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.is work was aimed to explore the application of the L2-block-matching and 3-dimentional filtering (BM3D) (L2-BM3D)
denoising algorithm in the treatment of lumbar degeneration with long- and short-segment fixation of posterior decompression.
120 patients with degenerative lumbar scoliosis were randomly divided into group A (MRI images were not processed), group B
(MRI images were processed by the BM3D denoising algorithm), and group C (MRI images were processed by the BM3D
denoising algorithm based on weighted norm L2). .is denoising algorithm was comprehensively evaluated in terms of mean
square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and running time. Besides, the
results of surgeries based on different denoising methods were assessed through the surgical time, intraoperative blood loss,
postoperative drainage, and postoperative follow-up. .e results showed the following: (1) PSNR (peak signal-to-noise ratio) and
SSIM (structural similarity index measure) of the L2-BM3D algorithm are better than those of the BM3D algorithm (31.21 dB
versus 29.33 dB, 0.83 versus 0.72), while mean square error (MSE) was less than that of the BM3D algorithm (P< 0.05). (2) .e
operation time, intraoperative bleeding, and postoperative drainage volume in group C were lower than those in group B and
group A (P< 0.05). .e postoperative follow-up results showed that, in group C, the postoperative VAS (visual analysis scale)
score (1.03± 0.29) and ODI (Oswestry disability index) (9.29± 0.32) were lower, indicating that the postoperative recovery effect
of patients was better..erefore, the patient’s postoperative recovery effect was better. In conclusion, the L2-BM3D algorithm had
an ideal denoising effect on MRI images of lumbar degeneration and was worthy of clinical promotion.

1. Introduction

Studies suggested that degenerative lumbar lesions were
one of the main causes of low back pain. With the aging of
our society, the incidence rate of degenerative lumbar
diseases was increasing [1, 2]. Lumbar degeneration can
cause lumbar scoliosis, spinal canal stenosis, and degen-
erative spondylolisthesis. .e main clinical manifestations
were low back pain, lower limb weakness, pacing, nerve
root pain, paralysis, and so on [3]. Although most patients
can get better by treatment, the treatment of lumbar de-
generation is still a problem that needs attention for elderly
patients with severe symptoms [4], especially spinal dis-
placement [5]. At present, surgery is the main method for
the treatment of degenerative lumbar scoliosis, including

osteotomy, posterior decompression, and internal fixation
[6]. According to the length of fixed segments, internal
fixation can be divided into long-segment fixation (fusion
fixation segments >5 or average >5) and short-segment
fixation (fusion fixation segments <5 or average <5). Long-
segment surgery is mostly used in patients with severe
scoliosis, which is difficult and prone to complications.
Short-segment surgery is mostly used for patients with mild
scoliosis, with less postoperative trauma and less impact on
postoperative activities [7, 8]. Due to the most occurrence
in the elderly and physical reasons, a variety of surgical
contraindications may exist, clinical surgical treatment is
difficult, and there are many postoperative complications
[9]. .erefore, the choice of surgical methods is very
critical.

Hindawi
Scientific Programming
Volume 2021, Article ID 2430380, 11 pages
https://doi.org/10.1155/2021/2430380

mailto:201711004121@stu.zjsru.edu.cn
https://orcid.org/0000-0003-1010-5941
https://orcid.org/0000-0003-4851-9541
https://orcid.org/0000-0003-4950-0447
https://orcid.org/0000-0001-8195-7709
https://orcid.org/0000-0002-1533-4949
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2430380


At present, the clinical examination methods for de-
generative lumbar scoliosis include X-ray, computed to-
mography (CT), radionuclide imaging, and MRI [10].

X-ray includes ordinary X-ray examination and X-ray
radiography. Ordinary X-ray examination has simple op-
eration and good economy, but the examination effect is
poor. X-ray radiography is a dynamic examination method
with good examination effect [11], but it is an invasive
examination. Due to the need to inject contrast medium into
patients, there is a certain risk of infection and complica-
tions. .us, the acceptance of doctors and patients is low
[12]. Although CT examination has short time, high image
resolution, and no obvious contraindications, the degree of
diagnosis of the disease is not high and lacks clear diagnostic
significance [13]. Radionuclide imaging is mostly used in
tumor related diseases, and its application in lumbar de-
generation needs to be studied.

