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Error diagnosis and detection have become important in modern production due to the importance of spinning equipment.
Artificial neural network pattern recognition methods are widely utilized in rotating equipment fault detection. ,ese
methods often need a large quantity of sample data to train the model; however, sample data (especially fault samples) are
uncommon in engineering. Preliminary work focuses on dimensionality reduction for big data sets using semisupervised
methods. ,e rotary machine’s polar coordinate signal is used to build a GAN network structure. ANN and tiny samples are
utilized to identify DCGAN model flaws. ,e time-conditional generative adversarial network is proposed for one-di-
mensional vibration signal defect identification under data imbalance. Finally, auxiliary samples are gathered under similar
conditions, and CCNs learn about target sample characteristics. Convolutional neural networks handle the problem of
defect identification with small samples in different ways. In high-dimensional data sets with nonlinearities, low fault type
recognition rates and fewer marked fault samples may be addressed using kernel semisupervised local Fisher discriminant
analysis. ,e SELF method is used to build the optimum projection transformation matrix from the data set. ,e KNN
classifier then learns low-dimensional features and detects an error kind. Because DCGAN training is unstable and the
results are incorrect, an improved deep convolutional generative adversarial network (IDCGAN) is proposed. ,e tests
indicate that the IDCGAN generates more real samples and solves the problem of defect identification in small samples.
Time-conditional generation adversarial network data improvement lowers fault diagnosis effort and deep learning model
complexity. ,e TCGAN and CNN are combined to provide superior fault detection under data imbalance. Modeling and
experiments demonstrate TCGAN’s use and superiority.

1. Introduction

With the rapid development of industrial technology and
science and technology, rotating machinery is widely used in
modern industrial fields such as electric power, aerospace,
metallurgy, wind power, nuclear power, and national de-
fense. At the same time, with the high speed, continuity, and
automation in the operation of mechanical equipment, once
the core components of the equipment such as rotors and
bearings break down or fail to work, it will affect the normal
operation of the entire mechanical system and even lead to
its paralysis, resulting in inaccessibility estimated loss [1]. In
the past few years, various accidents at home and abroad
have shown the harm of mechanical equipment failure

without exception (Figure 1). For example, in 1988, the rotor
speed failure of the No. 5 steam turbine unit of Qin Ling
Power Plant caused economic losses of up to 100 million
yuan; in 2000, the French “Concorde” passenger plane
caught fire on its wing during take-off, which eventually
caused an explosion, causing the death of 109 people. In
2011, a power system failure in Chile caused the capital
Santiago andmost of the surrounding areas to become black,
affecting nearly 10 million people. [2] ,erefore, carrying
out effective state monitoring and fault diagnosis analysis of
mechanical equipment can timely grasp the operating status
of the equipment and prevent the occurrence of key
equipment failures, which is of great significance for en-
suring the safe and reliable operation of mechanical
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equipment and avoiding major accidents and huge property
losses [3].

Traditional fault diagnosis starts from data. First, the
vibration acceleration signal of rotating machinery and its
components is collected in the laboratory or industrial site,
and then the signals are analyzed in the time domain, fre-
quency domain, and time-frequency domain. ,ese
methods include short-time Fourier transform, wavelet
transform, and Hilbert yellow transform [4] and finally use
specific classifiers such as support vector machine and ar-
tificial neural network for pattern recognition, so as to
achieve the purpose of fault diagnosis for rotating ma-
chinery. In recent years, due to the continuous development
of deep learning and its excellent feature extraction capa-
bilities, the use of deep learning for fault diagnosis has
become one of the most popular breakthrough technologies.
,e deep learning model represented by convolutional
neural networks has been widely used in the field of rotating
machinery fault diagnosis [5]. However, regardless of
whether it is a classic fault diagnosis method or a deep
learning method, the field of rotating machinery fault di-
agnosis still faces some challenging problems. In actual
production, the occurrence of rotating machinery faults is
often random, and the collection of fault signals is more
difficult and the amount of data is small. ,is resulted in
insufficient samples and unbalanced data during fault di-
agnosis. To perform fault diagnosis of rotating machinery in
the case of small samples and unbalanced data has gradually
attracted the attention and discussion of the scientific re-
search community [6].

2. Related Work

Due to the unstable dynamic system, noise, and modulation
of rotating machinery equipment, its signal generally has the
characteristics of nonlinearity and nonstationarity [7]. ,e
signals collected directly during the operation of rotating
machinery are generally one-dimensional vibration signals.
,e corresponding relationship between the signal and the

fault cannot be directly seen through the vibration signal, so
a series of time-domain and frequency-domain analysis
methods have been produced. Simply analyzing the signal in
the time domain or the frequency domain cannot completely
and accurately express the fault characteristics of the signal,
and the analysis method based on the time-frequency do-
main can describe the time-varying characteristics and
energy distribution of the signal, which is a more complete
and accurate expression method. ,erefore, the feature
extraction method based on the time-frequency domain has
become a hot issue in the field of fault diagnosis [8].

