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Automatic classification of femur trochanteric fracture is very valuable in clinical diagnosis practice. However, developing a high
classification performance system is still challenging due to the various locations, shapes, and contextual information of the
fracture regions. To tackle this challenge, we propose a novel dense dilated attentive (DDA) network for more accurate clas-
sification of 31A1/31A2/31A3 fractures from the X-ray images by incorporating a DDA layer. By exploiting this layer, the
multiscale, contextual, and attentive features are encoded from different depths of the network and thus improving the feature
learning ability of the classification network to gain a better classification performance. To validate the effectiveness of the DDA
network, we conduct extensive experiments on the annotated femur trochanteric fracture data samples, and the experimental
results demonstrate that the proposed DDA network could achieve competitive classification compared with other methods.

1. Introduction

Femur trochanteric fracture is one of the most commonly
occurred fractures among elderly people. Especially, with the
rapid growth of the aging population worldwide, the oc-
currence of this fracture increases rapidly which severely
threatens the health of elderly people. Moreover, since this
fracture could lead to high mortality rates and dramatically
affect the quality of patients’ life, effective and timely
treatment is essential to relieve the pain of patients during
the clinical diagnosis. Currently, the most effective way to
diagnose this disease is by utilizing medical imaging such as
X-rays or computed tomography (CT) to classify the types of
fractures and then applying an appropriate treatment plan
based on the corresponding diagnosis result. Typically, the
OA/OTA classification criterion has been the most frequent
and reliable used method to diagnose the condition of the
fracture in the clinical fracture diagnosis. In this criterion,
there are three types, e.g., 31A1, 31A2, and 31A3 (as shown in
Figure 1), where 31A1 represents the simple pertrochanteric

fracture, 31A2 denotes the multifragmentary pertrochan-
teric fracture and lateral wall incompetent (≤20.5 mm)
fracture, and 31A3 is the intertrochanteric (reverse obliq-
uity) fracture [1]. Nevertheless, the conventional diagnosis
method inspects patient images slice by slice which is usually
tedious and time-consuming for the radiologists, and
moreover, with different clinical experiences of radiologists,
the final diagnosis result is liable to be empirical and sub-
jective, which may hamper making the follow-up treatment
plan. To tackle this challenge, a practicable way is to design a
fracture computer-aided system [2–6] that helps the radi-
ologist classify the fracture types automatically. In the past, a
considerable number of researches have been proposed, for
example, Demir et al. [7] developed a novel exemplar
pyramid method for the humerus fracture; it extracted
histograms of oriented gradients and local binary pattern
features from the input images and then combined them
with four conventional classifiers to classify the fractures.
Boudissa et al. [8] explored the influence of semiautomatic
bone-fragment segmentation on the reproducibility of the
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fracture classification, and it claimed that with the assistance
of this technique, the classification accuracy of the fracture
could be effectively improved. Additionally, in [9], the au-
thor proposed a 3D classification intertrochanteric fractures
system which used the Hausdorff distance-based K-means
method to classify the fractures into five types; the experi-
mental results found that the unsupervised K-means method
could gain promising classification performance with clin-
ical significance. Cho et al. [10] evaluated the 3D CT images
for boosting the diagnosis performance of femur trochan-
teric fractures, and it is shown that incorporating the CT
could efficiently improve the reproducibility of stability for
femur trochanteric fractures. Mall et al. [11] utilized different
machine learning methods with the gray level cooccurrence
matrix (GLCM) to classify the categories of fractures or no
fractures; it proved that the proposed method could gain
significant improvement on different evaluation metrics.
Despite the great success, those methods have achieved in
classifying the fracture task; those have deficiencies in
capturing the robust and high-level semantic features due to
hand-crafted feature predefinition.

