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,is work aimed to analyze the electrocardiogram (ECG) characteristics and signal classification of patients with coronary heart
disease (CHD) diagnosed by coronary angiography, so as to provide a theoretical basis for the clinical adoption of ECG images.
106 patients with CHD who were admitted to the XXX hospital from January 15, 2019, to May 30, 2020, underwent coronary
intervention therapy, and their ECG indicators were recorded during the operation. ,en, the LetNet-SoM algorithm designed in
this work, as well as the traditional algorithms GoogLeNet and SqueezeNet, was applied to the patient’s ECG classification. It was
found that part of ECG wave (QRS) and corrected Q-T interval (QTC) of patients after treatment were higher than those before
treatment (P< 0.05), but PR interval, RR interval, Tpeak-Tend (TpTe) interval, and QT interval were not substantially different
from those before treatment (P> 0.05). ,e diagnostic accuracy, sensitivity, and specificity of LetNet-SoM algorithm for patients
with CHD were better than those of traditional algorithms, with evident difference (P< 0.05). ,e classification time of LetNet-
SoM algorithm was lower in contrast to that of traditional algorithms, and the difference was also notable (P< 0.05). ,e R wave
and T wave indicators of patients after treatment were higher than before treatment, with notable difference (P< 0.05). ,e
difference between the patient’s S wave indicator before and after treatment was not statistically significant (P> 0.05).,e positive
rate of S wave amplitude, QRS, and QTC was 68.15%, 60.52%, and 51.36%, respectively. In short, the LetNet-SoM algorithm
designed based on lightweight neural network had excellent performance in classification and diagnosis of ECG, and it had the
value of further popularization and application. ,e ECG signals were important indicators in the diagnosis of CHD, among
which the S wave amplitude, QRS, and QTC were the most sensitive ones.

1. Introduction

,e blood supply to the heart is not static but always
fluctuates, and this fluctuation needs to be adjusted by the
body itself, to promote the relatively constant blood supply
and ensure the normal work of the heart [1]. If any kind of
cause causes myocardial ischemia, the body’s regulation will
not meet the needs of the heart, which constitutes the true
myocardial ischemia [2]. ,erefore, myocardial ischemia
means that the blood perfusion of the heart is reduced,
resulting in ischemia and hypoxia of the heart, which cannot
meet the normal energy requirements of the heart. Mild
myocardial ischemia can compensate for the heart, and the
symptoms are not obvious.,e symptoms of chest tightness,
shortness of breath, palpitations, and fatigue may appear

after physical labor, which will be relieved after rest. ,e
more severe ones can cause angina, which is the compressive
pain behind the breastbone. It can radiate to the left
shoulder, left upper arm, and other parts. ,e patient will
often experience symptoms such as difficulty breathing,
sweating, nausea, and vomiting due to severe pain. It even
causes myocardial infarction, threatening the lives of pa-
tients [3, 4]. ,ere are many reasons for myocardial is-
chemia, such as decreased blood volume, coronary artery
obstruction, coronary heart disease, and valvular heart
disease. ,erefore, how to diagnose myocardial ischemia as
early as possible is of great significance to the prognosis of
patients.

Coronary angiography can show the location, scope, and
degree of coronary artery disease. It has diagnostic value for the
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diagnosis of asymptomatic myocardial ischemia. Moreover, it is
the gold standard recognized by the medical community, but it
is minimally invasive for patients. Resting or exercise
echocardiography can show localized abnormal wall motion
caused by myocardial ischemia, but it is easily affected by the
patient’s ventilation and has low specificity. Holter is currently
the best approach to study painless ischemia, and it has the
advantages of being noninvasive, simple, accurate, real-time,
repeatable, and quantifiable. Moreover, it can accurately reflect
the frequency, duration, severity, and dynamic changes of
myocardial ischemia [5]. Valensi and Meune [6] obtained
echocardiograms of patients with type 2 diabetes for analysis,
with the coronary artery results as the standard; it was found
that cost-effectiveness of asymptomatic screening for myocar-
dial ischemia as part of a risk assessment for heart failure can
contribute to the preventive treatment of asymptomatic patients
withmyocardial ischemia.West et al. [7] used ECG gated chest-
computed tomography to scan patients with coronary heart
disease and compared them with the results of coronary an-
giography. It was found that ECG features had high accuracy,
sensitivity, and specificity in the diagnosis of coronary heart
disease. As the level of deep learning neural networks becomes
deeper and deeper, there are increasing parameters, and its
requirements for hardware are getting higher and higher.
Moreover, it has been unable to meet the requirements of light
and compact embedded hardware such as mobile phones and
computing platforms for autonomous driving.,erefore, many
scholars focus on how to streamline and optimize the network
model, so that they can run more smoothly on embedded
devices with limited hardware conditions, and lightweight
neural networks came into being. ,erefore, it intends to in-
troduce a new type of ECG signal classification algorithm
designed by neural network convolution.

