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In radiotherapy, the location of the target area is very important. If the target area is small, the treatment is not complete, so the
location of the target area is generally larger than the actual cancerous site. However, the damage of radiotherapy to normal cells is
the same. In order to reduce the damage to the body as much as possible, we need to complete the most suitable target area. .is
paper uses an adaptive weighted multikernel support vector machine, which solves the parameter problem in the traditional
multikernel support vector machine. .e new AW-SVM can adjust the kernel weights adaptively. We completed our experiment
on the abdominal MR dataset, using DSI as an evaluation indicator, and the experimental results showed its excellent classification
performance. .e minimum value of DSI in all results is 0.9654 (more than 0.7 is acceptable).

1. Introduction

In 2020, it is estimated that there will be 73750 new cases of
kidney and renal pelvis cancer patients in the United States,
of which 45520 are males, 28230 are females, and 14830 are
expected to die, including 9860 males and 4970 females. In
the five years from 2012 to 2016, the incidence of kidney and
renal pelvis cancer was 16.6 per 100,000 people, 22.5 for men
and 11.5 for women. In 2013–2017, kidney and renal pelvis
cancer has a mortality rate of 3.7 per 100,000 people, 5.4 for
men and 2.7 for women [1].

Adaptive radiation therapy (ART) is still the main
method to solve cancer, especially for patients with ad-
vanced cancer [2]. Broadly speaking, any technology that
adjusts the treatment process through feedback can be
included in the scope of ART, such as image-guided ra-
diation therapy (IGRT) [3], dose-guided radiation therapy
(DGRT) [4], and structure-guided radiation therapy
(SGRT) [5]. IGRT can be described as the primary stage of
ART. It adds the concept of time factor on the basis of
three-dimensional radiotherapy and fully considers the
movement of anatomical tissue during the treatment
process, and the displacement error of the divided

treatment time, such as breathing and peristaltic move-
ment, daily pendulum position errors, and target area
contraction, causes changes in the radiation dose distri-
bution and imaging of the treatment plan. Before the
patient undergoes treatment, various types of advanced
imaging equipment are used to monitor the tumor and
surrounding risk areas in real time and can adjust the
treatment conditions according to the changes of the or-
gans so that the irradiation field only follows the target area
so that it can achieve precise treatment in the true sense.
DGRT is proposed on the basis of IGRT. In addition to
comparing image data, DGRT also compares the actual
absorbed dose of the tumor and surrounding normal tissue
during treatment with the dose in the treatment plan and
adjusts the treatment plan in time. In general, adaptive
ART is a self-responsive, self-correcting dynamic closed-
loop system from diagnosis location, plan design, and
treatment implementation to verification. Compared with
computed tomography-guided ART (CT-ART), the main
feature of MR-ART is that there is no radiation damage and
no bone artifacts and it can perform multifaceted and
multiparameter imaging, has a high degree of soft tissue
resolution, can display vascular structures without the use
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of contrast agents, and have multisequence biological
function images [6, 7].

With the development of three-dimensional conformal
radiotherapy and intensity-modulated radiotherapy in re-
cent years, more and more researchers pay attention to the
accuracy of tumor target definition to minimize the damage
to organs at risk (OARs) [8]. .e traditional circle drawing
of the target area completely relies onmanpower to complete
it manually. Because manual contour drawing involves
knowledge of multiple departments and engineering tech-
nology, it is extremely difficult for general doctors to draw. It
is done by an experienced imaging surgeon or radiation
oncologist. In most cases, it needs to be jointly discussed by
multiple experts in the imaging department and the on-
cology department. However, there is also a problem. .e
manual contour is almost impossible to reproduce, and the
target area contour depends entirely on the knowledge level
of the experts and the image quality. .ere are also devia-
tions between different experts. Manual contour drawing is
also very time-consuming and labor-intensive. In the face of
high-dimensional multimode images, as the images increase,
the working pressure increases, which may cause contour
deviations [9]. In addition, the accuracy of manual contours
needs to be increased. It is unrealistic to use manual con-
tours for online MR-ART, so it is necessary to develop an
online automatic contour algorithm for MR-ART.

Broadly speaking, the current image segmentation al-
gorithms mainly include segmentation methods based on
edge detection, threshold, region growth, statistics, graph
theory, information theory, fuzzy set theory, knowledge, and
so on and segmentation methods based on convolutional
neural networks.