MRI has high resolution for soft tissues, and the sagittal
image is a single-shot imaging. Its multidirectional imaging
characteristics fully and accurately reflect the position and
state of the lumbar spine. However, MRI will inevitably
introduce some machine noises in the process of data ac-
quisition because of its own limitations, resulting in blurred
anatomical information on the image, poor image quality,
and interference with clinicians’ visual detection, making it
very difficult for subsequent lesion analysis [14, 15].
.erefore, how to get out the noises of medical images and
keep more detailed information as much as possible is very
necessary for subsequent clinical treatment.

With the development of intelligent denoising algo-
rithm, it has been proposed that block-matching and 3D
filtering (BM3D) algorithm [16] is the most advanced
denoising technology at present, which can achieve better
denoising compared with any other existing methods. A
large number of studies have proposed that BM3D algorithm
has also obtained good research results in the processing of
medical image images [17, 18]. Xu et al. [19] have used it for
DWI image denoising. As a result, the method has achieved
good denoising effect without causing fringe artifacts.
However, BM3D algorithm still has room for improvement
to achieve high-quality denoising..e weighted L2 norm can
constrain the spatial difference image cube, effectively ex-
plore the shared group sparse mode, and achieve good re-
sults in the calculation of the algorithm [20].

In summary, in this study, the BM3D denoising algo-
rithm will be used based on weighted L2 norm to process
MRI images and for disease diagnosis of degenerative
lumbar scoliosis patients. .e application value of the al-
gorithm will be evaluated by observing the treatment effect
of this method in the diagnosis of degenerative lumbar
scoliosis patients, so as to provide more research basis for
clinical patients to obtain more effective diagnosis and
treatment methods.

2. Materials and Methods

2.1. Research Objects. In this study, 120 patients with de-
generative lumbar scoliosis who were treated at hospital
from June 2017 to June 2019 were selected as the research

objects. Besides, each patient underwent MRI examination.
According to different denoising methods, 120 patients were
rolled into 3 groups (group A, group B, and group C). In
group A, there were 20 males and 20 females, aged 27–66
years, with an average age of 52± 13.3 years..eMRI images
of the patients from group A were not denoised. 15 males
and 25 females were included in group B, aged 29–65 years,
with an average age of 52± 12.1 years. What is more, their
MRI images were denoised by the BM3D denoising algo-
rithm. .ere were 19 males and 21 females in group C, aged
26–69 years, with an average age of 53± 13.1 years. .e
BM3D denoising algorithm based on the weighted norm L2
was employed to denoise the MRI images of patients from
group C. After the denoising, the short- and long-segment
fixation treatments of posterior decompression were spe-
cifically adopted in all patients according to the different
degree of degeneration. .is experiment had been autho-
rized by the Medical Ethics Committee of the hospital, and
the patients and their family members had been aware of this
experiment and had signed the informed consent forms.

.e criteria for inclusion were defined as follows: pa-
tients who were older than 20 years of age and younger than
70 years of age and were diagnosed with degenerative
lumbar disease, had normal organs or systems, and had
complete clinical data.

.e criteria for exclusion were defined as follows: pa-
tients who had undergone surgical treatment, could not
receive the MRI scanning or had refused to undergo MRI
scanning, suffered from other organ or system diseases, had
incomplete clinical data, and were not suitable for this ex-
periment for other reasons.

2.2. Image Denoising Method Based on BM3D Algorithm.
.e BM3D algorithm is a denoising method based on image
blocks. .e specific operation was to divide the images with
noises into many image domains, each image was denoised
separately, and the denoised image domains were reag-
gregated, so as to form the final image with higher signal-to-
noise ratio (SNR) [21]. Figure 1 illustrates the specific
process.

