aims to find
the optimal operating points for fuel cell to achieve the

minimum hydrogen cost, which is determined by the energy
management strategy (EMS). .e optimal design aims to
determine the optimal sizes of vehicle components [5, 6].

.e key role of EMS for a FCHEV is to decide the power
splitting for energy sources at each instant, while at the same
time, the drivability constraints of vehicle must be satisfied
[7]. .ere have been many researches on EMS to improve
the fuel economy. In general, rule-based EMS and opti-
mization-based EMS are two approaches widely studied
[8, 9]. Under current technology, rule-based EMS has been
widely used in real vehicles’ controller for its advantages in
real time, simplicity, and cost. However, subjectivity and
uncertainty of this strategy may lead the control rules far to
the optimal rules [8]. On the other hand, thanks to the
increasing computing power of on-board processors, more
complex EMS has the potential to be applied in real vehicles;
optimization-based EMS has become the focus of current
academic research. Optimization-based EMS is often rep-
resented as optimization problems for constrained systems
in finite-time domain; the common optimization algorithms
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include dynamic programming (DP) [10], Pontryagin’s
minimum principle (PMP) [11], and genetic algorithm (GA)
[12]. In addition, two optimization frameworks (equivalent
consumption minimization strategy (ECMS) [13] and model
prediction control (MPC) [14–16]) are also applied to this
strategy to improve the control effect.

In addition to the EMS, many researchers focused their
attention on the sizing of energy sources to improve vehicle
performance. .e main purpose of sizing of energy sources
is to optimize the dynamic and fuel economy with fewer
cost; reasonable parameters can maximize the potential of a
vehicle’s EMS [17]. With the development of electric vehicle,
numbers of algorithms have been adopted to solve this
problem. As early as 2004, Lukic and Emadi [18] verified the
influence of drivetrain hybridization on energy consump-
tion and dynamic performance. In their work, the hybrid-
ization factor was defined, and the EMS was implemented as
charge sustaining. Kim and Peng [19] proposed a combined
optimization method of EMS and parameters sizing for
FCHEV. Different subsystem-scaling models were adopted
to predict the characteristics of components on different
sizes, and a near-optimal EMS was designed with the in-
spiration of stochastic dynamic programming results. In
[20], the scholars constructed a stochastic drive cycle to
simulate the randomness of real-world driving conditions,
and ECMS was used as an online EMS; the equivalent factors
of ECMS were adjusted with the proposed sizing method-
ology. In [21], a parameters’ sizing methodology based on
ordinal optimization and dynamic programming was pro-
posed. Hu et al. [22] gave a compared analysis for two
optimization-based EMS, and the influence of downsizing
the battery was also studied. In their further study, the
influence of driving pattern on sizing was studied in [23]; the
comparison of three different electrochemical energy storage
systems and the sizing framework for hybrid electric vehicle
are also given [24, 25]. In addition, Karaoğlan et al. [26]
studied the influence of gear ratio on fuel economy and
emissions.

For the EMS, optimization-based strategy has been the
focus of current research; and for the parameters sizing,
systematic algorithms are used to find the optimal/near-
optimal sizes of components for FCHEV; rule-based EMS or
optimization-based EMS are adopted as an associated
problem for these algorithms. Although existing research
has proposed a number of approaches for parameters sizing,
these approaches are based on the few drive cycles or only
one standard drive cycle, and parameters’ sizing for hybrid
heavy-duty commercial vehicles is little studied.

In this paper, a sizing methodology for a fuel-cell/battery
commercial vehicle is presented. It is based on the DP-based
EMS and parameters scanning model, and a long-term
stochastic drive cycle is adopted for the sizing framework.
.e main contributions are as follows: (a) A long-term
stochastic drive cycle that is based on the cluster and sto-
chastic procedure is adopted, and the processes of generate
stochastic drive cycle are also available. (b) A detailed
analysis on oversizing the fuel cell stack and battery is given.
(c) A predictive analysis is also given with considering the
price performance in the next decade.