Early image segmentation methods were mainly based
on point, line, and edge detection and segmentation
methods, using Robert operator [10], Canny operator [11],
Sobel edge detection operator [12], and so on. Statistics-
based segmentation methods include unsupervised k-means
clustering, FCM clustering, and Markov random field, and
the other is supervised support vector machine (SVM) [13],
naive bayes (NB) [14], and random forest model [15].
Compared with the unsupervised segmentation algorithm,
the supervised one obtains certain prior knowledge through
training and performs better in image segmentation. But
unfortunately, in the face of complicated and ambiguous
organ boundaries, these algorithms have limited success in
judging the boundaries.

With the continuous maturity and improvement of
deep learning technology, the experimental results grad-
ually exceed the previous machine learning, relying on the
strong feature extraction ability of convolution neural
network..e larger the amount of data given in the training
process, the stronger the generalization performance of the
network. In terms of image segmentation, FCN (Fully
Convolutional Networks) [16] and U-net [17] are out-
standing. FCN classifies images at the pixel level, thus
solving the problem of image segmentation at the semantic
level. U-net performs particularly well in medical image
segmentation. U-net can make full use of the low-level and
high-level information of medical images to provide a basis

for physical category recognition and precise segmentation
and positioning.

.e second chapter will introduce the dataset, data
preprocessing, multiple kernel learning, and fixed-weight
multikernel SVM to solve the problem of single-kernel
inflexibility of SVM in image segmentation. Finally, we will
introduce an adaptive weighted multikernel SVM to solve
the weight problem of multikernel SVM. .e third chapter
will introduce the choice of kernel function, the evaluation
index of the segmentation result, the comparison experi-
ment setting, and the experiment process. .e fourth
chapter analyzes the experimental results, and the fifth
chapter summarizes the full paper.

2. Related Work

2.1. Dataset. .is experiment uses a dataset of eight pa-
tients with unresectable malignant tumors of the lower
abdomen. We mark the eight patients as Sub1∼8. Each
patient’s dataset consists of 16 pictures, and the first 15
pictures are in the process of treatment. .e last one is the
MRI image of the treatment day, the resolution is
370 × 370, the axial pixel spacing is 1.5 mm × 1.5 mm, and
the plane spacing is 3mm. .e total dataset consists of a
total of 126 images of eight patients. .e kidney and skin
contours in the dataset are all drawn by professional
radiation oncologists as our automatic contour
assessment.

In terms of feature extraction, this article only uses the
most basic voxel features and three-dimensional space co-
ordinates. .e local texture features (voxels) corresponding
to each sequence are extracted from the four sequences
shown in Figure 1. In terms of three-dimensional coordi-
nates, since the coordinates of each sequence are the same,
the voxel coordinates of the IP sequence are selected in this
experiment.

2.2. Data Preprocessing. In order to further improve the
separability of the data, consider using a filtering algorithm
to process the data. .e filtering algorithm filters the image
information, removes the pixels we do not want, and en-
hances the information we need. Because the lower abdomen
organs/body fluids of the human body are also constantly in
motion, it is considered to use Kalman filter [18] to increase
the dimension of the data. After experimental verification
and analysis, it is completely appropriate to use Kalman filter
to process this MR dataset.

Kalman filter is often used in uncertain systems (ro-
bots, real-time systems, etc.). It is relatively rare in
classification algorithms. Kalman filter can infer the state
of the next step based on the state of the previous step. In
our MR data, the voxels are all adjacent, which is asso-
ciated with this feature of Kalman filtering. Similar to the
idea of KNN algorithm, adjacent voxels have the same
label. .rough experimental comparison, after using
Kalman filter for feature extraction, the separability of the
data has been greatly improved. .e experimental results
can be seen in Table 1.
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2.3. Multiple Kernel Learning. We all know that SVM is a
supervised learning method of machine learning. It is often
used to solve classification problems. Its basic principle is to
find a hyperplane in the feature space and separate positive
and negative samples with the highest accuracy. However,

the previous SVMs are all single-kernel, which is based on a
single feature space. In the actual classification task, we need
our experience to select the appropriate kernel function
(Gaussian kernel function, polynomial kernel function, etc.)
and specify different parameters. .is is not only

(a) (b) (c) (d)

Figure 1: (a) Dixon-FAT sequence, (b) Dixon-WATER sequence, (c) Dixon-OP sequence, and (d) Dixon-IP sequence. All four sequences
are reconstructed from Dixon sequence.

Table 1: Performance comparison of classifiers using Kalman filter.