In the time-domain analysis, statistical methods were
initially used to calculate the specific parameters of the
signal, including the kurtosis of the signal, the root mean
square value, the waveform index, and the peak index [9]. In
addition, time-domain analysis also includes time-domain
correlation analysis of signals, such as autocorrelation
analysis and cross-correlation analysis. Only time-domain
analysis of signals cannot meet engineering and production
requirements, and these indicators are often not stable
enough under complex working conditions and severe ex-
ternal interference. ,erefore, in this case, the application of
frequency-domain analysis is born, and the frequency-do-
main analysis of the signal can reflect the frequency-domain
components and distribution of the signal, which has a good
engineering and scientific research application prospect.,e
frequency-domain analysis of the signal mainly includes two
kinds of spectrum analysis: classical spectrum and modern
spectrum [10].

Blackman Turkey proposed the classic spectrum in 1958
[11], which is derived from the Fourier transform. Classical
spectrum analysis methods include envelopment analysis
(EA), zoom spectrum analysis (ZPA), etc. Classical spectrum
analysis methods are very important for fault diagnosis of
rotating machinery. EA is currently the most widely used
diagnostic method in the field of spectrum analysis. ,e core
idea of EA is to perform low-pass filtering on fault vibration
signals. Mcfadden first applied EA technology in the field of
rolling bearing fault diagnosis [12], and Li et al. completed

Figure 1: Repair of rotating machinery failure.
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the noise reduction of gear vibration signals through EA
[13]. ,e core idea of ZPA is to improve the resolution of
some sensitive frequencies in the frequency domain through
the application of filtering technology and resampling
technology.Wang et al. found the characteristic frequency of
the corresponding fault of the rolling bearing signal through
ZPA and realized a good diagnosis of the rolling bearing
fault [14]. Although classical spectrum analysis has been
widely used, it still has some shortcomings, such as the
requirement that the signal must be stable and cannot be
applied to nonstationary signals.

When the classical spectrum analyzes the signal selected
by the window function, it is assumed that the signal outside
the window function is zero. ,is assumption is the main
reason for the poor quality of the classical spectrum esti-
mation. Modern spectroscopy implements a certain ex-
pectation or outlook outside the signal selected by the
window function, which improves the quality of spectrum
estimation [15]. ,e parametric model method is the core
method of modern spectroscopy. Since E. Parzen proposed
an autoregressive model spectrum estimation method in
1968, a series of spectrum estimation methods such as
harmonic analysis method, maximum likelihood method,
and auto-moving regression average method have gradually
emerged [16].

After years of development, the pattern recognition of
rotating machinery has made considerable progress. ,e
most widely used applications in the field of fault recognition
include support vector machines, semisupervised dimen-
sionality reduction, and deep learning.

SVM is mainly used to deal with statistical classification
and regression analysis problems, which is a kind of su-
pervised learning algorithm. SVM adopts the mechanism of
kernel function. A suitable kernel function is particularly
important for SVM, which will affect the classification
performance of SVM. ,e application of SVM in the fault
diagnosis of rotating machinery has been very common, but
SVM lacks the ability of feature extraction, so in the process
of fault diagnosis it is often used in combination with signal
processing methods. Cheng Junsheng et al. used EMD en-
velope spectrum to extract signal features and used SVM for
classification to realize the fault diagnosis of rolling bearings
[17]. Xu and Si applied an improved particle swarm algo-
rithm to adjust the least squares SVM and achieved a good
diagnostic effect for rolling bearings [18]. Li and Shu pro-
posed the use of fuzzy clustering and complete binary tree
combined with support vector machines to perform
transformer fault diagnosis [19].

Many scholars introduced semisupervised dimension-
ality reduction into fault diagnosis and achieved good di-
mensionality reduction, fault identification, and
classification effects. Li Chengliang used the marked sample
information in the training set to establish constraint point
pairs and combined the structural information of the sample
connection graph to design the kernel function and pro-
posed rotor system fault diagnosis based on semisupervised
spectral kernel clustering to solve the problem. Jiang Li
proposed a fault diagnosis model based on semisupervised
Laplacian feature mapping in order to overcome the

problem of insufficient labeled samples in the fault data set
with nonlinear characteristics and high dimensionality.
Jiang et al. proposed a feature extraction method based on
semisupervised kernel edge Fisher analysis and applied it to
bearing fault diagnosis in order to extract the best features
from the nonstationary and nonlinear fault mechanical
vibration signals and improve the classification accuracy.
Gao Zhiyong et al. proposed a chemical system state
monitoring method based on improved local linear dis-
criminant analysis. ,is method uses the label information
of training samples to reconstruct the local interclass di-
vergence matrix and improve the performance of the al-
gorithm. Yi Weilin et al. proposed a reconstructed
semisupervised ELM method based on the traditional ELM
method and applied it to fault diagnosis. Fang Liqing et al.
proposed a semisupervised neighborhood adaptive LLTSA
algorithm for fault diagnosis in order to extract a subset of
sensitive features with high recognizability. Luo et al. pro-
posed a fault diagnosis method based on semisupervised
manifold learning and conversion support vector machine
for the scarcity of labeled samples in training samples. ,is
method can achieve high fault diagnosis accuracy when the
labeled samples are insufficient. Zhao Xiaoli et al. proposed a
rolling bearing fault diagnosis method based on the maxi-
mum boundary projection dimension reduction of the
regularization kernel to solve the problem of difficulty in
obtaining fault samples in fault diagnosis.