.e remainder of this paper is organized as follows. In
Section 2, the model of a heavy-duty fuel cell commercial
vehicle is established. In Section 3, the design process of the
long-term stochastic drive cycle is proposed. In Section 4,
the DP-based EMS is introduced. In Section 5, the sizing
methodology of propulsion system is presented. Section 6,
provides results and discussion, and in Section 7, the con-
clusion of this paper is given.

2. Mathematical Model of an FCHEV

In general, for an FCHEV, fuel cell stack is employed as the
main power source, and battery is adopted as an energy
storage system, which is also known as the auxiliary source.
.e structure of selected FCHEV is shown in Figure 1. .e
electric motor is the only conversion equipment of electric
energy and kinetic energy, fuel cell stack and battery pack
composed of the propulsion system to provide power to
permanent magnet synchronous motor and the motor’s
inverter (DC-AC), and a DC-DC converter is used to boost
the voltage from fuel cell stack to DC bus. In this work, the
powertrain system is divided into a combined propulsion
subsystem and a transmission subsystem. .e parameters
sizing of propulsion system is the main work of this paper.

2.1. Vehicle and Drivetrain. .e mathematical model
building of FCHEV is reversed with the target of tracking
drive cycle, and the impacts of lateral dynamics and rotating
mass are ignored. At every moment of vehicle’s operation,
the torque Tw and speed ωw of wheels are given by

Tw � r m
dv

dt
+
1
2
ρCdAfv

2
+ mgf cos(α) + mg sin(α)􏼠 􏼡,

ωw �
v

r
,

(1)

where r is the rolling radius of the wheel, m the FCHEV’s
mass with full load; v the vehicle’s velocity at the current
moment; ρ the air density; Af the frontal area; Cd the
aerodynamic drag’s coefficient; f the rolling resistance
coefficient; α the road’s inclination angle..emotor’s torque
Tm, speed ωm, and power Pm are formulated as follows:

Tm �

Tw

ηfdrfd

, Tw ≥ 0,

Twηfd

rfd

, Tw < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ωm � ωwrfd,

Pm �

Tmωm

ηm

, Tm ≥ 0,

Tmωmηm , Tm < 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)
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where ηfd and rfd are the efficiency and gear ratio of the final
drive, respectively.

For this work, the motor power is defined as positive
during traction while negative during breaking. .e pro-
pulsion system consists of fuel cell stack and battery pack
outputs the power demand of the motor, as shown in the
following formula:

Pm � Pstack + Ppack, (3)

where Pstack and Ppack are the power of fuel cell stack and
battery pack. Parameters of the heavy-duty fuel cell com-
mercial vehicle are listed in Table 1.

2.2. Fuel Cell Stack. Fuel cell is an electrical device that
converts chemical energy into electricity. Proton exchange
membrane fuel cell (PEMFC) is the most common on-board
propulsion system for fuel cell vehicles. A complete on-
board PEMFC system includes fuel cell stack, hydrogen
storage system, hydrogen circuit, air circuit, water circuit,
and coolant circuit [3]..emodels for these systems are very
complicated..is work is mainly concerned with the power-
split of the bus but not the detailed conversion process of fuel
cells. .erefore, a simple efficiency graph model is used for
the simulation.

In this selected model, hydrogen consumption and ef-
ficiency of the fuel cell stack are both formulated as the
function of power demand; these datasets are obtained
through testing, which have been provided in ADVISOR
(FC_ANL50H2) [27]. Scaling models are adopted to facil-
itate parameters’ sizing, as shown in Figure 2.

2.3. Battery Pack. Benefiting from the high power density
and high reliability, lithium-ion batteries have become the
most commonly used energy storage system for FCHEV.
.e purpose of adding a battery pack into the propulsion
system is to improve the drivability and efficiency perfor-
mance of the vehicle.