Part A: without a Kalman filter
Datasets AW-SVM SVM S4VM MKL
Sub1 0.9621± 0.0148 0.9643± 0.0014 0.9348± 0.0050 0.9652± 0.0139
Sub2 0.9811± 0.0102 0.9770± 0.0032 0.9524± 0.0046 0.9768± 0.0091
Sub3 0.9731± 0.093 0.9712± 0.0013 0.9380± 0.0103 0.9725± 0.0124
Sub4 0.9875± 0.0115 0.9845± 0.0011 0.9525± 0.009 0.9794± 0.0121
Sub5 0.9848± 0.0122 0.9812± 0.0037 0.9553± 0.0033 0.9810± 0.0116
Sub6 0.9756± 0.0126 0.9746± 0.0021 0.9655± 0.0069 0.9727± 0.0112
Sub7 0.9818± 0.0116 0.9732± 0.0025 0.9610± 0.0026 0.9754± 0.0123
Sub8 0.9895± 0.088 0.9875± 0.0038 0.9507± 0.0113 0.9862± 0.0082
Datasets RSM TSVM NB RBF
Sub1 0.5549± 0.0036 0.7385± 0.0093 0.8646± 0.0070 0.6321± 0.0026
Sub2 0.5049± 0.0067 0.7886± 0.0028 0.8848± 0.0085 0.5894± 0.0037
Sub3 0.7060± 0.0082 0.7425± 0.0008 0.8667± 0.0071 0.5723± 0.004
Sub4 0.6415± 0.0058 0.7625± 0.0132 0.8949± 0.0039 0.6415± 0.0033
Sub5 0.6235± 0.0064 0.7625± 0.0116 0.9012± 0.0077 0.6149± 0.0037
Sub6 0.5936± 0.0081 0.8043± 0.0142 0.8980± 0.008 0.6512± 0.004
Sub7 0.5395± 0.0074 0.7389± 0.0092 0.8841± 0.0059 0.6035± 0.0034
Sub8 0.6043± 0.0098 0.7410± 0.0086 0.8468± 0.0073 0.9817± 0.0042

Part B: with a Kalman filter
Datasets AW-SVM SVM S4VM MKL
Sub1 0.997± 0.0025 0.9966± 0.0015 0.9863± 0.0041 0.996± 0.0023
Sub2 0.9999± 0.0001 1 0.9888± 0.0048 0.9998± 0.0001
Sub3 0.9998± 0.0001 0.9995± 0.0003 0.9953± 0.0013 0.9995± 0.0004
Sub4 1 0.9999± 0.0001 0.9837± 0.0013 0.9999± 0.0001
Sub5 1 0.9999± 0.0001 0.9918± 0.021 1
Sub6 0.9999± 0.0001 1 0.9923± 0.0021 0.9997± 0.0002
Sub7 1 0.9999± 0.0001 0.9962± 0.0023 0.9994± 0.0003
Sub8 1 1 0.9835± 0.0026 1
Datasets RSM TSVM NB RBF
Sub1 0.8105± 0.0080 0.9646± 0.0075 0.9953± 0.0017 0.9817± 0.0034
Sub2 0.8641± 0.0031 0.9621± 0.0083 0.9267± 0.0084 0.9836± 0.0012
Sub3 0.9078± 0.0046 0.9784± 0.0071 0.9784± 0.0027 0.9951± 0.0034
Sub4 0.9033± 0.0069 0.9697± 0.0059 0.9172± 0.0077 0.9980± 0.0016
Sub5 0.8737± 0.074 0.9790± 0.0021 0.9556± 0.0112 0.9949± 0.0017
Sub6 0.8565± 0.0061 0.9641± 0.0043 0.9289± 0.0075 0.9823± 0.0025
Sub7 0.9159± 0.0034 0.9759± 0.0043 0.9589± 0.0045 0.9971± 0.0026
Sub8 0.8226± 0.0026 0.9135± 0.0095 0.8963± 0.0073 0.9941± 0.0032
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inconvenient, but also when our dataset features are het-
erogeneous, the effect is not so good.

.e multiple kernel learning (MKL) [19] model is
born because of this application. .e multikernel model is
more flexible than the single-kernel model and can give
full play to the mapping capabilities of different kernel
functions in a combined space composed of multiple
feature spaces.

2.4. Multikernel SVM. According to the Mercer theorem
and its properties [20], if K1 and K2 are kernels on X × X
and X belongs to R, then the following are also kernel
functions:

K(x, z) � K1(x, z) + K2(x, z), (1)

K(x, z) � αK1(x, z). (2)

If there is more than one kernel on X × X, but multiple
kernels coexist, then according to (1) and (2), we know that
the following is also a kernel function:

K(x, z) � 
M

m�1
dmKm(x, z), dm ≥ 0,



M

m�1
dm � 1.