In the actual operation of the BM3D algorithm, P was
considered as the input noise image, so the following
equation could be obtained:

P(x) � P′(x) + n(x), x ∈ I. (1)

In equation (1), P represents the original image, P′
means the real noise-free image, n stands for the Gaussian
white noise with the mean value of 0 and the variance of σ2,
and x expresses a pixel on the image. Image P was for
matching processing, and similar blocks were searched in
image P. When P′ was available, the similarity between
blocks could be calculated by the following equation:

d′ C, Cx( 􏼁 �
Z − Zx

����
����
2
2

N′
2 . (2)

In equation (2), C represents the reference block, Cx
expresses a matching block with the size of N × N at point x
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in image P, Z and Zx stand for the reference block and the
image block in turn, respectively, when the real image P was
only available, d′ represents the similarity between the
blocks, N′ means the size of the image block during basic
estimation, and 2 expresses the norm of L2. When only the
original image P was available, the similarity between blocks
could be calculated by the following equation:

d C, Cx( 􏼁 �
C − Cx

����
����
2
2

N′
2 . (3)

Assuming that C and Cx did not overlap, the expectation
could be expressed as a noncentral chi-square random
distribution, which is shown in the following equation:

E d C, Cx( 􏼁􏼈 􏼉 � d′ C, Cx( 􏼁 + 2σ2. (4)

When searching, the noise in the original image would
affect the matching results [22]. A prefilter was added to
avoid this problem when calculating the similarity between
blocks. Besides, it could be expressed as follows:

d C, Cx( 􏼁 �
c′ T2D
′ (C)􏼂 􏼃 − c′ T2D

′ Cx( 􏼁􏼂 􏼃
����

����
2
2

N″
2 . (5)

In equation (5), c′ represents the hard threshold filter
factor and T2D

′ stands for the linear transformation of the 2-
dimensional image, and equation (5) was adopted to obtain
the block-matching result, as shown in the following:

Nmax′ � x ∈ I: d C, Cx( 􏼁≤ τmatch′􏼈 (6)

In equation (6), Nmax′ represents the number of all
similar blocks, and τmatch′ stands for the maximum distance
between two image blocks that were similar. CNmax′

was
employed to represent the set composed by all Nmax′ , and the
collaborative filtering of CNmax′

needed to be realized by the
hard-valued filtering in the 3-dimensional transformation.
.en, the 3-dimensional group estimation value could be
obtained as follows through the 3-dimensional hard-valued
filter to reduce the noise and inverse transformation:

􏽢GNmax′
′ � T

-1′
3D c T3D

′ CNmax′
􏼐 􏼑􏼐 􏼑􏼐 􏼑. (7)

In equation (7), 􏽢GNmax′
′, T3 D
′, and T-1′3 D stand for the basic

estimated value of each reference block, the linear trans-
formation of the 3-dimensional image, and the inverse
transformation of the 3-dimensional linear transformation,
respectively. .e basic estimation image could be gotten by
gathering all reference blocks, which can be expressed as
follows:

􏽢g
basic

(x) �
􏽐x∈I􏽐xm∈Nmax′

ω′􏽢G
′x
xm

(x)

􏽐x∈I􏽐xm∈Nmax′
ω′χxm

(x)
, ∀x ∈ X. (8)

In equation (8), ω′ expresses the weight during aggre-
gation, and χxm

means the feature function of similar blocks.
After the basic estimation was completed, the noise was
largely removed. .en, the basic estimation was used as the
input of the second step, and the 3-dimensional matrix was
processed in cooperation with Wiener filtering to obtain the
final filtered image. Nmax″ represents the set of image block
coordinates in the final estimation, so it could be expressed
as follows:

Nmax″ � x ∈ I:
􏽢G
basic

− 􏽢G
basic
x ‖

2

2

N″( 􏼁
2 < τmatch″ .