Deep learning has developed rapidly in these years. ,e
classic deep learning model is a perceptron with multiple
hidden layers.,e development results of deep learning have
been widely used in the field of fault diagnosis of rotating
machinery. According to the application of structure and
technology, deep learning is mainly divided into three
categories: generative deep structure, discriminative deep
structure, and hybrid structure [20]. A deep belief network
(DBN) is one of the typical generative deep structures, and
its composition structure is a series of restricted Boltzmann
machine (RBM) units. ,e DBN solves the problem of slow
convergence speed when training multiple layers of the
traditional BP network. Li Weihua and others used the DBN
to carry out bearing fault and identification and achieved
good results [21]. Zhang Na et al. used the global dynamic
learning rate to improve the DBN and applied it to the life
prediction of rolling bearings [22]. A convolutional neural
network is one of the typical discriminative deep structure
models. ,e CNN can adaptively extract signal features and
classify samples. Duy-TangHoang et al. directly used the
bearing vibration signal as the input of the neural network
and used the CNN to realize the fault identification of the
rolling bearing and achieved a good diagnosis effect [23].
Luo et al. proposed a method of combining discrete wavelet
time-frequency transform and convolutional neural network
for rolling bearing fault diagnosis [24]. Jiang and Wang
proposed AFDCNN based on the adaptive Fisher criterion
and applied it to the quantitative diagnosis of gear faults
[25]. ,e hybrid structure model usually aims to be dis-
criminative but uses the output of the generative structure to
make the goal easier to optimize. Jiang Yunjie and others
used BP networks to optimize DBNs to achieve end-to-end
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situation assessment. A generative adversarial network
(GAN) is a new deep learning model that has emerged in the
past two years. It can be used for sample generation or
feature segmentation. It has been widely used in the field of
speech and image. Zhu Chun et al. used deep convolutional
generative adversarial networks (DCGANs) to realize the
autonomous generation of speech signals. Jiang Yun et al.
used conditional generation adversarial networks to segment
the bite wing image and achieved good results. In addition,
generative countermeasure networks are gradually being
applied to the field of fault diagnosis [26]. Dai Jun et al.
combined generative countermeasure networks and
autoencoders to detect abnormalities in mechanical systems,
achieving faster and more accurate detection of system
abnormalities.

3. Method

3.1. Overview of Semisupervised Dimensionality Reduction
Methods. In the actual application of supervised dimen-
sionality reduction algorithms, labeled samples are usually
difficult to obtain and have a small number, while it is
relatively easy to obtain unlabeled samples. Compared with
traditional dimensionality reduction methods, semi-
supervised dimensionality reduction methods (SDA, SELF,
etc.) can use the data category labeling information and the
structure information of all sample data at the same time, so
that the data between the classes after dimensionality re-
duction are scattered and within the class, while keeping its
own covariance or local structure information unchanged,
and a better classification and recognition accuracy rate can
be obtained. Under normal circumstances, the establishment
of the semisupervised dimensionality reduction method
depends on the following three basic model assumptions,
namely the semisupervised smoothness assumption, clus-
tering assumption, and manifold assumption:

Semisupervised Smoothness Assumption. Assume that
two neighboring samples in a dense data area have
similar class labels, that is, when two samples are
connected by edges in the dense data area, they have a
high probability of having the same class label; on the
contrary, when two samples are distinguished by sparse
data, they tend to have different classification
standards.

Cluster Assumption. When When two samples are in
the same cluster, they have a greater probability of
having the same class label. Its equivalent is defined as
the hypothesis of low-density separation, that is, the
classification decision boundary should pass through
the sparse sample area as much as possible, so that data
points with a greater probability of the same category
are classified on the same side of the decision boundary,
avoiding being located in a dense area the samples are
divided into two sides of the decision boundary.
Manifold Assumption. When embedding high-dimen-
sional data into a low-dimensional manifold, two
samples located in the same local neighborhood in the
low-dimensional manifold have more similar class
labels.

3.1.1. Semisupervised Discriminant Analysis Algorithm.
,e LDA algorithm is a supervised dimensionality reduction
algorithm that extracts features from the space by main-
taining the interclass dispersion and the intraclass disper-
sion. However, in practice, due to the small number of
labeled training samples, the covariance matrix of each
category may not be accurately estimated. ,erefore, the
generalization ability of the test sample cannot be guaran-
teed. One possible way to solve the shortage of training
samples is to learn both labeled and unlabeled data. Cai et al.
proposed semisupervised discriminant analysis by adding
regularization items to LDA. ,e SDA algorithm can use
label samples to maximize the separability between different
categories. Unlabeled samples can be used to maximize the
preservation of the internal geometric structure of the data
and overcome the small sample problem in LDA.