For the model of battery pack, the circuit model is used
for simulation. In this model, the battery is equivalent to a
circuit with an ideal voltage source and an internal resis-
tance. When the battery pack is operating, its current and
power are formulated as follows:

Ibat �
Voc −

�������������

V
2
oc − 4RintPpack

􏽱

2Rint

, (4)

where Voc is the open circuit voltage, Ibat the current, Rint the
internal resistance, and Ppack the power of battery pack.
.ese parameters can be obtained from equations (5) to (7).

Ppack � Pbatηbat, (5)

Voc �
Vocns

np

, (6)

Rint �
rintns

np

, (7)

where ηbat is the conversion efficiency for charge/discharge,
ns the series number of cells, and np the parallel number of
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Figure 1: Block diagram of FCHEV. .e blue dotted lines, red thin solid lines, and black thick solid lines represent the hydrogen gas flow
channel, the electrical connections and mechanical connections of FCHEV, respectively.

Table 1: Parameters of the FCHEV.

Parameters Value
Vehicle total mass (kg) 9000
Air density (kg/m3) 1.2
Aerodynamic drag coefficient 0.563
Vehicle frontal area (m2) 6.6454
Wheel radius (m) 0.413
Gear ratio 6.67
Efficiency of transmission (%) 98
Rolling resistance coefficient 0.015
Efficiency of converter (%) 98
Efficiency of inverter (%) 98
Efficiency of charge (%) 90
Efficiency of discharge (%) 100
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cells. .e state of charge (SOC) of battery at time step k is
defined as

soc(k) � soc(k − 1) −
Ibat
Qbat

, (8)

where Qbat is the capacity of battery pack.
Rint and Ppack are the functions of SOC, as shown in

Figure 3.
It is worth mentioning that the battery pack is composed

of strings connected in parallel, with each string containing
the same number of cells in series. More detailed descrip-
tions about configuration and modelling of battery pack are
available in [23].

2.4.DriveMotor. For an FCHEV, the drive motor’s function
mainly includes the following two parts: (a) converting the
electrical energy from bus to mechanical energy to drive the
vehicle and (b) recycling the vehicle’s braking power to
charge the battery. A permanent magnet synchronous motor
(PMSM) is adopted for its compact and high efficiency. .e
model of drive motor is based on its efficiencymap, as shown
in Figure 4.

3. Long-Term Stochastic Drive Cycle

.e drive cycle refers to the driving characteristics of a
certain type of vehicle (passenger car, bus, and cargo vehicle,
etc.) in a specific condition (urban, suburban, highway, etc.);
it is generally a set of points representing speed versus time.
.ere have been many systems of typical driving cycles
around the world.

Although the representativeness of cycles will be con-
sidered in the design process of typical drive cycle, the
optimization results obtained under few drive cycles cannot
satisfy the randomness of real driving conditions [20].
.erefore, a long-term stochastic drive cycle is built to
overcome this drawback. .e constructed drive cycle is
based on the typical drive cycles of heavy commercial ve-
hicles, and cluster analysis and random process are adopted.
.e flowchart of this procedure is shown in Figure 5.

In this work, eight typical drive cycles for commercial
vehicles are introduced as the DC library, which are
numbered and shown in Figure 6. Twelve characteristic
parameters are used for clustering, and the corresponding
descriptions of these parameters are listed in Table 2. .e
characteristic parameters for each drive cycle are calculated
and listed in Table 3..ese parameters will be the raw data of
clustering.

Hierarchical clustering and Euclidean distance are
adopted to obtain the similar degree of the different drive
cycles. .e clustering results are shown in Figure 7. .e
library is divided into 5 classes with the benchmark of
similarity to 1: the first category includes drive cycles 1, 4, 6,
and 8, and drive cycles 2, 7, 3, and 5 are classified as the
second to fifth categories, respectively. .e drive cycles 8
(CHTC_HT), 2 (WVUCITY), 7 (NYCOMP), 3
(WVUINTER), and 5 (UDDSSHCV) are selected as the
representatives of each category. .ese five drive cycles will
be regarded as the originals in the long-term stochastic drive
cycle.

