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Protein-protein interactions (PPIs) in plants are crucial for understanding biological processes. Although high-throughput
techniques produced valuable information to identify PPIs in plants, they are usually expensive, inefficient, and extremely time-
consuming. Hence, there is an urgent need to develop novel computational methods to predict PPIs in plants. In this article, we
proposed a novel approach to predict PPIs in plants only using the information of protein sequences. Specifically, plants’ protein
sequences are first converted as position-specific scoring matrix (PSSM); then, the fast Walsh–Hadamard transform (FWHT)
algorithm is used to extract feature vectors from PSSM to obtain evolutionary information of plant proteins. Lastly, the rotation
forest (RF) classifier is trained for prediction and produced a series of evaluation results. In this work, we named this approach
FWHT-RF because FWHT and RF are used for feature extraction and classification, respectively. When applying FWHT-RF on
three plants’ PPI datasets Maize, Rice, and Arabidopsis thaliana (Arabidopsis), the average accuracies of FWHT-RF using 5-fold
cross validation were achieved as high as 95.20%, 94.42%, and 83.85%, respectively. To further evaluate the predictive power of
FWHT-RF, we compared it with the state-of-art support vector machine (SVM) and K-nearest neighbor (KNN) classifier in
different aspects. *e experimental results demonstrated that FWHT-RF can be a useful supplementary method to predict
potential PPIs in plants.

1. Introduction

Protein-protein interactions (PPIs) in plants underlie many
biological processes, including cellular organization, signal
transduction [1], metabolic cycles [2], and plant defense [3].
*us, detecting and characterizing the protein interactions are
critically important for understanding the relevant molecular
mechanisms inside the plant cells. With the scientific and
technological advances, a multitude of experimental approaches
had been developed to identify PPIs in plants, such as yeast two-
hybrid (Y2H) [4], bimolecular fluorescence complementation
(BiFC) [5], tandem affinity purification (TAP) [6], and some
other high-throughput DNA sequencing technology for PPIs
detection. *erefore, a huge and ever-increasing of experi-
mental data about plants PPIs has been accumulated. However,
these approaches have some inevitable shortcomings; they are
particularly expensive, time-consuming, and always present

problems with high false-negative rates. Besides, it is also dif-
ficult to apply large-scale experiments on plants due to the
complexity of interactions in plant cells. As a result of these
shortcomings, developing accurate computational methods to
predict PPIs would be of great value to plant biologists.

In recent years, many computational methods and en-
semble learning algorithms have been established to offer
complementary and supporting information for previous
experimental approaches [7–9]. *ese methods can be
broadly classified into three categories: protein structure-
based method, docking-based method, and sequence-based
method. Generally, the first two methods usually need
structural details. However, many proteins do not have
information about the prior knowledge, such as 3D struc-
tural information and protein homology. In addition, with
the rapid advance in high-throughput sequencing tech-
nology, more and more plant protein sequence data are
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available, which lead to a great interest in sequence-based
methods for PPIs prediction.

To date, many sequence-based approaches have been
presented for predicting PPIs and many ensemble-learning
algorithms have been proposed for classification [10–12].
For example, Yi et al. [13] proposed a method called RPI-
SAN, which adopts the deep-learning stacked auto-encoder
network to mine the features from RNA and protein se-
quences and then employs the rotation forest classifier to
predict ncRNA binding proteins. Hashemifar et al. [14]
developed a novel deep learning framework named DPPI.
DPPI combined random projection and data augmentation
with a deep, Siamese-like convolutional neural network to
predict PPIs. Zhang et al. [15] presented the EnsDNN
(Ensemble Deep Neural) method, which first employed the
local descriptor, covariance descriptor, and multiscale
continuous and discontinuous local descriptor together to
explore the interactions between proteins. *en, it trained
the deep neural networks (DNNs) based on different con-
figurations of each descriptor. Finally, they adopted a two-
hidden layers neural network to integrate these DNNs to
predict potential PPIs. Wei et al. [16] combined the novel
negative samples, features, and an ensemble classifier to
predict PPIs. *ey report two types of novel feature ex-
traction methods. One is the based on physicochemical
properties of proteins, and the other is based on the sec-
ondary structure information. Sun et al. [17] applied a deep-
learning algorithm, stacked autoencoder, to identify PPIs
from the protein sequence. Kulmanov et al. [18] developed a
method called DeepGO, which combined a deep ontology-
aware classifier with amino acid sequence information to
detect protein functions and interactions. Despite these
advances, there is still room for improvement in the pre-
diction performance of PPIs’ model [19].