Suppose the original data set X � (x1, x1, . . . , xn) ∈ R

where the labeled sample set is Xl � (x1, x2, . . . , x1) and the
unlabeled sample set is Xu � (xl+1, xl+2, . . . , xl+u), that is,
X � Xl ∪Xu. ,e projected result of the data set is
Y � (y1, y2, . . . , yn).

,e objective function of LDA is defined as
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,erefore, the objective function of LDA can be
equivalently transformed into
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To prevent the LDA algorithm from overfitting when the
labeled samples are insufficient, the regularization term J
(T)� 2TTXLXTT is introduced into the objective function of
LDA (by constructing the k-nearest neighbor graph to
maintain the manifold of the data), so that SDA ,e
maximum dispersion between classes and the local structure
of the data can be maintained at the same time.,e objective
function of the SDA method is
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where a ∈ [0, 1] is the regularization parameter, and L is the
Laplacian matrix. Solve the following generalized eigenvalue
problem:

S
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T

 a. (6)

,e eigenvectors corresponding to the first d largest
eigenvalues are selected to form the best conversion matrix.
,e original high-dimensional data X is obtained by Y �

TTX and the low-dimensional data Y after dimensionality
reduction.

3.1.2. Semisupervised Local Fisher Discriminant Analysis
(SELF) Algorithm. When LFDA has insufficient label
samples, due to excessive reliance on a small number of label
samples, it is easy to fall into learning. In order to solve this
problem, Sugiyama et al. effectively merged LFDA and PCA
and proposed a new semisupervised partial Fisher dis-
criminant analysis (semisupervised local Fisher discriminant
analysis) algorithm. ,is method combines the advantages
of PCA and LFDA, comprehensively considers labeled
samples and unlabeled samples, maximizes the distance
between the data between classes after dimensionality re-
duction, minimizes the distance between adjacent data
within the class, and keeps the non-intraclass as much as
possible. ,e structure of the adjacent data overcomes the
shortcomings of the unsupervised properties of the PCA
method and the high-dimensional small sample problem in
the LFDA method.

Suppose a data set X � xi ∈ RD, i � (1, 2, . . . , n) , Xl

is label data, and Xu is unlabeled data, that is, X � Xl,
combined with PCA and LFDA methods, SELF is obtained.
,e objective function of is expressed as
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where S(slb) is the regularized local interclass divergence
matrix of SELF, and S(slw) is the regularized local intraclass
divergence matrix of SELF, which are defined as follows:
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where S(t) is the global divergence matrix of PCA, defined as
equation (9). Id is the standard matrix, and β ∈ [1, 0] is
weigh parameters, which can make SELF have the charac-
teristics of LFDA and PCA. It can increase the flexibility of
the algorithm through adjusting β. Obviously, when β � 0,
SELF degenerates into LFDA, and when β � 1, SELF is
equivalent to PCA. ,e global divergence matrix of PCA is
defined as

S
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,e conversion matrix T in equation (7) can be solved by
the generalized eigenvector calculation method shown in
equation (10).

S
(slb)

a � λS
(slw)

a, (10)

where λ is the eigenvalue, select the eigenvectors corre-
sponding (a1, a2, . . . , a1d) of the first d largest generalized
eigenvalues to form the transformation matrix T, and obtain
the projection Y of the original high-dimensional data X in
the low-dimensional space.

Y � T
T
X. (11)

,e SELF method can use labeled samples to calculate
the local intraclass divergence matrix and the local interclass
divergence matrix, so they are not easily affected by the data
distribution structure; at the same time, the SELF method
can use the local class defined by the PCA method when the
selected label is not ideal. ,e inner divergence matrix and
the local interclass divergencematrix are used to find a better
projection direction, so it has a better dimensionality re-
duction effect.

3.2. Rotating Machinery Fault Diagnosis Based on IDCGAN

3.2.1. Improved Deep Convolution Generative Adversarial
Network. ,e activation function determines whether the
signal can be transmitted in the DCGAN. ,e key to the
neural network’s ability to deal with nonlinear problems is
that the activation function can store and express the
“features of activated neurons” through the nonlinear
function. In the DCGAN, the operation process of convo-
lution and deconvolution is linear. If the activation function
of nonlinear mapping is not used, then the DCGAN only has
the function of linear expression. ,e use of the activation
function can improve the expressive ability of the network,
making the entire network into a nonlinear model, so that
the DCGAN can solve complex nonlinear problems.