�����������

⎧⎪⎨

⎪⎩
(9)

In equation (9), τmatch″ stands for the maximum distance
between two similar blocks in the final estimation stage. .e
image obtained by the basic estimation was taken as a
reference, so as to obtain the shrinkage coefficient of the
Wiener filter, as shown in the following equation:

WNmax″
� T3D
″

􏽢G
basic
Nmax″

)|2

T3D
″ 􏽢G

basic
Nmax″

)| + σ2.􏼒

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(10)

.e inverse transformation of the 3-dimensional linear
transformation was applied to obtain the estimated value of
the similar block at x ∈ Nmax″ , which could be calculated as
follows:

􏽢GNmax″
″ � T

-1″
3d WNmax″

T3d
″ CNmax″

􏼐 􏼑􏽨 􏽩. (11)

Original 
image 

Grouping 
(matching 

block) 

Collaborative 
filtering 

Polymerization

Basic 
estimation Grouping

Polymerization
Final 

estimate)

Denoised 
image 

Collaborative 
filtering 

Figure 1: Flow chart of BM3D algorithm denoising.

Scientific Programming 3



In equations (10) and (11), 􏽢G
basic

Nmax′
, CNmax″

, T3D
″ , and T-1″3D

represent the basic estimation image, the set composed of all
Nmax″

in the final estimation stage, the linear transformation of
the 3-dimensional image, and the inverse transformation of
the 3-dimensional transformation, respectively. According
to the weight of each pixel x, the basic images of all reference
blocks were gathered to get the final estimate of the image, as
shown in the following equation:

􏽢g
final

(x) �
􏽐x∈I􏽐xm∈Nmax′

ω″ 􏽢G″xxm
(x)

􏽐x∈I􏽐xm∈Nmax′
ω″χxm

(x)
, ∀x ∈ X. (12)

.e BM3D denoising algorithm had a good denoising
effect, but its search time was long, and the calculation time
and complexity were high. When the noise was too high, the
similarity between the reference block and the similar block
could not be guaranteed, but the denoising effect was greatly
reduced [16, 23]. In order to improve the insufficient similar
block measurement in the traditional BM3D denoising al-
gorithm, an image block similarity calculation method was
proposed in this study based on weighted norm L2.

.e norm L2 of the traditional BM3D denoising algo-
rithm did not take into account the internal structure of the
image when calculating the similarity between image blocks,
but the gray-scale difference of the corresponding similar
points of the image block was only considered [24]..us, the
interblock distance of the weighted norm L2 was defined as
follows:

d(M, N) � n
− 2

􏽘

n

i�1
􏽘

n

l�1
dil(M, N). (13)

In equation (13), dil(M, N) stands for the distance be-
tween the 3∗ 3 windows centered on pixels Mil and Nil, and
its calculation method could be expressed by the following
equation:

dil(H, G) � 􏽘 W
H
il ∘ Win hil( 􏼁 − Win gil( 􏼁( 􏼁

2 ∘WG
il􏼐 􏼑.

(14)

In equation (14), WH
il and WG

il represent the weight
matrixes, which were the contributions of pixels around hil

and gil to them, and ∘ stands for the multiplication of the
elements at the corresponding positions of the matrix. .en,
the similarity of pixels on the image was calculated according
to their respective normalization factors degree, as shown in
the following equation:

w
H

� exp
hp,q − hi,l

�����

�����
2

2

h
2

⎛⎜⎜⎝ ⎞⎟⎟⎠. (15)

.e algorithm contributed the most only by ensuring the
maximum value of wG and wH, and the improved norm L2
calculation method not only took into account the similarity
between image blocks but also considered the similarity of
pixels within the image block, thereby promoting the
matching accuracy and preserving the image details as much
as possible.

2.3. MRI Examination. First, the patients were instructed to
relax before scanning. During scanning, the patient shall be
scanned to determine the location of the disease. After
coronal scanning, the scanning sequence included T1-
weighted imaging (T1WI), T2-weighted imaging (T2WI),
and dynamic contrast enhanced magnetic resonance im-
aging (DCE-MRI). Table 1 presents the specific scanning
sequence parameters.