.e next step for this work is to build the combined
drive cycle, which is generated from the original drive
cycles. After that, the combined drive cycle will be divided
into microtrips and microidles. A microtrip is a segment
of the drive cycle where the velocity is not equal to zero,
and a microidle is the segment where the velocity is equal
to zero. .e relationship between microtrips and
microidles is depicted in Figure 8. .en, the divided
segments are added to the stochastic drive cycle randomly.
In this process, the microtrips and microidles are scaled
with a stochastic procedure. .e scaling processes for
microtrips are for their velocity, and for microidles, it is
for their length of time, the scaling factors are both de-
fined as a stochastic number from 0.8 to 1.2. To follow the
objective laws for drive cycles, the microtrip and
microidle should be added in turn, which means after
adding a microtrip, a microidle must be added as its
follow-up. In addition, the long-term stochastic drive
cycle can more effectively reflect the randomness of the
drive cycle, the total length of stochastic drive cycle is set
as 10 times that in the combined drive cycle in this work.
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Figure 2: Scaling models of fuel cell stack (on the basis of a fuel cell stack with 50 kW peak power on ADVISOR). (a) Hydrogen
consumption at different stack power. (b) Efficiency at different stack power.
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Another noteworthy point for this process is that after
the scaling of a microtrip, three indexes should be detected:
the maximum speed, maximum acceleration, and maximum
deceleration. If any index is higher than the combined drive
cycle, the scaling process should be repeated until satisfied.

After completing the construction of long-term sto-
chastic drive cycle, evaluation indexes are introduced to
evaluate the rationality. Figure 9 illustrates the distribution
of two drive cycles; Table 4 depicts the comparison of
characteristics of combined drive cycle and long-term sto-
chastic drive cycle..e above charts show that the long-term
stochastic drive can accurately reflect the characteristics of
original cycles.

4. DP-Based EMS

In general, the EMS for FCHEV has a great impact on ef-
ficiency. In this work, an optimal EMS based on dynamic
programming algorithm is adopted to assess the economic
potential of sizing.

Dynamic programming is a numerical method for
solving multistage decision-making problems. It can provide

the optimal solution for problems of any complexity level in
the limits of computational capabilities [7].

For a controlled multistage decision-making problem,
the state transfer function can be described as
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Table 2: .e characteristic parameters used for clustering.

Parameter Denotation
Average velocity (m/s) v

Average acceleration (m/s2) a

Average deceleration (m/s2) d

Standard deviation of velocity σv

Maximum velocity (m/s) vmax
Maximum acceleration (m/s2) amax
Maximum deceleration (m/s2) dmax
.e percentage of time in speed interval 0–20 km/h (%) θ0−20
.e percentage of time in speed interval 20–40 km/h (%) θ20−40
.e percentage of time in speed interval 40–60 km/h (%) θ40−60
.e percentage of time in speed >60 km/h (%) θ60−max
.e percentage of time in idle state (%) θ0

Table 3: .e characteristic parameters that are calculated for each drive cycle.

Denotation DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8
v 11.25 3.78 15.22 7.19 8.42 6.07 3.92 9.62
a 0.23 0.30 0.20 0.33 0.48 0.39 0.47 0.22
d 0.28 0.39 0.21 0.42 0.58 0.46 0.54 0.29
σv 7.81 4.58 9.77 6.56 8.87 5.82 4.23 7.61
vmax 24.25 16.01 27.15 20.03 25.93 19.58 16.09 24.58
amax 0.82 1.14 1.42 1.29 1.96 1.16 2.06 1.22
dmax 1.17 2.24 1.86 2.16 2.07 1.79 1.95 1.25
θ0−20 21.93 41.26 15.85 24.86 16.49 31.56 33.98 22.56
θ20−40 23.10 17.19 9.21 13.51 15.83 19.43 25.63 22.67
θ40−60 21.65 11.29 11.83 28.53 12.06 24.76 7.28 20.61
θ60−max 26.49 0 53.84 7.93 22.34 2.64 0 19.89
θ0 6.38 30.26 9.27 25.17 33.27 21.62 33.11 14.28
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Figure 7: Results of hierarchical clustering.
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Figure 9: .e distribution of velocity and acceleration for two drive cycles. (a) .e percentage of speed for combined drive cycle. (b) .e
percentage of speed for long-term stochastic drive cycle. (c) .e percentage of acceleration for combined drive cycle. (d) .e percentage of
acceleration for long-term stochastic drive cycle.