(3)

Equation (3) is the most common form of multiple kernel
function combination, which is a weighted combination of
single-kernel functions, is the basis kernel function, is the
number of basis kernel functions, and is the weight coefficient
corresponding to the first basis kernel function.

In general, the original problem ofMKL can be described
as follows:

min
wm,b,ξ,d

1
2



M

m�1

1
dm

wm

����
����
2
Hm

+ C 
n

i�1
ξi

s.t. yi 

M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠≥ 1 − ξi, ξi ≥ 0



M

m�1
dm � 1, dm ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where dm is the kernel weight, wm is the normal of the
separating hyperplane corresponding to theM-th kernel, b is
the deviation term, ξ is the slack variable, and C is the
misclassification penalty coefficient. .e above formula can
be transformed into an optimization problem with dm as a
variable:

min
d

J(d)

s.t. 
M

m�1
dm � 1, dm ≥ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J(d) �

min
wm,b,ξ

1
2



M

m�1

1
dm

wm

����
����
2
Hm

+ C 
n

i�1
ξi

s.t. yi 

M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠≥ 1 − ξi, (i � 1, 2, . . . , n)

ξi ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

.e above objective function J(d) is a standard SVM
problem, which is a convex optimization problem that in-
cludes dm. We can introduce a generalized Lagrangian

function to convert the original problem J(d) into a dual
problem. .e dual problem is a minimax problem; then,

L wm, b, ξ, α, ](  �
1
2



M

m�1

1
dm

wm

����
����

2

Hm

+ C 
n

i�1
ξi + 

n

i�1
αi 1 − ξi − yi 

M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − 

n

i�1
]iξi, (6)
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where α and ] is the Lagrangian multiplier, and the Lan-
grangian function L(wm, b, ξ, α, ]) takes the partial deriva-
tive of and makes it equal to zero, we can get

∇wm
L wm, b, ξ, α, ](  �

1
dm

wm − 

n

i�1
αiyiφm xi(  � 0,

∇bL wm, b, ξ, α, ](  � − 
n

i�1
αiyi � 0,

∇ξL wm, b, ξ, α, ](  � C − αi − ]i � 0.

(7)

.rough (8), we can get

wm � dm 

n

i�1
αiyiφm xi( ,



n

i�1
αiyi � 0,

C − αi + ] � 0.

(8)

Substituting (9) into the Langrangian function (7), we
can get

min
wm,b,ξ

L wm, b, ξ, α, ](  � −
1
2



n

i�1


n

j�1
αiαjyiyj 

M

m�1
dmKm xi, xj  + 

n

i�1
αi

s.t. 

n

i�1
αiyi � 0

0≤ αi ≤C, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Find the maximum of minwm,b,ξ to α, and convert the
maximum to the minimum to obtain the equivalent dual
optimization problem:

min
α

L wm, b, ξ, α, ](  �
1
2



n

i�1


n

j�1
αiαjyiyj 

M

m�1
dmKm xi, xj  − 

n

i�1
αi

s.t. 
n

i�1
αiyi � 0

0≤ αi ≤C, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Formula (10) is a dual form of the standard SVM
problem including the combined kernelK(xi, xj), assuming
that α∗ � (α∗1 , α∗2 , . . . , α∗l )T is the optimal solution of the
dual optimization problem, then for the expression

w
∗
m � dm 

n

i�1
α∗i y
∗
i φm xi( , (11)

b
∗
m � yj − 

M

m�1
dm 

N

i�1
α∗i yiK xi · xj . (12)

.rough (11) and (12), the final decision function is

f(x) � sign 

M

m�1
dm 

n

i�1
α∗i y
∗
i K x · xi(  + b

∗
m

⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (13)

In summary, the description of the MKL learning al-
gorithm can be found in Algorithm 1.

In this section, we introduced the multiple kernel
learning. You can see that the kernel weights in MKL are
fixed. In the next section, we will improve a new multiple
kernel learning based on this point.

2.5. AdaptiveWeightedMultikernel SVM. .e kernel weight
dm in multikernel SVM is not adaptive, and it is more
troublesome to use the gradient descent method to solve it. It
takes multiple iterations to converge when it is close to the
minimum. In this part we propose an adaptive weighted
multikernel SVM model (AW-SVM).