In this article, we present a novel sequence-based
computational approach, namely, FWHT-RF, to predict
potential protein-protein interactions in plants. More
specifically, we first transformed the plants protein se-
quences as position-specific scoring matrix (PSSM).
*en, in order to fully characterize the evolutionary
information of protein pairs, we performed the fast
Walsh–Hadamard transform (FWHT) on the PSSM to
extract features’ vectors. Although FWHT plays an es-
sential role in image analysis and pattern recognition, but
as we know, it is first time to be applied in plant biology
for the purpose of PPIs’ prediction. Lastly, a powerful
classification model, rotation forest (RF), was used to
train the models. *e major contributions of FWHT-RF
are as follows: (1) FWHT-RF did not depend on unique
subspaces in the studied proteomic space or known PPIs’
samples because it extracts features directly from PSSM of
the plant protein sequence. (2) Since these characteristics
are linked to the evolutionary past of plant proteins, they
have more power to detect PPIs than many other ap-
proaches. (3) *e basic features from PSSM for each plant
proteins were extracted using a novel statistical selection
feature mechanism and converted into a 400-dimensional
feature vector. As a result, the feature vectors of these two
proteins are integrated to create an 800-dimensional

feature vector for each protein pair. (4) Finally, this work
suggested to use the RF classifier for training these fea-
tures, which can improve the accuracy of PPIs prediction.
*is model has been well investigated in three plants’
datasets (Maize, Rice, and Arabidopsis thaliana (Arabi-
dopsis)) and yields a high prediction accuracy of 95.20%,
94.42%, and 83.85%, respectively. To further evaluate the
predictive performance of FWHT-RF, we compared
FWHT-RF with the state-of-art support vector machine
(SVM) and k-nearest neighbor (KNN) classifier. *e
experimental results indicated that FWHT-RF can be a
complement tool to large-scale prediction of PPIs in
plants.

2. Materials and Methods

2.1. Benchmark Datasets Collection. Although many ex-
periments and databases have been developed to identify
and store the PPIs data in plants [20, 21], however, false
positive interactions are typical in these data. *ese false
positive data may have a negative impact for the com-
putational methods. *erefore, the construction of
benchmark datasets to improve the accuracy of plant PPIs
prediction is necessary. In this paper, we evaluate the
FWHT-RF approach through three plants’ benchmark
datasets, including Maize, Rice, and Arabidopsis thaliana
(Arabidopsis).

As we all know, maize is one of the most important
cereal crops in the world and a model plant for genomic
studies of PPIs. *e Maize dataset was gathered from the
Protein-Protein Interaction Database for Maize (PPIM)
[22] and agriGO [23]. We obtained 14,800 nonredundant
maize protein pairs which built the positive dataset. In
order to construct the negative dataset, we selected 14,800
additional maize protein pairs of different subcellular
localizations. Consequently, the whole Maize dataset
consists of 29,600 protein pairs.

To further demonstrate the feasibility of the proposed
method, two different types of plant PPIs’ datasets were
also adopted in this study. *e first one is Rice, which was
gathered from the PRIN [24] database, which consisted of
9600 nonredundant rice protein interaction pairs (4800
interacting pairs and 4800 noninteracting pairs). *e
second is the popular model plant Arabidopsis. We
collected Arabidopsis PPIs from public PPI databases
IntAct [25], BioGRID [26], and TAIR [27]. After the
removal of redundant sequences, we obtained 28,110
interactions from 7437 Arabidopsis proteins. *e negative
protein pairs are generated by randomly pairing the
proteins without evidence of interactions. In this way, the
whole Arabidopsis dataset is constructed by 56,220
protein pairs.