2.4. SurgicalMethods. MRI images of patients were denoised
by different algorithms, and posterior decompression
pedicle screw fixation and fusion were performed
according to the degree of lumbar scoliosis. During the
surgery, the patient was under general anesthesia and was
in a prone position. .e posterior approach was chosen,
and the facet joint process and upper and lower vertebrae
of patient were exposed after the posterior median inci-
sion. After a screw was placed in the patient’s vertebral
body, some of the lamina and spinous process was bitten
off, the corresponding intervertebral space was stretched,
and the bitten part of the lamina and spinous process was
properly trimmed to remove the hyperplasia and stub-
bornness around the lesion to achieve decompression.
According to the degree of scoliosis of the patient, the
pedicle connecting rod with the appropriate length was
chosen and prebent to the appropriate curvature, which
was set in both sides of the diseased vertebral body. .en,
the appropriate pressure was put to the convex square, so
as to correct the scoliosis. Finally, the position of the
sagittal plane was adjusted appropriately and the top cap
was tightened. After the surgery was completed, the in-
cision was cleaned with sterile normal saline and the
drainage tube was indwelled, so the incision was sutured.
.e infection prevention medication was used for 4–8
days after the surgery. In addition, the postoperative care
and regular follow-up work should be done well.

2.5. Evaluation Indexes. With the help of MSE (mean square
error), PSNR (peak signal-to-noise ratio), SSIM (structural
similarity index measure), and running time, the denoising
effects of different denoising algorithms were analyzed by
comprehensive evaluation.

MSE was employed to evaluate the image quality by
calculating the mean square values between different
denoising algorithms. .e smaller the MSE value, the better
the denoising effect of the algorithm..e calculation of MSE
is shown in the following equation:

MSE �
􏽐

A
i�1 􏽐

B
j�1 [x(i.j) − y(i, j)]

2

AB
. (16)

In the above equation, A represents the height of the
image, B represents the width of the image, and AB rep-
resents the size of the image.

PSNR represents the SNR of the image after noise re-
moval. .e larger the PSNR value, the better the image
quality. What is more, PSNR could be calculated as follows:
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PSNR(x, y) � 10 × log10
max y

2
(i, j)􏽨 􏽩

MSE
⎛⎝ ⎞⎠. (17)

SSIM was adopted to assess the similarity of denoised
images from three aspects (structure, brightness, and con-
trast). .e larger the SSIM, the better the quality of the
denoised images. Besides, α, β, and c stand for the weighting
factors, and the SSIM could be expressed as follows:

SSIM(x, y) � s(x, y)
α

• l(x, y)
β

• c(x, y)
c
. (18)

Observation indexes after surgery included the surgical
time, intraoperative blood loss, and postoperative drainage.
.ere was a 12-month follow-up for every patient after the
surgery..eVASwas applied to score the postoperative pain
of the patients, and its total score was 10 points. .e higher
the score, the stronger the pain. .e ODI was employed to
evaluate the patient’s daily action function after surgery, and
the total score was 40 points. .e higher the score was, the
more seriously the daily action was affected.

2.6. StatisticalAnalysis. In this study, SPSS 19.0 software was
used for data processing, measurement data were expressed
as mean± standard deviation, and classification data were
compared and tested by χ2. .e data comparison between
groups was made by SNK-q test, and parameter correlation
was analyzed by Pearson. In addition, P< 0.05 indicated that
the difference was statistically substantial.

3. Experimental Results

3.1. Evaluation of Image Denoising Quality. Figures 2–4 are,
respectively, under different noise levels (σ �10/15/20),
BM3D algorithm, and MRI image processed by the L2-
BM3D algorithm. It was found that the BM3D algorithm had
a reliable denoising effect on the images. But the expected
denoising effect could not be achieved when the noise in-
tensity was too high. After improving the weighted norm L2,
the images’ details were better preserved and the denoising
effect was better.

.e 3 denoising algorithms were assessed in terms of
MSE, PSNR, SSIM, and running time. .e results showed
that the PSNR values of the BM3D algorithm and the L2-
BM3D algorithm were 29.33 dB and 31.21 dB, respectively
(Figure 5), and their SSIM values were 0.72 and 0.83, re-
spectively (Figure 6). .us, the difference between the two
was statistically obvious (P< 0.05). However, the running
times of the above algorithms were 35.25 s and 36.63 s,

respectively (Figure 7), and there was no statistically huge
difference between them (P> 0.05). .e MSE values of the
two denoising algorithms were compared, finding that the
error vector of the L2-BM3D denoising algorithm was
smaller than the error vector of the BM3D denoising al-
gorithm (Figure 8). .erefore, it was indicated that the L2-
BM3D denoising algorithm had a higher denoising image
quality.