In general, the original problem of AW-SVM is as
follows:

min
wm,b,ξ,d

1
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d

r
m wm

����
����
2
Hm

+ C 
n

i�1
ξi

s.t. yi 

M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠≥ 1 − ξi, ξi ≥ 0



M

m�1
dm � 1, dm ≥ 0,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where dr
m is the kernel weight, the index r is similar to the

fuzzy index in FCM clustering, which is a relaxation of
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the weight, and is used to realize the self-adaptation of the
weight, which wm is the normal of the separating hyperplane
corresponding to the M-th kernel, b is the deviation term, ξ

is the slack variable, and C is the misclassification penalty
coefficient. Formula (14) can be transformed into an opti-
mization problem with dm as a variable

min
d

J(d)

s.t. 
M

m�1
dm � 1, dm ≥ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J(d) �

min
wm,b,ξ

1
2



M

m�1
d

r
m wm

����
����
2
Hm

+ C 
n

i�1
ξi

s.t. 
M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠≥ 1 − ξi, (i � 1, 2, . . . , n)

ξi ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

.e above objective function J(d) is a standard SVM
problem, which is a convex optimization problem involving
dm. Using the same method, we can get

L wm, b, ξ, α, ](  �
1
2



M

m�1
d

r
m wm

����
����

2

Hm

+ C 
n

i�1
ξi + 

n

i�1
αi 1 − ξi − yi 

M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − 

n

i�1
]iξi. (16)

Use the samemethod in the previous section (7), (8), and
(10) to get the final dual optimization problem:

min
α

L wm, b, ξ, α, ](  �
1
2



n

i�1


n

j�1
αiαjyiyj 

M

m�1

1
d

r
m

Km xi, xj  − 
n

i�1
αi

s.t. 
n

i�1
αiyi � 0

0≤ αi ≤C, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Input: training set: T � (x1, y1), (x2, y2), . . . , (xN, yN)  where xi ∈ χ ∈ Rn, yi ∈ −1, +1{ }, i � 1, 2, . . . , N

Output: classification decision function f(x)

Step 1: choose the appropriate kernel function K(x, z), the appropriate parameter C, and the loss parameter ξ
Kernel weight matrix dm initialization: d1

m � 1/M, where M is the number of kernelss
Construct and solve optimization problems (10), and find the optimal solution α∗ � (α∗1 , α∗2 , . . . , α∗l )T

Step 2: choose 0< α∗ <C positive component a from α∗, and calculate formula (11) and formula (12)
Step 3: construct decision function (13)

ALGORITHM 1: Learning algorithm for MKL.
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Assuming that α∗ � (α∗1 , α∗2 , . . . , α∗l )T is the optimal
solution of the dual optimization problem, then for the
expression

w
∗
m �

1
d

r
m



n

i�1
α∗i y
∗
i φm xi( , (18)

b
∗
m � yj − 

M

m�1

1
d

r
m



N

i�1
α∗i yiK xi · xj . (19)

After getting the parameter wm, dm can be solved by
iteration.

To construct a Lagrangian function with dm as a variable
for the original problem, we get

J(d, α, ]) �
1
2
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m�1
d

r
m wm

����
����

2

Hm

+ C 
n

i�1
ξi + 

n

i�1
λi 1 − ξi − yi 

M

m�1
wm · φ xi(  + b⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − 

n

i�1
]iξi + λ1 

M

m�1
dm − 1⎛⎝ ⎞⎠. (20)

Taking the partial derivative of the parameter dm, λ1 and
making it equal to zero, we can get

zJ(d)

z dm( 
�

r

2
d

r−1
m wm

����
����
2

+ λ1 � 0, (21)

zJ(d)

z λ1( 
� 

M

m�1
dm � 1. (22)

From the simultaneous formulas (21) and (22), using a
similar solution method of Um

ij in FCM [21], the final so-
lution dm is equal to

dm �
1/ wm

����
����
2

 
(1/r−1)


M
k�1 1/ wm

����
����
2

 
(1/r−1)

. (23)

In summary, the two classification problem of AW-SVM
can be described as follows:

Step 1: initialization of kernel weight matrix dm,


M
m�1dm � 1, M is the number of kernels.

Step 2: in each iteration, use the combined kernel K �


M
m�11/d

r
mKm to calculate the final dual optimization

problem (17).
Step 3: calculate the optimal solution of (17). Calculate
the separation hyperplane (wm, b) corresponding to
each kernel by formulas (18) and (19).
Step 4: update dm by formula (23).
Step 5: if the iteration termination condition is not met,
return to Step 2 and repeat Steps 2–4. If the iteration
condition is satisfied, the calculation is ended. .en,
output the final decision function:

f(x) � sign 
M

m�1

1
d

r
m



n

i�1
α∗i y
∗
i K x · xi(  + b

∗
m

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(24)

Iterative stop condition is duality gap (DG) [22].
Karush–Kuhn–Tucker (KKT) condition, Δd � dt+1−

dt ≤ ε1, reaches the maximum number of iterations.
.e DG expression is

max
m



n

i�1


n

j�1
α∗i α
∗
j yiyjKm xi · xj  − 

n

i�1


n

j�1
α∗i α
∗
j yiyj 

M

m�1

1
d

r
m

Km xi, xj ≤ ε. (25)

Both ε and ε1 are thresholds.