2.2. Representation of Target Proteins. *e position-specific
scoring matrix (PSSM) [28] was firstly proposed for testing
the distantly related proteins. In recent years, PSSM has been
widely used for mining the evolutionary information of
protein sequences [29]. PSSM is a P × 20 matrix. *e
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number of amino acids in the proteins is represented by P,
and the naive amino acids are represented by 20 columns.
Suppose that L � φ (i, j): i � 1, . . . , P, j � 1, . . . , 20􏼈 􏼉, and
the following is a summary of each matrix:

L �

φ1,1 φ1,2 · · · φ1,j · · · φ1,20

φ2,1 φ2,2 · · · φ2,j · · · φ2,20

⋮ ⋮ ⋮ ⋮

φi,1 φi,2 · · · φi,j · · · φi,20

⋮ ⋮ ⋮ ⋮

φp,1 φp,2 · · · φp,j · · · φp,20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where φ1,1 in the i row of PSSM indicates the probability of
the ith residue being mutated into jth native amino acid.

In this study, we adopted the Position-Specific Iterated
BLAST (PSI-BLAST) [30] tool to generate the PSSM for the
purpose of extracting evolutionary information. To achieve
broad and high homologous sequences, the expectation
value (e value) was set to 0.001, the number of iterations was
set to 3, and other parameters were maintained as the default
values.

2.3. 2D Fast Walsh–Hadamard Transform.
Walsh–Hadamard transform (WHT) [31] is employed in
many applications such as image analysis and signal pro-
cessing. It is recognized as a generalized type of Fourier
transforms (FT) and has three popular orderings: (1)Natural
Ordering (Hadamard Ordering), (2) Dyadic Ordering (Paley
Ordering), and (3) Sequency Ordering (Walsh Ordering)
[32–34]. In this study, we will focus on the WHTof Natural
Ordering. *e WHT matrix consists only by ±1. Since no
multiplication operation is required in the computation, the
computational complexity is greatly reduced. In the
encrypted domain, this algorithm can avoid quantization
error and thusWHTcan ensure perfect reconstruction of the
encrypted image. *erefore, WHT is better and more ef-
fective than transformations such as DFT [35] or DCT [36].

Suppose that Q(i, j) represented the input image with
a × b size, where a and b were used to describe the same and
the power of 2. *e two-dimensional fast Walsh–Hadamard
transform (FWHT) [37] of Natural Ordering (Hadamard
Ordering) can be defined as follows:

ψ(p, k) �
1
a

􏽘

a−1

i�0
􏽘

b−1

j�0
Hη(p, i)Q(i, j)Hη(j, k), p � 0, 1, 2, 3, . . . , a − 3, a − 2, a − 1 and n � 0, 1, 2, 3, . . . , b − 3, b − 2, b − 1,

(2)

where μ � log2 p andHη denotes the Hadamardmatrix. Hη
can be generated by the core matrix:

H1 �
1 1

1 −1
􏼢 􏼣, (3)

and the Kronecker product recursion is as follows:

Hη � H1 ⊗Hη−1 �
Hη−1 Hη−1

Hη−1 −Hη−1

⎡⎣ ⎤⎦, (4)

where ⊗ is the Kronecker product operator [38]. *e 2D
FWHT [39] is a separable transformation which can be
further divided into two 1D transforms. When applying the
2D FWHT on the input image, Q(i, j) is equivalent to ap-
plying 1D FWHTon all columns of the input image initially
and then using 1D FWHTon all rows of achieved results. For
2D FWHT, the computational complex is a log a. In this
study, Q(i, j) is the input signal matrix, and here is the P ×

20 PSSMmatrix. By this way, the plant protein sequence can
be represented by FWHT feature descriptors.

2.4. Ensemble Rotation Forest Classifier. Rotation forest
(RF) was introduced by Rodriguez et al. [40], which is an

ensemble learning algorithm based on an independently
trained decision tree. *e main advantage of RF is that it
can balance diversity and accuracy at the same time. RF
first randomly divided the samples into different subsets.
*en, principal component analysis (PCA) [41] was used
to transform the attribute subsets to increase the dif-
ference between the subsets. At last, the transformed
subsets will be fed into the decision trees. *e results of
RF can be achieved via a voting method by these trees. *e
specific steps of RF are as follows.