3.2. Comparison of Surgical Effects Based on Different
Denoising Algorithms. After the surgery, the surgical results
were evaluated from three aspects: surgical time, intra-
operative blood loss, and postoperative drainage. Due to the
different degrees of lumbar degeneration of the patients,
different segmental fixation treatments were adopted during
the surgery. In group A, there were 25 cases and 15 cases
with posterior decompression short-segment fixation and
long-segment fixation, respectively. Besides, their average
surgical times were 180± 9.33min and 289± 6.26min, re-
spectively (Figure 9), their average intraoperative blood
losses were 305± 12.15mL and 569± 15.33mL, respectively
(Figure 10), and their average postoperative drainage vol-
umes were 189± 9.25mL and 338± 11.91mL, respectively
(Figure 11). In group B, 23 cases had posterior decom-
pression short-segment fixation, with average surgical time,
intraoperative blood loss, and postoperative drainage vol-
ume of 168± 12.65min, 274± 15.66mL, and 159± 6.99mL,
respectively. What is more, there were 17 cases of posterior
decompression long-segment fixation, and the average
surgical time, intraoperative blood loss, and postoperative
drainage volume were 268± 9.21min, 528± 14.12mL, and
301± 9.47mL, respectively. 28 cases and 12 cases from group
C underwent the posterior decompression short-segment
fixation and long-segment fixation, respectively. .e average
surgical times were 151± 5.45min (short-segment fixation)
and 249± 6.41min (long-segment fixation), the average
intraoperative blood losses were 255± 9.98mL (short-seg-
ment fixation) and 482± 11.31mL (long-segment fixation),
and the average postoperative drainage volumes were
142± 6.27mL (short-segment fixation) and 279± 10.81mL
(long-segment fixation). .erefore, the above difference
between the groups was statistically substantial (P< 0.05).

3.3. Comparison of Postoperative Follow-Up Results Based on
Different Denoising Algorithms. After the surgery, the pa-
tients were followed up every 3 months, and the last follow-
up was at the 12th month after surgery. .en, the VAS and
ODI of all patients were evaluated, and their comparison
results are shown in Figures 12-13. .e results showed that
the postoperative VAS and ODI of patients with short-
segment surgeries based on the L2-BM3D denoising method
were 1.03± 0.29 and 9.29± 0.32 at the last follow-up, re-
spectively. Moreover, the postoperative VAS and ODI of
patients with long-segment surgeries based on the L2-BM3D
denoising method were 1.21± 0.11 and 10.33± 1.16, re-
spectively. .erefore, the postoperative VAS and ODI of
patients with short-segment surgeries were sharply lower

Table 1: MRI scanning parameters.

Scan sequence T1WI T2WI DCE-MRI
TE (ms) 8.5 87 2
TR (ms) 189 3221 3
FOV (mm) 122×122 61× 61 102×102
Layer thickness (mm) 2.4 2.4 2.4
Spacing (mm) 1 1 1
Matrix 256× 256 120×120 130×130
Number of layers 9 9 9
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than those of patients with long-segment surgeries based on
the L2-BM3D denoising method (P< 0.05).

4. Discussion

In order to investigate the application of different denoising
algorithms for processing MRI medical images in the
treatment of lumbar degeneration with long- and short-
segment fixation after decompression, the BM3D denoising

algorithm was improved in this study to propose the image
block similarity calculation method L2-BM3D based on
weighted norm L2. .en, the L2-BM3D denoising algorithm
was adopted to analyze the denoising effect and clinical
surgery effect, which were compared with those of the BM3D
denoising algorithm. With the help of MSE, PSNR, SSIM,
and running time, the denoising algorithm was evaluated to
help verify the advantages of the L2-BM3D denoising
algorithm.

(a) (b) (c)

Figure 3: Denoising effect of the BM3D algorithm. (a) σ � 10, (b) σ � 15, and (c) σ � 20.

(a) (b) (c)

Figure 2: .e MRI images with noises. (a) σ � 10, (b) σ � 15, and (c) σ � 20.