Common activation functions include sigmoid function,
Tanh function, ReLU function, and LeakyReLU function.
Sigmoid and Tanh are commonly used nonlinear activation
functions. ,e sigmoid function can transform the con-
tinuous value of the input into an output between 0 and 1. It
is the most common activation function used initially.
However, it has some significant shortcomings, such as
excessive calculation, easy gradient disappearance, and
nonzero mean output. Tanh is an improvement of sigmoid,
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and its output is zero mean, but the shortcomings of van-
ishing gradient and large amount of calculation have not
been improved. ,e ReLU function effectively solves the
problem of the disappearance of the gradient of the sigmoid
function, and its calculation speed and convergence speed
are much faster than the sigmoid function and the Tanh
function. But using the ReLU function, when the forward
propagation input is less than 0, the neuron will be in an
inactive state and will “kill” the gradient during the back-
ward propagation. ,e LeakyReLU function avoids the
above-mentioned problems of the ReLU function by setting
the negative semiaxis coefficient a. However, during the
experiment, it was found that as the number of iterations
increases, LeakyReLU may cause the DCGAN to oscillate,
nonconvergence, or even overfitting, resulting in distortion
of the generated samples.

In response to the above problems, this paper proposes a
new activation function, which is defined as the IReLU
function. On the basis of the LeakyReLU function, the
IReLU function sets a condition for the input x. Instead of
learning all the values, it passes a given threshold. When the
input is greater than a specific value, it stops learning fea-
tures. ,is reduces the possibility of network oscillations in
the later training stage, alleviates the overfitting situation,
and retains the advantages of the LeakyReLU function.
When the value of x is taken, the function is no longer active
and needs to be determined according to different data sets.
,rough many experiments on different data sets, it is found
that the IReLU function not only improves the stability of
DCGAN but also can produce higher-quality samples.
Applying it to the fault diagnosis of rolling bearings can
effectively improve the recognition rate of fault diagnosis.
,e mathematical expression of the IReLU function is as
follows:

f(x) �

b, x≥ b,

x, 0≤ x≤ b,

ax, x< 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

In the classic DCGAN, the activation function of the
output layer of the generator is selected as Tanh, the acti-
vation functions of other layers are selected as ReLU, and the
activation functions of all layers of the discriminator are
selected as LeakyReLU.,e specific process of implementing
IDCGAN is as follows:

(1) ,e preprocessing link converts the one-dimensional
time series signal into a two-dimensional polar co-
ordinate map and performs gray-scale and nor-
malization processing.

(2) Set the minimum batch size, and specify the network
structure parameters of the generator and the dis-
criminator in advance.

(3) Keep the parameters of the discriminator unchanged
and update the generator. Connect the generator and
the discriminator; the generator receives the random
noise x and generates a generated sample G(x). Set
the label of the generated sample to 1, input the

generated sample into the discriminator for forward
and back propagation to obtain the partial derivative
of the discriminator network parameters, use the
partial derivative of the discriminator to find the
partial derivative of the generator, and use the op-
timizer method. Only use the partial derivative of the
generator to update the generator.

(4) Keep the generator parameters unchanged and up-
date the discriminator. ,e generator receives ran-
dom noise x and generates a sample G(x). Set the
label of the generated sample to 0 and the label of the
real sample to 1. Input the generated sample and the
real sample into the discriminator for forward and
back propagation to obtain the partial derivative of
the discriminator’s network parameters, and update
the discriminator with the partial derivative of the
discriminator in the manner of an optimizer.

(5) Perform 1 :1 iterative update, repeat steps 3 and 4,
and continuously optimize the generator and dis-
criminator parameters. After reaching the given
number of iterations, the iteration stops.

4. Experiments and Results

4.1. Time Series Conditional Generation Confrontation Net-
work DataMethod. In the field of fault diagnosis of rotating
machinery, the data collected in a factory or laboratory
environment is generally vibration acceleration data with
timing information. Usually only a small amount of labeled
data can be used for training, and some fault conditions data
are often especially lacking. By generating a confrontation
network, data enhancement can be achieved and the
problem of lack of samples can be solved. However, when
using a generative countermeasure network, it is necessary
to convert a one-dimensional time series signal into a two-
dimensional image signal. ,is increases the workload of
fault diagnosis, and also the generative confrontation net-
work suitable for two-dimensional images often has a
complicated model and takes too long to train. ,is chapter
directly starts from the time series vibration acceleration
data of the original rotating machinery and proposes to use
the time series condition to generate the confrontation
network to directly enhance the vibration data. ,e ex-
perimental results prove the feasibility and superiority of
TCGAN.

Many data enhancement techniques have been applied
to the image field, including image inversion, translation,
and rotation. However, none of these methods can be used
well in time series data enhancement. For time series data, it
is impossible to confirm whether these transformations have
changed the nature of the time series through simple visual
comparison. ,e current mainstream time series data
augmentation technology mainly includes two methods:
data slicing and data deformation.

Data slicing technology is a technology inspired by
computer vision. ,e method mainly includes two parts:
cropping time series slices and classifying the cropped slices.
In the training process, the classifier needs to learn the

6 Scientific Programming



classification information of each slice, and the size of the
slice is an important parameter of the data slice. In the test
process, the predicted label is determined by classifying the
fragments obtained in the time series and voting on all the
labels. When selecting time slicing for data enhancement,
the effect may be unsatisfactory because cutting the time
series often eliminates the time correlation in the data,
resulting in a decrease in classification accuracy.