Suppose that qi, pi􏼈 􏼉 contains T samples, of which qi �

(qi1, qi2, qi3, . . . , qiL) be an L-dimensional feature vector.
Let Z represents the training sample set containing T
training samples and forming a matrix of T × L. Let U
represents the feature set and M denotes the label set.
Assume that the number of decision trees is S; then, the
decision trees can be denoted as D1, D2, D3, . . . , DS. *e
rotation forest algorithm is implemented as follows:

(1) Choose the suitable parameter M, which can ran-
domly split divide U into M disjointed subsets, and
the number of features contained in the feature
subset is L/M.

(2) Let Ui,j represent the jth feature subset and be used
to train the classifier Di. *e sample subset Zi,j

′ is
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constructed by a nonempty subset, which is ran-
domly picked out from a certain proportion.

(3) Apply PCA on Zi,j
′ to order the coefficients, which

is stored in matrix λi,j.
(4) *e coefficients achieved from the matrix λi,j are

used to construct a sparse rotation matrix φi, which
can be defined as follows:

φi �

a
(1)
i,1 , . . . , a

S1( )
i,1 0 · · · 0

0 a
(1)
i,1 , . . . , a

S2( )
i,1 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · a
(1)
i,1 , . . . , a

SM( )
i,1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

During the prediction process, a test sample g is given,
which is generated by the classifier Di of Ri,j(Zφa

i ) which is
introduced to indicate that g belongs to class pi. *en, the
class of confidence is calculated via the average combination,
and the formula can be expressed as follows:

Vj(g) �
1
S

􏽘

S

i�1
Ri,j Zφa

i( 􏼁. (6)

*en, assign the category with the largest Vj(g) value to
g. *e overview of FWHT-RF workflow is presented in
Figure 1.

3. Results and Discussion

3.1. Validation Measures. In this work, we employed mul-
tiple evaluation indicators to access the effectiveness of
FWHT-RF, including accuracy (Acc.), sensitivity (Sen.),
precision (Prec.), Matthews correlation coefficient (MCC),
and area under the receiver operating characteristic curve
(AUC). Correspondingly, the first four formulas can be
represented as follows:

Acc. �
TN + TP

TN + FP + FN + TP
,

Sen. �
TP

FN + TP
,

Prec. �
TP

TP + FP
,

MCC �
TN × TP − FP × FN

����������������������������������������
(TP + FP) ×(TN + FN) ×(TN + FP) ×(TP + FN)

􏽰 ,

(7)

where TP (true positive) represents the number of true plant
PPIs that are correctly identified (positive samples), FP (false
positive) refers to the number of noninteraction plant
protein pairs (negative samples), and TN (true negative)
denotes the number of correct classification of positive
samples, while FN (false negative) refers to the number of
incorrect classification of negative samples.

To provide a more comprehensive assessment of the
FWHT-RF method, the receiver operating characteristic

(ROC) curves, which are suitable for accessing the perfor-
mance of the proposed method, were computed. *e area
under the ROC curves (AUC) was also calculated to test the
predictive ability of FWHT-RF. AUC denotes the probability
that a positive sample is ahead of a negative one. *e AUC
value closer to 1.0 indicates the better predictive perfor-
mance of the FWHT-RF method [42].

3.2. Assessment of PredictionAbility. In this article, we adopt
5-fold cross-validation technique to comparatively access
the prediction performance of FWHT-RF in three plant
datasets involvingMaize, Rice, and Arabidopsis. By this way,
we can prevent overfitting and test the stability of the
proposed method. More specifically, each plant PPIs’ dataset
is randomly split into five subsets, one of them is used as a
testing set in turn and the other four subsets are adopted as
training sets. *us, five models can be generated for the five
sets of data. *e cross validation has the advantages that it
can minimize the impact of data dependency and improve
the reliability of the results.