In summary, the ECG signal classification algorithm Let-
Net-SoM was constructed based on the lightweight neural
network.,e patient’s coronary angiography results were taken
as the gold standard, and it was compared with GoogLeNet and
SqueezeNet algorithms. It was then applied in the ECG diag-
nosis of 106 patients with myocardial ischemia diagnosed as
coronary heart disease by coronary angiography in the hospital.
After comparing the ECG interval and amplitude indicator
before and after treatment, the clinical diagnostic value of ECG
in patients with myocardial ischemia was comprehensively
evaluated based on ECG signal classification algorithm and
coronary angiography.

2. Materials and Methods

2.1. Research Subjects. 106 patients admitted to the hospital
from January 15, 2018, to May 30, 2020, who were diagnosed

as coronary heart disease by coronary angiography were
selected as study subjects, all of which received coronary
intervention therapy. ,e ECG was recorded by the mon-
itoring system of multilead ECG during operation.,e study
had been approved by the Medical Ethics Committee of xxx
Hospital, and the patients and their families understood the
meaning of the study and had signed an informed consent
form.

Inclusion criteria were the following: (1) patients with
symptoms of myocardial ischemia; (2) samples of patients
who voluntarily received interventional therapy; (3) patients
with similar symptoms such as angina caused by activities;
(4) patients with triple vessel disease and Syntax score [8]
less than 22 points; (5) patients with the coronary artery
diameter greater than 70%.

Exclusion criteria were the following: (1) patients with
liver and kidney diseases; (2) patients who had reached the
end stage of heart failure; (3) patients with electrolyte dis-
turbance; (4) patients with dilated myocardial disease.

2.2. ECGSignal ClassificationAlgorithmBased onLightweight
Neural Network. Traditionally, the ECG diagnosis obtained
by traditional devices is mainly classifying new data by
extracting abnormal features of the ECG. But, if the feature
itself is not universal or specific, it is difficult to make a clear
classification. ,erefore, it first introduces the latest light-
weight neural network to design algorithm. ,en, it is put it
into a restricted mobile device to realize feature extraction
and classification of ECG data. In Figure 1, the obtained
ECG data can be input to a mobile device, and the designed
algorithm can be used to classify and output the corre-
sponding label.

Based on the above ideas, the traditional two-dimen-
sional convolution is changed to a one-dimensional con-
volution structure, and then the one-dimensional
convolution equation can be expressed as follows:

y[p] � x[p]∗g[p] � 

q−1

k�0
x[k]g[p − k]. (1)

In (1), y[p] represents the output sequence, x[p] repre-
sents the input sequence, q represents the convolution
length, and g[p] represents the convolution kernel. It is
supposed that the input sequence is x[p]� [x1, x2, x3] and the
convolution kernel is g[p] � [g1, g2, g3]; then the output
sequence can be expressed as follows:

y[0] � x[0]∗g[0 − 0] + x[1]∗g[0 − 1] + x[2]∗g[0 − 2] � g1 ∗x1, (2)

y[1] � x[0]∗g[1 − 0] + x[1]∗g[1 − 1] + x[2]∗g[1 − 2] � g1 ∗x2 + g2 ∗x2, (3)

y[2] � x[0]∗g[2 − 0] + x[1]∗g[2 − 1] + x[2]∗g[2 − 2] � g1 ∗ x3 + g2 ∗x2 + g3 ∗x1, (4)
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y[3] � x[0]∗g[3 − 0] + x[1]∗g[3 − 1] + x[2]∗g[3 − 2] � g2 ∗x3 + g3 ∗x2, (5)

y[4] � x[0]∗g[4 − 0] + x[1]∗g[4 − 1] + x[2]∗g[4 − 2] � g3 ∗x3. (6)