Recently, the deep convolution neural network (CNN)
has been proved its effectiveness in many computer vision
tasks [12–16]. For instance, Lindsey et al. [17] suggested a
deep CNN model based on the UNet structure achieving
the automatic detection of the wrist fractures, and then it
was evaluated on two different datasets; the result dem-
onstrated that the proposed model could boost the clinical
diagnosis performance. .en, Krogue et al. [18] labeled
3026 hip fractures and trained them with the DenseNet to
achieve the automatic detection of hip fractures. Similarly,
in [19], the authors utilized the faster R-CNN [20] to locate
and classify the distal radius fractures automatically, and it
obtained the mean average precision score of 0.866 at that
time. To learn more high-level features, in [21], the authors
employed a cropping process with the Inception V3 net-
work to filter the unnecessary parts and thus leading to an
improvement of the fracture detection. Besides, in [22], it
used the Inception-ResNet faster R-CNN architecture to

construct a wrist fracture detection model and tested it on
the unseen dataset, which proved that the designed model
could gain high sensitivity and specificity.

Although those methods, especially the CNN ones, have
gained promising results on the fracture classification task,
an automatic fracture classification model should be simple
and stable and provide effective information for the follow-
up treatment plan. Specially, the femur trochanteric frac-
tures usually have various locations, shapes, and contextual
information in the clinical practice, which make it chal-
lenging to achieve a higher classification performance.
Moreover, few works have considered the contextual in-
formation at different scales which may further limit the
capability of the classification models. To tackle those
challenges and efficiently improve the ability to learn strong
representations from the fracture regions, in this paper, we
develop a dense dilated attention (DDA) network to ag-
gregate the multiscale, contextual, and attentive features
from the femur trochanteric fracture region. Specially, in our
DDA network, we incorporate the dense connection with
dilated convolution by utilizing different dilated rates to
learn the multiscale representations, and meanwhile, the
dense connection could also alleviate the vanishing gradient
problem and enable the network to reuse the hierarchical
features. Furthermore, a dilated attention (DA) module is
designed which encourages the network to encode more
contextual and attentive representations automatically. To
validate the effectiveness of DDA network, we perform
extensive experiments on the femur trochanteric fracture
images, and the experimental results show that our proposed
DDA network could efficiently improve the classification
performance by successfully extracting the discriminative
features from the input image.

.e rest of the paper is organized as follows: Section 2
presents the details of our proposed DDA network, and in
Section 3, we first introduce the experimental data and
evaluation metrics and then show the comparison results of
different experiment settings. Finally, an elaborate discus-
sion and conclusion of this paper are given in Section 4.

31A1 31A2 31A3

Figure 1: .e fracture samples of 31A1, 31A2, and 31A3.
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2. Methodology

�e automatic classi�cation of femur trochanteric fracture
is a challenging task due to its complex contextual infor-
mation and various fracture regions. Hence, improving the
network ability to extract multiscale representations,
contextual information and intensity details are particu-
larly important for accurate femur trochanteric fracture
classi�cation. To address those above challenges, a DDA
network is developed for the accurate classi�cation of the
fracture categories; in the following subsections, we will
provide the detailed descriptions of the network archi-
tecture and DDA module.

2.1. Network Architecture. As illustrated in Figure 2, given
the X-ray images as the input of the DDA network, it �rst
passes a series of convolution layers, max-pooling layers, and
then a DDA module is implemented in the middle of the
network to re�ne the feature representations, which will be
described in detail in Subsection 2.3. After that, the �nal
prediction category is output by a fully connected (FC) layer
with the softmax activation in an end-to-end manner. �e
detailed parameters of the network are shown in Table 1.
Notably, to preserve more spatial information of the image,
we do not use the stride in the convolution layer. Specially,
the ReLU activation is used to learn more nonlinear in-
formation, and batch normalization layer is utilized after
each nonlinear activation to accelerate the convergence of
the network.