*e 5-fold cross validation results of the proposed ap-
proach on the three plants datasets are listed in Tables 1–3.
From Tables 1–3, we can observe that when applying the
proposed method to the Maize dataset, we obtained the best
prediction results of average accuracy, precision, sensitivity,
and MCC as 95.20%, 97.29%, 92.99%, and 90.85% with
corresponding standard deviations 0.38%, 0.26%, 0.62%, and
0.69%, respectively. When performing FWHT-RF on the Rice
dataset, we yielded good results of average accuracy, precision,
sensitivity, and MCC of 94.42%, 94.63%, 94.17%, and 89.46%,
respectively. *e standard deviations of these criteria values
are 0.56%, 0.84%, 0.72%, and 0.99%, respectively. When
performing FWHT-RF on the Arabidopsis dataset, the pro-
posed approach obtained good results of average accuracy,
precision, sensitivity, and MCC of 83.85%, 89.29%, 76.95%,
and 72.66% and the standard deviations are 0.35%, 0.62%,
1.16%, and 0.52%, respectively. Figures 2–4 show the ROC
curves for the proposed approach on Maize, Rice, and
Arabidopsis. *e average AUC values range from 90.55% to
97.50% (Maize: 97.50%, Rice: 96.90%, and Arabidopsis:
90.55%), demonstrating that FWHT-RF is fitting well for
predicting PPIs in plants from amino acid sequences.

*ese good results collectively indicated that it is sufficient
to predict PPIs in plants only using protein sequence infor-
mation and that powerful prediction capability can be gen-
erated by combining the RF classifier with FWHT features’
descriptors.*e high accuracies and low standard deviations of
these criterion values indicate that FWHT-RF is feasible and
effective for predicting potential PPIs in plants.

3.3. Comparison of RF with SVM and KNN Classifiers.
*ere are various methodologies for machine learning models
to identify PPIs, and most of them are based on traditional
classifiers. To further access the predictive performance of
FWHT-RF, we compared it by using the same feature ex-
traction approachwith the state-of-art SVMandKNNclassifier
in the same three plants’ datasets. *e main idea of the SVM
algorithm is to find the optimal hyperplane that maximally
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Figure 1: *e workflow of FWHT-RF for predicting protein-protein interactions in plants.

Table 1: 5-fold cross-validation results obtained on the Maize dataset using FWHT-RF.

Testing set Acc. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)
1 94.68 92.06 97.24 89.91 97.06
2 95.06 92.97 96.93 90.60 97.40
3 95.56 93.49 97.65 91.50 97.95
4 95.59 93.60 97.27 91.55 97.62
5 95.12 92.82 97.37 90.70 97.45
Average 95.20 ± 0.38 92.99 ± 0.62 97.29 ± 0.26 90.85 ± 0.69 97.50 ± 0.33

Table 2: 5-fold cross-validation results obtained on the Rice dataset using FWHT-RF.

Testing set Acc. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)
1 94.90 94.19 95.75 90.31 96.42
2 93.70 92.98 94.44 88.19 96.89
3 94.17 94.45 93.65 89.01 96.80
4 94.27 94.32 94.12 89.20 96.94
5 95.05 94.91 95.21 90.59 97.46
Average 94.42 ± 0.56 94.17 ± 0.72 94.63 ± 0.84 89.46 ± 0.99 96.90 ± 0.37

Table 3: 5-fold cross-validation results obtained on the Arabidopsis dataset using FWHT-RF.