3. Experiment

After getting the artificial contour image of all the data
drawn by the expert, we start to train the AW-SVM learning
algorithm. .e algorithm runs on a computer with Intel(R)
Core(TM) i5-8500CPU 3.00GHZ 12GB memory and 64 bit
Windows10 operating system. .e algorithm iterates 10

times on average, and the training time is about 30 minutes.
Given a trained classifier model, the average segmentation
time of images on treatment days is about 3 minutes.

3.1. Kernel Function. In this experiment, we choose
Gaussian kernel function (26), Laplacian kernel function
(27), and logarithmic kernel function (28). .e formulas of
the three are as follows:
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K(x, y) � exp −
‖x − y‖

2

2σ2
 , (26)

K(x, y) � exp −
‖x − y‖

σ
 , (27)

K(x, y) � −log 1 +‖x − y‖
d

 . (28)

.eGaussian kernel is a classic robust radial basis kernel.
It has good anti-interference ability against the noise in the
data, which has been widely used, but the performance of the
Gaussian kernel function is very sensitive to the parameters.
.e Laplacian kernel function is a variant of the Gaussian
kernel function. .e main change is to adjust the 2-norm to
1-norm, which reduces the sensitivity to parameters. Log-
arithmic kernel is often used in image segmentation.

3.2. Evaluation Index. In addition to using classification
accuracy to evaluate the accuracy of the algorithm, this
article also uses Dice Loss [23], which is very common in
segmentation algorithms, to evaluate our segmentation
accuracy, because segmentation usually classifies each pixel:

Dice Loss � 1 − DiceCoefficient. (29)

Dice Coefficient, named after Lee Raymond Dice, is a set
similarity measure function, which is usually used to cal-
culate the similarity between two samples (value ∈ [0, 1]). A
value of 1 indicates complete coincidence. .e formula is as
follows:

Dice Coefficient �
2|X∩Y|

|X| +|Y|
, (30)

where |X| and |Y|, respectively, represent the number of
elements in the set, as shown in Figure 2. In the segmen-
tation task, the two, respectively, represent the real result and
the predicted result.

Combining (29) and (29), Dice Loss expression is as
follows:

Dice Loss � 1 −
2|X∩Y|

|X| +|Y|
. (31)

3.3. Comparative Test. In order to compare the performance
of the AW-SVM algorithm on this dataset, this paper ar-
ranges other seven algorithms as an experimental com-
parison. .e comparison algorithm is shown in Table 2.

.e experimental training set consists of daily MRI data
before treatment, and the treatment day dataset is used as the
test set. .e organs and skin except the kidney in the dataset
are labeled as background label 1, and the kidney as the circle
target, and the label is −1.

3.4. Experiment Process. For each patient (Sub1∼8), com-
plete the preliminary data processing (local texture feature
extraction, three-dimensional coordinate extraction, Kal-
man filter dimension enhancement, etc.). .e MRI image

during the treatment will be used as training data, denoted as
It; the MRI image of the treatment day is used as the test
data, denoted as Is. .e experiment is carried out as shown
in Figure 3:

(1) Randomly select the L� 4000 group of examples in
the labeled It (label: {−1, 1}); that is, select 4000
voxels from the kidney and background in the MRI
image during the treatment process to form the
training set G.

(2) Using the AW-SVM method on the training set G,
through parameter tuning, we can get the best
classifier Cr for this patient data.

(3) In the treatment day MRI dataset It, select a com-
plete treatment day MRI image as the test input
(including 36,000+ voxels), the label corresponding
to each voxel is obtained through the best classifier
Cr trained in Step 2, and the result is recorded as U.

(4) Select all MRI images of the treatment day on It as
the test input, and obtain the labels corresponding to
all voxels through the KNN algorithm (label in U is
used as the training label).

Real situation Predicted result

Predict the correct result

X Y

Figure 2: .e description of the Dice Coefficient.

Table 2: Comparison algorithm used.