Data deformation is another data enhancement method,
and slice size and warpage rate are important parameters. It
achieves the purpose of expanding the data set by stretching
randomly selected fragments in the time series. In theory, the
premise of using data deformation is that this method does
not change the distribution of training data. But in some
practical situations, the time scale is of great significance.
When data deformation is used, the data may have different
interpretations, and that is why the data deformation cannot
be well promoted.

4.2. Principle and Structure of Time Series Generation
Adversarial Network. In order to solve the problem of fault
diagnosis under the imbalance of one-dimensional signal
data of rotating machinery, this chapter proposes a time
series conditional generation countermeasure network.
Given a periodic sampling time data set S, the goal of data
enhancement is to generate a new time series that has the
same properties and distribution as the time series in the
data set S. In order to achieve this goal, this chapter designs a
time-aware conditional generative confrontation network,

which adjusts the generator and discriminator through time
steps. ,e goal of TCGAN is to obtain the latent spatial
distribution of the time series to achieve the goal of imitating
the dynamics of the time series. Because this chapter is for
the rotating machinery data set, it is assumed that the time
series are noisy.

GAN was proposed by I. Goodfellow as a generative
model. ,e GANmodel includes two parts: generator G and
discriminator D. ,e generator is used to learn the distri-
bution of real samples, and the goal of the discriminator is to
determine whether the data come from the training data or
the generator. ,e generator establishes a mapping function
between the prior noise distribution pz(z) and the training
data set, so as to learn the same sample distribution p8 as the
training data set. ,e discriminator essentially consists of
two classifiers, and the output of the discriminator is scalar,
indicating whether x is from the training set or the p8
probability. ,e generative confrontation network can be
extended to a conditional generative confrontation network.
If both the generator and the discriminator are conditioned
on other additional information y, y is used as an additional
feedback input to the generator and the discriminator. In the
generator, the prior noise pz(z) and y are combined into a
hidden representation, and the adversarial training frame-
work makes this hidden representation very flexible. In the
discriminator, c and y are used as the input of the dis-
criminator. At this time, the objective function of the
conditional generation confrontation network can be
expressed in the following form:

Min
G

Max
D

V(D, G) � EX∼Pdata(X)
[log D(xy)] + EZ∼PZ(Z)[log(1 − D(G(zy)))]. (13)

On the basis of the above principles, this chapter pro-
poses the TCGAN model. ,e TCGAN is composed of two
convolutional neural networks, which constitute a generator
and a discriminator. Z is the noise space used to generate the
model samples, and z ∈ Z is the sample collected from the
prior noise distribution pz(z). T is used to adjust the time

step space of the generator and the discriminator, and X

represents the time series data space of the generator output
or the discriminator input. When training data or condi-
tional data related to it is used, the density model is defined
as Pdata(x, t).

Min
G

Max
D

V(D, G) � EX∼Pdata(X)
[logD(xt)] + EZ∼PZ(Z)[log(1 − D(G(zt)))]. (14)

Among them, t � t1, . . . , tn is the time step vector ob-
tained by sampling and sorting from T. ,e TCGAN model
can generate new time series data corresponding to no time
step in the training data.

,e generator performs the function G(Z, T)⟶ X,
where t ∈ T and z ∈ Z are the input data, x ∈ X is the
generated time series, the generator X is a convolutional
neural network, which takes the input noise and time step as
the input of the model, and the output is the corresponding
time step. ,is transformation is accomplished through four
deconvolution layers with ReLU activation functions, and

batch normalization is performed on each layer except the
last layer. ,e goal of the generator is to adjust its corre-
sponding parameter log(1 − D(G(zt))) to minimize, z ∈ Z

is the noise vector, and t ∈ T is the time step vector.
,e discriminator performs the function

D(X, T)⟶ [0, 1], D takes the actual real data or generated
data and their corresponding time steps as input, and the
output is a value between 0 and 1, where 0 represents the
generated time series, and 1 represents the real data. ,e
discriminator is composed of two convolutional layers. After
each convolutional layer, there is a maximum pooling layer,
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and there is a fully connected layer at the end of the network.
,e goal of the discriminator is to adjust its corresponding
parameter logD(xt) to maximize, where x is the time series
vector and t is the time step vector. Figure 2 shows the
network structure of TCGAN’s generator and discriminator.

4.3. Experimental Comparison and Analysis. In order to
verify the impact of TCGAN on the classification accuracy of
unbalanced data sets, this chapter first constructs a simulation
composite data set. ,e data consist of two types of signals:
sine wave and sawtooth wave. ,e parameters used to par-
ticipate in the training include the number of curves S for
training TCGAN and the length of the signal time series L.

In order to evaluate the pros and cons of the TCGAN
simulation signal sample expansion quality, we choose to use
convolutional neural network to classify the signal. As shown in
Table 1, the CNNmodel trained on the TCGAN extended data
and the real data are trained on the CNN model, and the real
data are used for testing to achieve model performance
comparison. ,e CNN recognition rate of the two models is
counted and the AUROC curve is drawn.