Testing set Acc. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)
1 84.00 77.27 89.37 72.88 90.73
2 83.48 75.96 89.71 72.13 90.21
3 84.04 77.77 88.88 72.97 90.91
4 83.48 75.54 90.01 72.09 90.00
5 84.25 78.22 88.46 73.24 90.88
Average 83.85 ± 0.35 76.95 ± 1.16 89.29 ± 0.62 72.66 ± 0.52 90.55 ± 0.41
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separates training data from the two classes, and it is effective
for solving classification prediction problems. K-nearest
neighbor is a supervisedmachine learning technique, and it can
solve the classification task. *e LIBSVM tool was selected in
this paper to training the SVM model. At the same time, there
are two parameters c and g that need to be optimized. In the
experiment of theMaize and Rice dataset, we set c� 5, g � 0.3,
c� 7, and g � 0.4, respectively. When applying the FWHT-RF
on the Arabidopsis dataset, we set c� 5 and g � 0.7. *e KNN
model needs to choose the neighbor k and distance measuring
function. In this paper, k is set to be 1 and the distance
measuring function is selected as L1.

Figure 5 shows the experimental results of RF, SVM,
and KNN models in three plants datasetsMaize, Rice, and
Arabidopsis. From Figures 5(a)–5(d), it can be concluded
that the results of the RF classifier are significantly better
than those of SVM and KNN classifiers. For example, the
accuracy gaps between SVM and RF on the Maize, Rice,
and Arabidopsis were 7.98%, 8.53%, and 3.26%, respec-
tively. Similarly, the accuracy gaps between KNN and RF
are 11.72%, 15.36%, and 10.40%, respectively. *e ROC
curves achieved by the SVM and KNN classifiers on the
three plants datasets are shown in Figures 6–8. All the
experimental results are listed in Table 4.
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Figure 2: ROC curve for FWHT-RF on Maize PPIs dataset.
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Figure 3: ROC curve for FWHT-RF on Rice PPIs dataset.
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Figure 4: ROC curve for FWHT-RF on Arabidopsis PPIs dataset.

100

90

80

70

60

50

40

30

20

10

0

Ac
cu

ra
cy

 (%
)

Maize Rice Arabidopsis

RF
SVM
KNN

(a)

100

90

80

70

60

50

40

30

20

10

0

Pr
ec

isi
on

 (%
)

Maize Rice Arabidopsis

RF
SVM
KNN

(b)

Figure 5: Continued.
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Figure 5: Performance comparisons of four validation metrics for three classifiers: RF (blue bar), SVM (green bar) and KNN (yellow bar).
(a) Accuracy. (b) Precision. (c) MCC. (d) AUC.
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Figure 6: ROC curves performed onMaize dataset (5-fold cross validation). (a) is the ROC curves of SVMmethod. (b) is the ROC curves of
KNN classifier.
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Figure 7: ROC curves performed on Rice dataset (5-fold cross validation). (a) is the ROC curves of SVM method. (b) is the ROC curves of
KNN classifier.
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Figure 8: ROC curves performed on Arabidopsis dataset (5-fold cross validation). (a) is the ROC curves of SVM method. (b) is the ROC
curves of KNN classifier.
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4. Discussion and Conclusions

In this study, we presented an effective sequence-based
method called FWHT-RF to predict potential PPIs in plants.
*is method combined position-specific scoring matrix
(PSSM) with fast Walsh–Hadamard transform (FWHT) and
rotation forest (RF) classifier. First, we transformed the plant
protein sequences into PSSM to obtain the evolutionary
information of plants’ protein sequences. *en, the FWHT
algorithm was used to extract as much hidden information
as possible from the plant protein sequences. At last, the RF
classifier was trained for predicting PPIs in plants. When
performed FWHT-RF on three plants’ PPI datasets Maize,
Rice, and Arabidopsis, it achieved a high prediction accuracy
of 95.20%, 94.42%, and 83.85%, respectively. Moreover, we
compared FWHT-RF with the state-of-art SVM and KNN
classifier by adopting the same feature extraction method.
*e comprehensive experiments demonstrated that FWHT-
RF is an effective tool to predict PPIs in plants. In the future
work, we will consider applying FWHT-RF to other bio-
informatics problems.
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[42] A. Onan, S. Korukoğlu, and H. Bulut, “A hybrid ensemble
pruning approach based on consensus clustering and multi-
objective evolutionary algorithm for sentiment classification,”
Information Processing & Management, vol. 53, no. 4,
pp. 814–833, 2017.

Scientific Programming 11