Our algorithm Comparison algorithm

Adaptive weighted
multikernel SVM (AW-SVM)

Support vector machine (SVM)
Multiple kernel learning (MKL)
Transductive support vector

machine (TSVM) [24]
Semisupervised SVM (S4VM)

[25]
Random subspace method (RSM)

[26]
Naive bayes (NB)

Radial basis function (RBF) [27]
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(5) Obtain the outline of the kidney through the ob-
tained label.

3.5. Results and Discussion. In order to verify that the data
processed by Kalman filter performs better in classification
performance, we set up the first set of comparative exper-
iments, we have prepared two sets of patient data; the one
that is not processed by Kalman filtering is recorded as the
first group, and the one that is processed by Kalman filtering
is recorded as the second group. .e eight algorithms have
been experimented on these two sets of data, and the ex-
perimental results are shown in Table 1, from which we can
get the following information:

(1) It can be clearly seen that compared with the first set
of results, each classifier performs better on the
second set of data, and the classification accuracy has
been improved, indicating that the use of Kalman
filtering can improve the classification accuracy and
enhance interpretable.

(2) In each set of results, basically the classification
results of AW-SVM are the best. Classification ac-
curacy is much higher than TSVM, S4VM, NB, RBF,
and RSM, and the accuracy of MKL and SVM is close
to AW-SVM, but for this sample, AW-SVM’s per-
formance is still the best. In general, the experimental
results show that our algorithm is effective and ex-
cellent for classification on the MRI data of the lower
abdomen.

In order to compare whether there are significant dif-
ferences between AW-SVM and the other seven algorithms
in statistics, Friedman test [28, 29] is used to analyze the
classification accuracy of the eight algorithms. In the
Friedman test, each individual has the same sample size, and
each individual has a corresponding relationship with the

corresponding individual in other samples, so the Friedman
test can make full use of the information in the original data.
If p≤ 0.025, the null hypothesis was rejected. At the same
time, in order to further verify that the method to obtain the
best Friedman ranking and other methods are statistically
significant differences, we also conducted Holm post hoc test
[28, 29].

As shown in Tables 3 and 4, the Friedman test shows that
the classification performance of the AW-SVM method in
this dataset is greater than that of the other seven algorithms.
Holm post hoc test shows that the performance of AW-SVM
algorithm on this dataset is significantly better than RSM,
NB, S4VM, TSVM, and RBF, and for S4VM and MKL, it is
not obvious. In summary, the AW-SVM algorithm can be
used for lower abdomen MRI image segmentation, and its
classification performance is better than the comparison of
these seven classification algorithms. .e experimental re-
sults show that its accuracy rate is close to 1 on each dataset,
and the subsequent DSI values also show its excellent
classification performance.

In the field of medical segmentation, Dice similarity
index (DSI) value greater than 0.7 is an acceptable value,
which means that the predicted contour and the real
contour have a good overlap [30]. .e results of DSI value
are shown in Table 5. .e performance of AW-SVM,
SVM, and MKL models is as good as accuracy; DSI value
reached 1 in multiple patients, which indicates that the
automatic contour and manual contour are completely
coincident. .e lowest DSI values of the three are gen-
erated on Sub1, respectively, 0.9654 ± 0.0121,
0.9423 ± 0.0127, and 0.9324 ± 0.0162, which are also ac-
ceptable values, but it also shows that the MRI image of
Sub1 is the most complicated (there may be overlaps,
missing, shadows, etc.) [31]. .e performance of several
other algorithms is uneven, but the DSI value of the RSM
algorithm is around 0.2, which is a completely

Raw MRI data

MRI image data
during treatment MSVM classifier

Best classification
model C 

KNN classifier

Feature extraction Kalman filter
Train

Test

Training label

TestAutomatic contour

L = 4000

L = 4000

All data

Classification data
composed of voxels

and coordinates

Data after
dimension

increase

On-board TI-MRI
image data on
treatment day

Image data
of complete
treatment

day

Image data and
label of the

complete treatment
day, denoted as U

Kidney outline
map

Labels for all
treatment day data

Figure 3: Experiment process.
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unacceptable value. Indicating that RSM is not applicable
on this dataset.

Figure 4 shows the original cross-sectional image of the
lower abdomen generated by the OP sequence (the clearest
OP sequence) in MRI, the manual contour drawn by a
professional doctor, and the automatic contour generated
based on the AW-SVM algorithm. .e manual contour is
used as the evaluation criterion.