It can be seen from the table that when the number of
training signals N is between 40 and 100, and the signal
length L is between 40 and 100, the real test signal is
compared with the real CNN model trained by the TCGAN
extended signal. ,e classification accuracy of the signal
training model is not much different, all reaching more than
95%. ,is directly shows that the model trained by the
generated signal and the model trained by the real signal
have the same recognition performance in CNNs and in-
directly shows that the effect of TCGAN’s simulation signal
sample generation is good.

,e AUROC curves of the two models with different
numbers of training signals are shown in Figures 3–6 It can
be seen from the figures that when the number of training
signals is 40, 60, 80, and 100, the classifier curve trained by
the TCGAN generator and the classification of the real signal
training the AUROC curve are basically the same. ,e
AUROC values are all above 0.95, which directly indicates
that the performance of Model 1 and Model 2 classifiers is
equivalent and indirectly indicates that the TCGAN has a
good effect in generating simulation signals and can replace
real signals to train CNN classifiers.

In order to further verify the effect of TCGAN on the
performance improvement of the classifier under the im-
balanced data set, when N is 100 and the signal length is 40,
the imbalance rate of the data is gradually increased. ,e
AUROC results are shown in Figures 7 and 8. It can be seen
from the table that when the imbalance rate of the data
gradually changes from 0.2 to 1 after the expansion of
TCGAN, the AUROC value gradually increases, which
further shows that TCGAN is important for improving the
performance of the classifier.

Collect the vibration signal of the bearing through LMS.
Using EDM technology, the individual faults of the inner
ring, outer ring, and rolling elements are arranged on
SKF6206-2RS1/C3 deep groove ball bearings. ,e loading
load is 2 kN, and the spindle speed is 1500 r/min. ,e

sampling frequency is 4096Hz, and every 200 points is a
piece of data. 200 sets of data are collected for normal
bearings, and 130 sets of data are collected for each of the
three types of failures. Among them, 100 groups of normal
bearings and 30 groups of three types of fault conditions are
the classifier training set, and the remaining 100 groups of
signals of each type are used as the classifier test set.

In order to evaluate the pros and cons of TCGAN’s
generated time sequence signal, time-domain feature ex-
traction was performed on the generated signal and the real
signal, and the differences between the two were compared.

In order to quantify the generation effect of TCGAN, we
choose to compare the time domain and frequency domain
characteristics of the two. Take a faulty outer ring bearing as
an example, and the results are shown in Table 2. It can be
seen from the table that the signal generated by the TCGAN
is not much different from the real signal regardless of the
time domain or frequency domain characteristics.,erefore,
it can be shown that the TCGAN-generated signal has a good
effect and has learned the characteristics of the real signal.

In order to verify the effect of TCGAN on the fault
diagnosis of rotating machinery under the unbalanced data
set, the model shown in Table 3 is designed for comparison.
Model 1 is composed of real samples and simulates the fault
diagnosis of imbalanced data sets in the case of small
samples. Model 2 is composed of real samples and TCGAN-
generated samples to generate samples instead of real
samples to construct a balanced data set and compare the
CNN recognition of the two models’ rates.

,e experimental results are shown in Table 4. It can be
seen from the table that when there is no data enhancement,
the CNN recognition rate is 65.5% when performing fault
diagnosis on the unbalanced data set, and when the TCGAN
sample is expanded, the imbalance of the data disappears.
,e CNN recognition rate is increased to 87.2%. ,is shows
that TCGAN can well solve the problem of rolling bearing
fault diagnosis in the case of data imbalance.

In order to further verify the improvement effect of
TCGAN on the fault diagnosis of rotating machinery under
the unbalanced data set, the data of gear cracks and broken
teeth in the laboratory are selected for experiments. ,e gear
speed is 360 r/min, and every 200 points are used as a
segment of the signal, 30 sets of gear crack data and 40 sets of
broken tooth data are collected, and the signal sampling
frequency is 1024Hz. Choose TCGAN data expansion for
gear crack data. 10 sets of gear crack data are used as the
input data of TCGAN.

From a qualitative point of view, TCGAN-generated
signals basically learned the shape features of real samples.
In order to quantify the generation effect of TCGAN, we
choose to compare the time domain and frequency do-
main characteristics of the two. Taking the cracked gear as
an example, the results are shown in Table 5. It can be seen
from the table that the signal generated by TCGAN is not
much different from the real signal regardless of the time
domain or frequency domain characteristics. ,erefore, it
can be shown that the TCGAN has a good signal gen-
eration effect and has learned the characteristics of the real
signal.
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In order to verify the effect of TCGAN on gear fault di-
agnosis, we conduct different experiments.Model 1 is composed
of real samples and simulates the fault diagnosis of imbalanced
data sets in the case of small samples. Model 2 is composed of
real samples and TCGAN-generated samples to generate
samples instead of real samples to construct a balanced data set
and compare the CNN recognition of the two models’ rates.

,e experimental results are shown in Table 6. It can be
seen from the table that when the sample expansion is not
performed, the CNN recognition rate is 82.5% when per-
forming fault diagnosis on the unbalanced data set, and
when the TCGAN sample expansion is performed, the
imbalance of the data disappears. ,e CNN recognition rate
is increased to 97.5%.