Table 4: .e characteristics of two drive cycles.

Characteristics Combined DC Stochastic DC
Duration (s) 6939 69393
Idle time (%) 22.03 24.38
Maximum velocity (m/s) 27.15 27.08
Average velocity (m/s) 8.73 6.85
Standard deviation of velocity 8.66 7.06
Maximum acceleration (m/s2) 2.07 2.06
Maximum deceleration (m/s2) 3.24 3.17
Average acceleration (m/s2) 0.29 0.28
Average deceleration (m/s2) 0.35 0.34
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s(k + 1) � fk(s(k), u(k)), (9)

where s(k) is the state variable at time k and u(k) is the
control variable. For a control policy u � u0, u1, . . . uN−1􏼈 􏼉,
the cost in time step N is defined as

J s0, u( 􏼁 � LN sN( 􏼁 + 􏽘

N−1

k�1
Lk sk, uk( 􏼁, (10)

where Lk is the instantaneous cost function..e optimal cost
is

J
∗

s0( 􏼁 � min J s0, u( 􏼁, u( 􏼁. (11)

.e optimal control policy u∗ � u∗1 , u∗2 , . . . , u∗N−1􏼈 􏼉.
For the DP-based EMS for FCHEV, the SOC of battery is

selected as the state variable, and the output power of fuel
cell stack is adopted as the control variable..e state transfer
function is defined as follows:

SOC(k + 1) � SOC(k) + hk Pstack( 􏼁, (12)

wherehk(Pstack) is the change rate of state in time k, which
can be obtained with equations (7) to (11).

For the structure of non-plug-in FCHEV, a constraint of
terminal SOC is required to sustain the energy storage
system. In principle, the constraint of terminal SOC can be
taken into account in two different ways, namely, as a soft
constraint or a hard constraint. In this study, a hard con-
straint is adopted by requiring that the energy storage stored
at the end of the mission equal to the value at the start of the
mission, as shown in equation (13). A more detailed ex-
planation will be found in [28–30]. Other parameters under
constraints are listed in equation (14). In particular, the
SOCmin and SOCmax are set to 0.4 and 0.8, respectively.

SOC(end) � SOC(0), (13)

Tm min ≤Tm ≤Tm max,

ωm min ≤ωm ≤ωm max,

Ibat min ≤ Ibat ≤ Ibat max,

Pbat min ≤Pbat ≤Pbat max,

Pstack min ≤Pstack ≤Pstack max,

SOCmin ≤ SOC≤ SOCmax.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

5. Structure of Parameters’ Sizing

.e objective of sizing is to obtain the near-optimal sizes of
maximum power of fuel cell stack (Pstack max) and the
number of battery cell (nbat). .e sizes of propulsion should
satisfy the following objectives: (a) meet the drivability and
(b) minimize the operating cost of the vehicle during its life
cycle.

For drivability, passenger cars typically have higher
velocity and acceleration targets, while for commercial ve-
hicles, equipped with large load mass, the vehicle’s climbing
performance always receives more attention. .erefore, the
sizing method is tested with three subobjects: (a) .e peak
power of fuel cell stack alone must be able to sustain the

maximum velocity; (b) the peak power with fuel cell stack
and battery pack together must meets the maximum
climbing slope index at a given velocity; (c) the power with
fuel cell stack and battery pack together should fulfil the
power demand of long-term stochastic drive cycle. .e first
subobject is used to obtain the low limiting value of
Pstack max, and the others are used to determine nbat. It
should be noted that the for the subobject (c), the verification
results are related to the selected EMS, DP-based strategy is
employed for this work, which has been introduced in
Section 4.