In (2)–(6), the length of the output sequence is 5, and
y[0], y[1], y[2], y[3], and y[4] can be output sequentially.
In the whole algorithm, the Lite module [9] is proposed as
the processing core of the model in Figure 2. ,is module
uses the 1 × 1 convolution method, which can pass the
convolution of 1 × 1, 1 × 2, and 1 × 3 in parallel channel. A
layer of volume is added to the convolution channel of
1 × 2 and 1 × 3, deep learning can be adopted to separate
the convolution structure, and a residual connection is
also designed.

For the multiclassification problem, it introduces the
neural network Softmax as the classifier, the classification
target is set to 5, and then the Softmax classifier requires 5
neurons, which can be expressed as follows:


5

i

hi � 1. (7)

In (7), i� 1, 2, . . ., 5, and hi represents the probability
distribution of different neurons. ,en, it is supposed that
the weight of the previous layer connected to Softmax is W,
and the input of the Softmax classifier can be expressed as
follows:

zi � 
k

xkWki. (8)

In (8), zi represents the input sequence of the Softmax
classifier, and the probability that the Softmax classifier
calculates and outputs 5 neurons is as follows:

hi �
exp zi( 


5
j exp zi( 

. (9)

,e final predicted output category can be expressed as
follows:

i � argmax hi � argmax zi. (10)

In (10), i represents the final predicted output category.
In order to express the similarity between the predicted
category and the true category, it introduces cross entropy as
the loss function, which can be expressed as follows:

F(r, s) � − 
x

r(x)log s(x). (11)

In (11), F(r, s) represents the cross entropy, r represents
the expected label output, s represents the true label output,
r(x) represents the probability of the expected label output,
and s(x) represents the probability of the true label output. It
is assumed the sequence is p � 3; then the expected output is
r� (r1, r2, r3), and the real outputs are p� (p1, p2, p3) and
q� (q1, q2, q3), so the following equations can be obtained:

F(r, p) � − r1 ∗ log
p1 + r2 ∗ log

p2 + r3 ∗ log
p3(  � k1,

(12)

F(r, q) � − r1 ∗ log
q1 + r2 ∗ log

q2 + r3 ∗ log
q3(  � k2.

(13)

In (12) and (13), if k1 < k2, k1 is close to the expected
output; otherwise k2 is close to the expected output. ,e
smaller the loss function value, the better the classification
effect. ,e above is an ECG signal classification algorithm
based on a lightweight neural network (set as LetNet-
SoM).

Electrocardiogram
data 

automatic analysis

Classification
result 

Output

Input

Classification
algorithm of

electrocardiogram

Figure 1: Schematic diagram of the overall concept of the constructed algorithm.
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2.3. ECG Data Collection. According to the results of cor-
onary angiography, appropriate interventional instruments
were selected. Before treatment, the disposable light-per-
meable electrode pads were placed on the standard ECG lead
electrodes on the patient’s body surface. After the electro-
physiological instrument of Bard was switched on, the ECG
of the patient was continuously collected until the end of the
operation. ,e balloon dilation time (8–12 seconds of bal-
loon dilation) was recorded. After the collection, the data
were measured with LABSYSTEM analyzer by two senior
doctors.

,e measured indicators were as follows. (1) PR interval
(the time interval from the start of the P wave to the start of
the QRS wave); (2) RR interval (the time interval between the
two QRS starting points); (3) Tpeak-Tend (TpTe) interval
(the time interval from the peak of the T wave to the end of
the T wave); (4) QRS time limit (the time interval from the
beginning of the QRS wave to the end of the QRS); (5) QT
interval (the time interval from the start of QRS wave to the
end of T wave); (6) QTC interval: according to the QT
interval, the equation was QTC � (QT/

���
RR

√
); (7) R wave

amplitude (the distance from the upper edge of the QRS
wave starting point to the top of the wave measured ver-
tically); (8) S wave amplitude (the distance from the bottom
edge of the QRS wave starting point to the bottom of the
wave measured vertically); (9) T wave amplitude (the dis-
tance from the starting point of QRS to the bottom of Twave
is measured vertically).