Input (z,t)

Deconvolution
layer 1 

Deconvolution
layer 2 

Deconvolution
layer 3 

Deconvolution
layer 4 

Output (x,t)

ReLU

ReLU

ReLU

(a)

Input (z,t)

Deconvolution
layer 1 

Maximum
pooling layer 1 

Deconvolution
layer 2 

Output (0,1)

Maximum
pooling layer 2  

Fully connected
layer 

ReLU

ReLU

ReLU

(b)

Figure 2: TGGAN structure schematic diagram: (a) builder and (b) discriminator.

Table 1: Simulation signal CNN experiment comparison.

Model CNN training sample CNN test sample
Model 1 Real sin and saw signal (2∗ S) Real sin and saw signal (S)
Model 2 Real sin and saw signal (2∗ S) Real sin and saw signal (S)
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Figure 3: AUROC curve under training signal number 40.
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Figure 4: AUROC curve under training signal number 60.
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Figure 5: AUROC curve under training signal number 80.
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Figure 6: AUROC curve under training signal number 100.
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Figure 7: Unbalance rate and AROUC value before data enhancement.
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Figure 8: Unbalance rate and AROUC value after data enhancement.

Table 2: Comparison of characteristics of real signal and generated signal.

Feature True signal Generated signal
Root mean square 8.1995 8.0637
Square root amplitude 4.1837 3.9922
Absolute average 5.3995 5.211
Peak value 35.5857 36.2089
Peak-to-peak value 65.5838 66.6553
Waveform indicators 1.5178 1.5474
Peak shape indicator 3.6603 3.7759
Impulse indicator 5.5558 5.8427
Margin indicator 7.1703 7.6265
Skewness indicator −0.2674 −0.4931
Kurtosis index 7.7696 8.5975
Amplitude spectral entropy 5.1932 5.1608
Envelope spectral entropy 5.2706 5.3431
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5. Conclusion

With the development of intelligent equipment, the data
obtained based on the monitoring of mechanical equipment
often have the characteristics of massive high dimension-
ality, nonstationarity, and nonlinearity. ,is makes the
extracted initial fault characteristics unable to effectively
identify the state and fault diagnosis of the mechanical
equipment. In order to obtain high fault diagnosis accuracy,
it is necessary to adopt effective dimensionality reduction
technology to perform certain processing on the original
high-dimensional fault feature set based on multidomain
construction, remove redundant and irrelevant features, and
extract low-dimensionality features that reflect the operating
state of the equipment. Aiming at the problem of missing or
incomplete category labels of fault samples, this paper
studies the dimensionality reduction method of fault data
sets based on semisupervised learning and proposes a new
fault identification model based on semisupervised di-
mensionality reduction.,e paper studies the fault diagnosis
of rotating machinery in the case of small samples and
unbalanced data. It designs a specific generative counter-
measure network structure for the characteristic signals of

rotating machinery and applies it to rotating machinery data
expansion and fault diagnosis field. We input the obtained
dimensionality reduction result into the KNN classifier for
training and learning and then realize the fault type rec-
ognition. ,e proposed method was verified with a data set
of fault characteristics of a double-span rotor experimental
rig. ,e results show that compared with other methods in
the experiment, the KSELF method has stable dimension-
ality reduction ability and can obtain better dimensionality
reduction effects and improve the classification accuracy
rate. In future, we aim to enhance our work to achieve better
results by using small training data sets. We aim to work on
the proposed system so that it is able to diagnose a number of
other types of machinery other than rotating machinery.
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Table 3: Bearing signal CNN experimental comparison.

Model CNN training sample CNN test sample
Model
1

100 groups of normal bearing signals and 30 groups of three types of
faulty bearing signals

100 groups of normal bearing signals and 100 groups of
three types of faulty bearing signals each

Model
2

100 groups of normal bearing signals, 30 groups of three types faulty
bearing signals, and 70 groups of three types bearing signals

100 groups of normal bearing signals and 100 groups of
three types of faulty bearing signals each

Table 4: CNN recognition rate of laboratory bearing data.

Quantity value Model 1 Model 2
CNN recognition rate 65.5% 87.2%

Table 5: Comparison of real signal and generated signal of the cracked gear.

Feature True signal Generated signal
Root mean square 16.6302 12.6789
Square root amplitude 10.5792 8.4973
Absolute average 12.7646 10.0438
Peak value 50.1458 38.7464
Peak-to-peak value 94.5800 74.4775
Waveform indicators 1.3028 1.2624
Peak shape indicator 2.6719 2.6603
Impulse indicator 3.4811 3.3582
Margin indicator 4.2002 3.9694
Skewness indicator −0.1508 −0.2328
Kurtosis index 3.5299 3.0871
Amplitude spectral entropy 4.2115 5.1942
Envelope spectral entropy 5.0374 5.1153

Table 6: CNN recognition rate of laboratory gear data.

Quantity value Model 1 Model 2
CNN recognition rate 82.5% 97.5%
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