.is sizing methodology is based on the generated long-
term stochastic drive cycle, a parameters’ scanning model is
added for sizing, and the dynamic programming algorithm
is adopted for the EMS. .e flowchart of this proposed
methodology is shown in Figure 10.

In this sizing methodology, the range of fuel cell stack’s
peak power is divided into imax independent nodes; the range
of battery cell’s number is divided into jmax independent
notes; thses two groups of nodes constitute a crossover
model with (imax × jmax) crossover points, and for each
crossover point, there is an FCHEV model corresponding to
it. .e optimal cost for each size is obtained by DP-based
EMS. In addition, the low limiting value of Pstack max should
meet the power demand of the vehicle at a maximum ve-
locity (equation (15)), and the peak-powers provided by the
battery and fuel cell should meet the requirements of the
vehicle’s climbing performance (equation (16)). .e peak
power of the battery pack can be expressed as the product of
its capacity and the maximum discharge rate equation (17):

Pstack maxηcon ≥
Pv

ηmηinv
, (15)

Pstack maxηcon + Pbat maxηbat ≥
Pc

ηmηinv
, (16)

Pbat max � QbatCmax, (17)

where Pv is the power demand for maximum velocity, Pc is
the power demand for climbing, ηm is the average efficiency
of motor, ηbat is the charge/discharge efficiency of battery,
and ηinv and ηcon are the efficiency of DC-AC inverter and
DC-DC converter, respectively.

6. Results and Discussion

.is simulation is carried out with MATLAB; the interval is
set to 10 kW and 25 for the fuel cell stack’s peak power and
the battery cells’ number, respectively.

Under the current technical, lithium-ion batteries can
maintain a discharge time of 5 s at the peak discharge rate of
30C [31]. However, high rate discharge will seriously affect
the life of the battery. In this paper, the maximum discharge
rate of the battery is set as 20C. In addition, the capacity of
the battery cell used in the simulation is 3Ah. .erefore, on
the basis of equations (18) to (20), the minimum constraints
of Pstack max and nbat will be estimated, as shown in
Figure 11.
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Figure 12 shows the hydrogen consumption of vehicles
with different sizes under long-term stochastic drive cycle.
For a fair comparison, all the hydrogen costs are computed
with the SOC deviation. Two conclusions can be obtained
according to this figure:

(1) Starting from Pstack max � 70 kW, the hydrogen
consumption decreases with the increasing of the
peak power of fuel cell stack, but it increases when
the peak power exceeds 120 kW

(2) For a determined Pstack max, the hydrogen con-
sumption decreases with the increasing of the
number of battery cells, but the slope of decline
gradually decreases

To understand the causes of the changing of hydrogen
consumption, we consider three relevant performance

indicators: the global propulsion efficiency, the braking-
recovery-energy to negative-load-power ratio, and the global
fuel cell stack efficiency.

.e global propulsion efficiency is formulated as follows:

ηg,pro �
􏽐

N
i�0 P

+
veh(i)Δt

LHVH2
􏽐

N
i�0 mH2

(i)Δt
× 100, (18)

where P+
veh is the positive vehicle power, N is the length of

stochastic drive cycle, mH2
is the hydrogen consumption,

and Δt is the simulation step.
.e braking-recovery-energy to negative-load-power

ratio is defined as follows:

cre �
􏽐

N
i�0 Pre(i)Δt

􏽐
N
i�0 P

−
veh(k)Δt

× 100, (19)

where P−
veh is the negative vehicle power and Pre is the

braking energy recovered by battery pack, which is for-
mulated as follows:

Pre �
Pbat, if Pveh < 0,

0, otherwise.
􏼨 (20)

.e global fuel cell stack efficiency is defined as follows:

ηg,FC �
􏽐

N
i�0 Pstack(i)Δt

LHVH2
􏽐

N
i�0 mH2

(i)Δt
× 100. (21)

To make the figure clearer, four types of fuel cell stack
peak power are selected for this work: Pstack max � 70 kW,

Pstack max � 100kW, Pstack max � 120 kW, andPstack max �

170 kW. .e rest results of other types are visible in
Figure 13.