2.2. Dilated Convolution. In our DDA module, we employ
the dilated convolution to enlarge the receptive �eld
without losing feature map resolution. Moreover, as the
receptive �eld increases, it also provides more multiscale
contextual features from the input [23]. Speci�cally, the
dilated convolution could be divided into three steps: (1)
sampling the input feature map based on the dilated rate;
(2) conducting the convolution operation on the sampled
values; (3) merging the obtained sampled values to a new
feature map. Here, we denote the kernel size of the con-
volution layer as k × k, and then the output feature map
dimension of the traditional convolution layer Ic could be
calculated as

Ic �
W − k + 2p

s
+ 1, (1)

whereW is the dimension of the input feature map; p and s
are the padding size and stride, respectively. For the dilated
convolution, its output dimension Idc could be de�ned as

Idc �
W − k − r + 2p

s
+ 1. (2)

Notably, when the stride is set as 1, the receptive �eld of
the dilated convolution layer Rl could be formulated as

Rl � Rl−1 +(k − 1)∗ rl, (3)

where rl is the dilated rate of lth layer, and through this
operation, the receptive �eld could increase rapidly. Finally,
the dilated convolution layer could be given as

y[i] �∑
m

x[i + r ·m] · w[m], (4)

where x[i], y[i] are the input and output of the ith position,
separately; w[m] represents the learnable parameters ofmth
�lter.

2.3. Dense Dilated Attention Layer. As illustrated in Figure 3,
the aim of our dense dilated attention (DDA) layer is to learn
more contextual and multiscale features across di�erent layers
to leverage the classi�cation performance of the DDA network
[24]. Note that the shallow layers usually contain the position
information of the input, while the deep layers have high-level
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Figure 2: �e main architecture of our proposed DDA network, where DDA layer is the dense dilated attention module.

Table 1: Parameters setting of the DDA network, where “Conv”
denotes the convolution layer, and “FC” represents the fully
connected layer.

Layer name Output size Filter size Filter number
Conv1 512 × 512 3 × 3 256
Max-pooling 256 × 256 — —
Conv2 256 × 256 3 × 3 128
Max-pooling 128 × 128 — —
DDA layer 128 × 128 —
Conv3 128 × 128 3 × 3 64
Max-pooling 64 × 64 — —
Conv4 64 × 64 3 × 3 64
Max-pooling 32 × 32 — —
DDA layer 32 × 32 —
Conv5 32 × 32 3 × 3 32
Max-pooling 16 × 16 — —
Conv6 16 × 16 3 × 3 32
Max-pooling 8 × 8 — —
DDA layer 8 × 8 —
FC Softmax 3
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semantic representations.�erefore, combining those features
across di�erent layers could enhance the discrimination ca-
pability on fracture regions. Additionally, in order to guide the
network’s focus on the most salient regions from di�erent
receptive �elds, a DAmodule is integrated into the DDA layer.
Specially, taking the previous input feature map from the
previous layer, it �rst passes through the DA module to learn
the attentive and contextual features, and then the obtained
ones are concatenated with the previous inputs as the input of
the next layer. Note that the DDA layer mainly contains three
DA modules with dilated rates of 1, 2, 3{ }, respectively, and its
detailed structure is shown in Figure 4.

Mathematically, we denote the input of each DAmodule
as FrD ∈ R

W×H×C with dilated rate of r, where W ×H × C
represents the width, height, and channel numbers of FrD.
�en, we adopt three 1 × 1 convolution layers to transform
the FrD to three embeddings Φ ∈ RW×H×Ĉ, η ∈ RW×H×Ĉ,

τ ∈ RW×H×Ĉ, separately:

ϕ �Wϕ FrD( ), η �Wη F
r
D( ), τ �Wτ F

r
D( ) , (5)

where Wϕ(·),Wη(·), and Wτ(·) denote the corresponding
convolution operation; Ĉ represents the channel number of
those embeddings. After that, ϕ, η, and τ are �attened to the
dimension of Ĉ ×HW. To gain the contextual relation of
FrD, a matrix multiplication between ϕ and η is applied,
which can be given as