2.4. Algorithm Performance Evaluation Experiment. Parts of
the normal data and abnormal data in the single lead of
China Cardiovascular Clinical Database (CDR) are selected
as experimental data. Meanwhile, the GoogLeNet algorithm

[10] and the SqueezeNet algorithm [11] designed by the
predecessors are introduced for comparison. With coronary
angiography as the gold standard, the classification running
time is recorded, and the algorithm performance evaluation
indicators include the following ones.

(I) Parameter count (PC) is the corresponding
learning parameters in the neural network con-
volutional layer. ,e smaller the parameter, the less
the computer memory consumed.

(II) Accuracy (ACC) is a relatively comprehensive
performance indicator that can directly reflect the
performance of the model, which is expressed as
follows with the confusion equation:

ACC �
TP + TN

TP + TN + FN + FP
. (14)

(III) Sensitivity (Se): the proportion of samples that are
actually negative, and the equation is as follows:

Se �
TP

TP + FN
. (15)

(IV) Specificity (Sp) is the proportion of the actual
positive sample data that is correctly predicted, and
the equation is as follows:

Sp �
TN

FP + TN
. (16)

In (14)–(16), TP represents true positive, FP is false
positive, TN represents true negative, and FN represents
false negative.

Input
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Convolution
channel 1×1 

Depth
convolution 1×3 

Depth
convolution 1×2 Output

Residual connection

Convolution 1×1

Point-by-point
coupon

Point-by-point
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Figure 2: Schematic diagram of the Lite module structure.
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2.5. Statistical Methods. Data processing was analyzed by
SPSS19.0 version statistical software, measurement data
were represented by mean plus or minus standard deviation
(x± s), and count data were represented by percentage (%).
,e accuracy, sensitivity, specificity, running time, and
number of parameters of LetNet-SoM algorithm,
GoogLeNet algorithm, and SqueezeNet algorithm adopt
paired t-test. ,e QRS, QTC, PR, RR, TpTe, QT, R wave, T
wave, and S wave indicators were compared by analysis of
variance after anesthesia treatment. ,e difference was
statistically significant when P< 0.05.

3. Results

3.1. Contrast of Performance Indicators of Different
Algorithms. Figure 3 reveals that the accuracy, sensitivity,
and specificity of the LetNet-SoM algorithm were obviously
higher in contrast to GoogLeNet algorithm and the
SqueezeNet algorithm, with notable difference (P< 0.05).
,e running time and number of parameters of the LetNet-
SoM algorithm were obviously less in contrast to
GoogLeNet algorithm and the SqueezeNet algorithm, with
notable difference (P< 0.05).

3.2.DescriptiveStatistics of Subjects’BasicData. Figures 4 and
5 show that there were remarkably more male patients than
females; the proportion of patients over 50 years old was the
largest, followed by patients aged 40–50 years. ,e proportion
of patients who were hospitalized for longer than 10 months
was the highest, followed by patients who were 5–10 months
old.,eproportion of patients with three-vessel diseasewas the
highest, followed by patients with double-vessel disease. ,e
proportion of patients whose intervened vessel was the anterior
descending artery was the highest, followed by the patients with
the right coronary artery intervened.

3.3. Indicator Comparison before and after Balloon Dilation.
Figure 6 shows that QRS and QTC of patients after
anesthesia treatment were obviously higher in contrast to
that before treatment, with notable difference (P< 0.05).
PR interval, RR interval, TpTe interval, and QT interval
after anesthesia were not obviously different from those
before treatment (P> 0.05). Figure 7 shows the changes of
ECG before and after balloon dilatation, and the patient
started balloon dilatation to block blood flow at 1 s. At 3 s,
a relatively obvious positive change in QRS was observed,
the duration of expansion was 8 s, and QRS began to
return to normal at 9 s.