Figure 14 shows the effect of Pstack max and nbat on
defined relevant performance indicators. Figure 14(a) shows
the maximum global propulsion efficiency is approximately
55.56%, which is reached when Pstack max � 120 kW and
nbat > 1000. Increasing or decreasing the type of fuel cell will
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Figure 10: Flowchart of the sizing methodology.
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Figure 13: Comparative results of optimal costs.
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worsen this indicator. On the other hand, increasing the
number of battery cells can improve the global efficiency, but
its growth trend gradually slows down and eventually to
level. Figure 14(b) shows the size of fuel cell stack has less
affected in braking-recovery-energy, while the number of
battery cells has a great impact on this indicator: when
nbat < 400, limited by the physical constraints (e.g., the
maximum SOC or maximum voltage), the battery pack is
not enough to recover all the braking energy. .is means
that friction brakes will dissipate power from fuel cell stack,
which is not friendly to the global efficiency. Figure 14(c)
shows that the global fuel cell stack efficiency performs best
when Pstack max � 120 kW, and the increase in nbat will
benefit this indicator. Similarly, the growth trend gradually
slows down with the increase of nbat.

.e results in Figure 10 clarifies that the reduction of
hydrogen can be achieved with an appropriate Pstack max,
and the increase of nbat will also benefits the fuel economy. It
is beneficial to reduce the running cost, but the sharp in-
crease in vehicle’s price led by the increase of fuel cell and
battery is unacceptable for both manufactures and users.
Vehicle’s price should also be considered as a further
indicator.

To balance the cost of hydrogen consumption and
component costs, a cost function which is defined as the cost
per 100 km of the propulsion system is proposed, as shown
in equation (18).

J
100

� J
100
stack + J

100
bat + J

100
H2

. (22)

In this function, the vehicle’s cost J100 is divided into fuel
cell stack cost J100stack, battery cost J100bat , and hydrogen cost J100H2

.
.e fuel cell stack cost and the battery cost are cycle-nor-
malized cost, as expressed in equations (19) and (20) [28, 29].
In addition, the cost of hydrogen is the value of hydrogen

consumed when the vehicle’s total driving distance reaches
100 km in the constructed long-term stochastic drive cycle,
as shown in equation (21).

J
100
stack �

d

syv

1 + Pc

yv + 1
2

􏼒 􏼓jstackPstack max,

J
100
bat �

d

syv

1 + Pc

yv + 1
2

􏼒 􏼓jbatQbat,

J
100
H2

�
d

Xdc

jH2
mH2

,

(23)

where d is the length of cycle, Xdc is the distance under a
stochastic drive cycle, s is the average travelled distance of
the vehicle per year, yv is the vehicle lifetime, and Pc is the
yearly interest rate. Here, it is assumed that there are no
components replaced during three-year operation, and the
corresponding travelled distance is fifty thousand kilometres
per year..ese parameters above are given in Table 5. jstack is
the fuel cell stack price per kilowatt, jbat is the battery price
per kilowatt hour, and jH2

is the hydrogen price per gram.
.ree price conditions on the years 2020, 2025, and 2030
[32] are chosen for this study, as shown in Table 6.

Figure 15 shows the price impact on vehicle’s total cost.
Figure 14(a) shows the vehicle total cost with the price in
2020. In this case, the unit prices of fuel cells and battery cell
are higher; the optimal cost is 25.07 US dollars per 100 km
with the corresponding size to Pstack_max � 70 kW and nbat
� 696. .e cost previews of 2025 and 2030 are shown in
Figure 14(b) and 14(c) respectively. On the preview of 2025,
benefiting from the production increases and technology
improves, the unit price of fuel cell and battery will decrease
rapidly, and the optimal cost will drop to 21.46 US dollars
per 100 km with the corresponding size to Pstack max
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Figure 14: .e test results of performance indicators with increasing cell number in different fuel cell sizes. (a) .e global propulsion
efficiency. (b) .e braking-recovery-energy to negative-load-power ratio. (c) .e global fuel cell stack efficiency.
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Table 5: .e parameters of simulation.