M � ϕT × η, (6)

where M ∈ RHW×HW is the similarity matrix. Next, a soft-
max activation S is employed to normalizeM to the interval
of [0, 1], and it could be formulated as

M̃ � S(M). (7)

�en, the attentive feature map A ∈ RHW×HW is gained
by multiplying the M̃ with τ, and it could be formulated as

A � M̃ × τT. (8)

�erefore, the �nal output of the DA module FrDA is
de�ned as

FrDA � F
r
DA +Wδ(A), (9)

whereWδ(·) is the 1 × 1 convolution operation. By adopting
the hierarchical DA modules with the dense connection, the
DDA layer could not only extract the multiscale features
from di�erent receptive �elds but also learn the attentive and
contextual information from the input.

2.4. Training Loss Function. Denote the output feature map
from the fully connected layer as x1, x2, x3{ } and the cor-
responding label as l1, l2, l3{ }. To gain the predicted scores of
each class, we apply a softmax activation function σ(·),
which could be given as

σ(x)i �
exi

∑3
n�1 e

xn
, for i � 1, 2, 3{ }. (10)

Additionally, to optimize the network, we use the binary
cross-entropy Lbce as the loss function, which could be
formulated as

Lbce �∑
N

j�1
gjlogpj +∑

N

j�1
1 − gj( )log 1 − pj( ), (11)

where N is the number of the data samples, and pj ∈ [0, 1],
gj ∈ l1, l2, l3{ } are the predicted probability and corre-
sponding true label.

3. Experiment

In this section, we conduct extensive experiments to validate
the e�ectiveness of the DDA network. Specially, we �rst
introduce the experimental data, implementation details,
and evaluation metrics. �en, we compare the experiments
with di�erent amounts of data samples. Next, an ablation
analysis of the DDA layer and DA module is explored to
validate their e¡ciencies for this classi�cation task. Finally,
we reimplement some other fracture classi�cation methods
to compare them with our proposed DDA network.

3.1.Dataset. �e total number of the experimental dataset is
390, and it consists of three categories 31A1, 31A2, and 31A3
with the amount of 117, 125, and 128, respectively.�emean
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Figure 3: �e structure of the dense dilated attention layer.
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age of the patients is 65, the maximum age is 91, and the
minimum age is 26. All the categories of the experimental
data are annotated by three traumatic orthopedic specialists
with more than 15 years of experience. Notably, the �nal
category of data is based on the AO/OTA criterion. Since the
initial resolution of the image is 1417 × 1772, we crop the
region of interest (ROI) with the maximum bounding-box,
and then we resize those ROIs to 512 × 512 before input
them into the DDA network to accelerate the training
process of the network.

3.2. Implementation Details. In our experiments, since the
initial resolution of the image is large, we �rst resize the
image input to 512 × 512. Moreover, to alleviate the over-
�tting problem, data augmentation is utilized to generate
more data samples, and it includes random rotation, �ip,
and contrast. �e whole network is implemented by the
PyTorch deep learning library, and it is optimized by Adam.
�e initial learning rate is set as 0.001 and it decreases by 0.1
after 10 epochs. To accelerate the training process, we use the
NVIDIA GeForce RTX 2070 Graphics Card, and the batch-
size is set as 2.

3.3. Evaluation Metrics. To evaluate the performance of the
proposed DDA network, we apply four evaluation metrics;
here, we denote the true positive, false positive, true negative,
and false negative as TP, FP, TN, and FN.�en, the accuracy
which calculates the correct prediction among the total
numbers of samples could be calculated as

accuracy �
TP + TN

TP + FP + TN + FN
. (12)

�e sensitivity measures the ratio of correct TP pre-
diction to the whole number of true positive samples. It
could be formulated as

sensitivity �
TP

TP + FN
. (13)

�e speci�city calculates the ratio of correct TN to the
whole numbers of false positive samples, and it is given as

specificity �
TN

TN + FP
. (14)

�e receiver operating characteristic (ROC) curve is the
most used graphical plot to measure the performance of the
classi�er, and the area under curve (AUC) is the score to
measure the classi�cation performance in which the higher
score indicates the better distinguishing performance.