3.4. Contrast of Amplitude Indicators before and after Balloon
Dilation. Figure 8 shows that the indicators of R wave and T
wave of the patients after anesthesia treatment were obvi-
ously higher than those before the treatment, with notable
difference (P< 0.05). ,e difference between the indicator S
wave after the anesthesia treatment and before the treatment
was not obvious (P> 0.05).

3.5. Positive Rate of Various Indicators. Figure 9 shows that,
among the various indicators, the positive rate of S wave
amplitude was the highest (68.15%), followed by QRS
(60.52%) and QTC (51.36%). However, the positive rates of
other indicators were low.

4. Discussion

Cardiovascular disease is one of the common high-mortality
foci in people’s lives. ,e ECG is the most direct response form
of the heart, but the ECG data itself is more complicated and
difficult to predict, and the theoretical knowledge involved is
diversified. ,erefore, citing mathematical algorithms for data
processing and classification is a hot spot for current scholars
[12, 13]. ,e ECG signal classification algorithm LetNet-SoM
was constructed based on the lightweight neural network, and
GoogLeNet and SqueezeNet algorithms were introduced for
comparison. It was found that the accuracy, sensitivity, and
specificity of the LetNet-SoM algorithm were obviously higher
than those of the GoogLeNet and SqueezeNet algorithms, and
the running time and the number of parameters were less than
those of the GoogLeNet and SqueezeNet algorithms (P< 0.05).
It was similar to the research results of Hung et al. [14], sug-
gesting that, compared with the traditional algorithm, the
constructed LetNet-SoM algorithm could reduce the running
time and required parameters while maintaining the high-
precision classification effect. After this algorithmwas applied in
the ECG diagnosis of patients with myocardial ischemia, it was
found that QRS and QTC after treatment were notably higher
than those before treatment (P< 0.05), which was similar to
study results of Head et al. [15]. ,e length of QRS interval was
related to the delay of ECG signal transmission in myocardial
ischemic area. ,e length of the QTc interval was related to the
distribution of ions inside and outside the cell and the decrease
in the pH of the extracellular fluid. ,e results indicated that
QRS and QTC were more sensitive to early myocardial
ischemia.

,e indicators of R wave and Twave of the patients after
anesthesia treatment were notably higher in contrast to those
before treatment, with notable difference (P< 0.05), and the
indicator S wave was not obviously different from those
before treatment (P> 0.05). It was different from the find-
ings of Burton et al. [16]. In patients with myocardial is-
chemia, the main systolic function was the increase in
ventricular end-systolic volume, which triggered the in-
crease in R wave, but the reason for the increase in T wave
was not clear. ,e results indicated that R wave and T wave
were more sensitive to early myocardial ischemia in patients,
with obvious changes [17]. Among the various indicators,
the positive rate of S wave amplitude was the highest
(68.15%), followed by QRS (60.52%) and QTC (51.36%).,e
positive rates of other indicators were low. It indicates that
the diagnostic value of S wave, QRS, and QTC for myo-
cardial ischemia was higher than other parameters. In
summary, which was consistent with the research results of
Collet et al. [18], it could be inferred that the ECG signal
parameter S wave amplitude, QRS time limit, and QTC
interval based on the LetNet-SoM algorithm had high
clinical value for the diagnosis of early myocardial ischemia.
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5. Conclusion

Based on the lightweight neural network, the ECG signal
classification algorithm LetNet-SoM was constructed, and
GoogLeNet and SqueezeNet algorithms were introduced for
simulation and comparison, and they were adopted in the ECG
diagnosis of patients with myocardial ischemia. ,e results
revealed that, compared with the traditional algorithm, the
LetNet-SoM algorithm could reduce the running time and the
required parameters while maintaining the high-precision
classification effect. ,e ECG signal parameter S wave ampli-
tude, QRS time limit, and QTC interval based on LetNet-SoM
algorithm had high clinical value for the diagnosis of early
myocardial ischemia. However, the time of studied myocardial
ischemia is relatively short, which is different from that of
clinical patients. Subsequently, more extensive ECG signal
samples are considered to be collected, to further analyze the
positive status of each indicator. In conclusion, this study
provides a theoretical basis for the classification of cardiac map
data in the diagnosis of myocardial ischemic patients.
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