.e running time of the automatic contour method is
also a key point for clinical application. .e faster the
treatment speed, the shorter the time the patient will be fixed
on the treatment bed and the less pain they will suffer. We

select the three models with the best performance of DSI and
calculate their prediction time; the prediction time refers to
the time it takes to input the complete treatment day data
and get the automatic contour after obtaining the corre-
sponding best classification model. .e prediction time is
shown in Table 6, affected by programming; our AW-SVM
algorithm is not superior in predicting time, but it is also a
completely acceptable value, with an average time of 2.9263
seconds. .e automatic contour algorithm based on
AW-SVM greatly shortens the drawing of the contour of the
target area on the treatment day and greatly reduces the pain
of the patient.

Table 3: Result of Holm’s post hoc test (α� 0.05).

Holm’s post hoc test for AW-SVM
Algorithms z � (Ro − Ri)/SE P holm � α/i Hypothesis

RSM 5.358259 0 0.007143 Rejected
NB 4.184545 0.000029 0.008333 Rejected
TSVM 3.878359 0.000105 0.01 Rejected
S4VM 2.602583 0.009252 0.0125 Rejected
RBF 2.602583 0.009252 0.016667 Rejected
MKL 0.918559 0.358326 0.025 Not rejected
SVM 0.459279 0.646034 0.05 Not rejected

Table 4: Result of Friedman test (α� 0.05).

Friedman test for AW-SVM
Algorithm Friedman rank P value Hypothesis
RSM 8

0 Rejected

NB 6.5625
TSVM 6.1875
S4VM 4.625
RBF 4.625
MKL 2.5625
SVM 2
AW-SVM 1.4375

Table 5: Average dice similarity index (DSI) for the kidneys using the classification algorithm.

Part A: enter as part of a complete treatment day image
Datasets AW-SVM SVM S4VM MKL
Sub1 0.9654± 0.0121 0.9423± 0.0127 0.7176± 0.0211 0.9324± 0.0162
Sub2 1 1 0.8355± 0.0156 1
Sub3 0.9882± 0.0094 0.9749± 0.0114 0.8431± 0.0257 0.9782± 0.0076
Sub4 1 1 0.9100± 0.0336 0.9995± 0.0002
Sub5 1 1 0.8800± 0.0546 1
Sub6 1 1 0.8436± 0.0235 0.9988± 0.0011
Sub7 1 1 0.8852± 0.0303 1
Sub8 1 1 0.7181± 0.0489 1
Datasets RSM TSVM NB RBF
Sub1 0.2157± 0.0021 0.4267± 0.0153 0.7510± 0.0189 0.5976± 0.0213
Sub2 0.3078± 0.0012 0.6127± 0.0483 0.8298± 0.0220 0.6624± 0.0176
Sub3 0.1724± 0.0031 0.6925± 0.0221 0.8528± 0.0176 0.6768± 0.0229
Sub4 0.2226± 0.0012 0.8986± 0.0318 0.9220± 0.0304 0.7633± 0.0318
Sub5 0.1862± 0.0016 0.8318± 0.0430 0.9111± 0.019 0.7796± 0.0174
Sub6 0.2543± 0.0021 0.6811± 0.0194 0.8363± 0.0343 0.6717± 0.0312
Sub7 0.2784± 0.0011 0.5653± 0.0236 0.8968± 0.0308 0.6602± 0.0158
Sub8 0.1748± 0.0016 0.7168± 0.0297 0.7113± 0.0352 0.8681± 0.0153
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4. Conclusion

A mature automatic contour algorithm is the key to the
clinical application of MR-ART. .e experimental results

show that the adaptive weighted AW-SVM algorithm
proposed in this paper shows excellent performance in
abdominal MRI image segmentation, which is comparable
to many excellent classification algorithms. .e features

(a) (b)

(c)

Figure 4: Abdominal MRI cross-sectional image showing the automatic contour for kidneys obtained by the AW-SVM method.
(a) Original image, (b) manual contour, and (c) automatic contour. Red: manual contours used for ground truth; green: automatic contours
of the kidneys.

Table 6: Average prediction time of the AW-SVM and MKL and SVM methods.

Datasets AW-SVM MKL SVM
Sub1 2.53 1.18 0.23
Sub2 3.01 1.81 0.24
Sub3 2.87 1.56 0.22
Sub4 2.81 1.79 0.26
Sub5 2.73 1.27 0.25
Sub6 3.12 1.22 0.27
Sub7 3.02 1.31 0.25
Sub8 3.32 1.20 0.29
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used in this article are only simple voxel and coordinate
features. In the future, deep neural networks can be used to
process data to extract deep features to further improve the
classification performance of the AW-SVM algorithm. In the
future, it will not only be drawn for a single kidney outline
but also is hoped that all organs in the abdomen can be
drawn.
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