3.4. Data Sample Analysis of DDA Network. In this section,
we �rst explore the in�uence of di�erent data samples on
the classi�cation performance of the DDA network. Here,
we divide our training data to 20%, 40%, 60%,
80%, and 100%, while the amount of the testing data
samples is unchanged. �e comparison result is shown in
Figure 5, and it can be concluded that the more the data
samples, the better performance the network would gain.

�at could be suggested that with more data samples, the
network can extract the image features more su¡ciently
and e�ectively.

3.5. �e E�ectiveness of DDA Layer. �e aim of our DDA
layer is to learn the multiscale, attentive, and contextual
information from the input image.�erefore, in this section,
we conduct experiments w/o the DDA layer to explore its
e�ects on the �nal classi�cation performance. Moreover,
since di�erent depths of layers contain discriminative rep-
resentations, therefore we also test the e�ectiveness of DDA
layer on di�erent depth locations. As reported in Table 2,
DDA-1, DDA-2, and DDA-3 represent the depth location of
locating DDA layer, in which the smaller value denotes the
shallower depth location of the DDA network, and the
DDA-W and DDA-O denote the network with or without
the DDA layer. From the result, we observe that the best
performance is achieved by the “DDA-W,” which can be
explained that with the proposed DDA layer, the network is
able to learn more high-level representations and then boost
the classi�cation performance.

3.6. Impact of DAModule. Di�erent from the conventional
dense connection, we develop a DA module that can guide
the network to capture more attentive information with
self-attention from di�erent receptive �elds. To validate
the e�ectiveness of the proposed DA module, we compare
three di�erent network settings: with DA module; without
DA module; with DA module (dilated rate as 1); with DA
module (dilated rate as 2); with DAmodule (dilated rate as
3). �e comparison result is shown in Table 3; the ex-
perimental result demonstrates that adopting the
designed DA module could e¡ciently improve the clas-
si�cation performance compared with the setting without
DA module. Moreover, with di�erent dilate rates, the
network tends to gain di�erent performance; however, the
best one is achieved by combining those three dilate rate
settings, with the accuracy, sensitivity, speci�city, and
AUC of 88.9%, 87.6%, 85.9%, and 0.97, respectively.
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3.7. ComparisonwithOtherMethods. To further evaluate the
performance of the DDA network, in this section, we
compare the results with di�erent classi�cation methods. As
shown in Figure 6, we �rst compare our method with some
baseline classi�cation methods: Inception V4 [25], ResNet
[26], DenseNet [27], and SKNet [28]. Note that we reim-
plement those methods and all the parameter settings are
based on the default values. From the result, we observe that
our proposed network could gain the highest AUC score of
0.97, which proves the e�ectiveness of our proposed net-
work. Furthermore, we also report the comparison result
with some other fracture methods; despite some of them are
not with the same classi�cation task, we reimplement those
methods on the same dataset. As shown in Table 4, our
method gains the best performance among all the evaluation
metrics.

4. Conclusion

In this paper, a DDA network is designed to achieve the
classi�cation of femur trochanteric fracture from X-ray
images automatically. Since the fracture usually comes with
various locations, shapes, and contextual information in the
clinical practice, a novel DDA layer is developed which can
automatically extract the multiscale, contextual, and atten-
tive features to enhance the feature learning ability for
achieving a more accurate classi�cation performance. Ex-
tensive experiments on the annotated femur trochanteric
fracture demonstrate that the proposed DDA network could
gain competitive performance on this classi�cation task. In
future work, we will extend our work to di�erent fracture
classi�cation tasks and collect more data samples to make
the model more robust.
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