Description Parameters Value
Length of cycle (km) d 100
Yearly travelled distance (km) s 5e4
Vehicle lifetime (years) yv 3
Yearly interest rate (%) Pc 5
Stochastic cycle distance (km) Xdc 269

Table 6: .e price trends of components cost.

Year Fuel cell price ($/kW) Battery price ($/kW) Hydrogen price ($/kg)
2020 70.41 256 5.32
2025 37.00 173 5.05
2030 29.84 117 5.03
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Figure 15: Continued.
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� 80 kW and nbat � 640. In 2030, with the further decrease of
component prices, the optimal cost will drop to 20.41 US
dollars per 100 km. .e optimal sizes and costs for different
price conditions are summarized in Table 7.

Figure 16 gives the comparative results of optimal costs
under three price conditions. Based on the price trends in
future, the optimal cost gradually decreases from 2020 to
2030. Compared to 2020, the decreases have reached 14.4%
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Figure 15: Performance indicators with increasing cell number in different fuel cell sizes. (a) .e global propulsion efficiency. (b) .e
braking-recovery-energy to negative-load-power ratio. (c) .e global fuel cell stack efficiency.

Table 7: .e optimal sizes under different price conditions.

2020 2025 2030
Optimal cost ($/100 km) 25.07 21.46 20.41
Fuel cell size (kW) 70 80 80
Cell number 696 640 640
String number 4 4 4
Bus nominal voltage 626 576 576
Cell number per string 174 160 160
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Figure 16: Vehicle costs for 100 km in different price conditions. (a) In 2020. (b) In 2025. (c) In 2030.
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and 18.59% in 2025 and 2030, respectively. .e main reason
is the sharp decrease of fuel cell and battery price. At the
same time, benefiting from the decrease of fuel cell and
battery price, the proportion of lifetime cost decreases
rapidly. For example, based on the price performance in
2020, the proportion of lifetime cost is 25.56%, and it de-
creases to 18.26% and 14.35% in 2025 and 2030, respectively.
Correspondingly, the hydrogen costs are 74.44%, 81.74%,
and 85.65% for the price performance in 2020, 2025, and
2030, respectively. Along with the decreasing of hydrogen
and components price, the hydrogen cost will be the more
important performance index for vehicle cost in the near
future.

7. Conclusion

.is paper presents a sizing methodology for a heavy-duty
fuel cell commercial vehicle on the basis of long-term sto-
chastic drive cycle, parameters’ scanning model, and
DP-based EMS. .e causes of hydrogen consumption under
different sizes are studied in detail, and a discussion of the
vehicle cost in the next decade is also given, on the basis of
propulsion system and hydrogen price performance.

.e main findings are as follows:

(1) .e hydrogen consumption will be minimized when
the peak power of fuel cell stack reaches 120 kW, and
the global propulsion efficiency will be improving
with the battery cell number increase.

(2) When the number of battery cells is small, the global
propulsion efficiency is affected by the braking-re-
covery-energy and the fuel cell stack efficiency, while
as the number of battery cells continues to increase,
the main cause for that is the fuel cell stack efficiency.
Limited by the maximum efficiency of fuel cell stack,
the effect of increasing the battery cells number on
the global propulsion efficiency will gradually
decrease.

(3) .e size of Pstack max � 70 kW and nbat � 696 will be
a better choice for the vehicle total cost, under the
consideration of the cost performance in 2020. .e
predictive analysis shows that the larger fuel cell
stack will be suitable for the FCHEV with the de-
crease of fuel cell and battery price.
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