(a) (b) (c)

Figure 4: BM3D image denoising effects based on weighted norm L2. (a) σ � 10, (b) σ � 15, and (c) σ � 20.

6 Scientific Programming



.e results showed that peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) of
the L2-BM3D algorithm were better than those of the BM3D
algorithm (31.21 dB versus 29.33 dB, 0.83 versus 0.72).
However, mean square error (MSE) was less than that of the
BM3D algorithm (P< 0.05), which showed that the L2-
BM3D algorithm had better denoising effect. .e L2-BM3D

algorithm was used by Cao et al. [25] for OCT image
processing and it was compared with denosing convolu-
tional neural network (DnCNN) algorithm. .e results
showed that the L2-BM3D algorithm had better denoising
performance. .e epigraph method was used by Gao and
Wu [26] to optimize the BM3D denoising algorithm. .e
results showed that PSNR and SSIMwere significantly better
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Figure 5: Comparison of PSNR values of different denoising algorithms. Note: “∗” indicates that the comparison was statistically significant
(P< 0.05).
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than those of other algorithms. .e BM3D algorithm could
not only be used in the application of MRI images. Lyu et al.
[27] also proposed that the regularized improved BM3D
algorithm was more effective in CT image denoising.

After that, 120 patients with degenerative lumbar sco-
liosis in XX Hospital were selected as the research objects.
.e patients were scanned with MRI, and the denoising
effects of different denoising algorithms were compared..e

patients were treated with different denoising results. .e
operation conditions and postoperative follow-up results
were compared, and the effects of different denoising al-
gorithms on clinical surgery were analyzed.

.rough the assessment of surgical results based on
different denoising methods from the surgical time, intra-
operative blood loss, and postoperative drainage, it was
found that patients with the posterior decompression short-
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Figure 10: Comparison of the intraoperative blood losses of different denoising algorithms. Note: “∗” indicates that the comparison was
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segment fixation based on the L2-BM3D denoising algo-
rithm had the average surgical time of 151± 5.45min, the
average intraoperative blood loss of 255± 9.98mL, and the
average postoperative drainage volume of 142± 6.27mL.
Besides, the average surgical time, intraoperative blood loss,
and postoperative drainage of patients with posterior

decompression short-segment fixation based on the L2-
BM3D denoising algorithm were 249± 6.41min,
482± 11.31mL, and 279± 10.81mL, respectively. .us, the
three values of L2-BM3D denoising algorithm reduced
steeply in contrast to those of the BM3D algorithm and the
surgical effect without denoising (P< 0.05). Finally, the
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Figure 11: Comparison of the postoperative drainage volumes of different denoising algorithms. Note: “∗” indicates that the comparison
was statistically significant (P< 0.05).
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postoperative follow-up results were evaluated. .e results
pointed out that the postoperative VAS and ODI of patients
with short-segment surgeries based on the L2-BM3D
denoising method were lower, and the difference between
the groups was statistically obvious (P< 0.05), which sug-
gested that the patient’s postoperative recovery effect was
better. It was suggested that the L2-BM3D denoising algo-
rithm could improve the effect of disease diagnosis and
treatment of MRI images. It was also conducive to the re-
covery of patients’ diseases, showing a good application
prospect of the L2-BM3D denoising algorithm in medical
image processing. .e L2-BM3D denoising algorithm was
used by Santos et al. [28] for ultrasonic image denoising
research. .e BM3D denoising algorithm was used by Chen
et al. [29] for the optimization of projection onto convex sets
(POCS). .e BM3D denoising algorithm was improved by
Salehjahromi et al. [30] and CT image was reconstructed by
using low rank average algorithm. Good results were
achieved in the above research. It showed the application
advantages of the BM3D denoising algorithm in imaging.

5. Conclusion

.e results of this study revealed that the L2-BM3D
denoising algorithm had a good application prospect in the
surgical treatment of degenerative lumbar disease according
to the denoising results. Moreover, it can provide infor-
mation for the denoising processing of MRI medical images,
so as to provide a theoretical basis for the surgical treatment
of lumbar degeneration. However, the selected patients had
only degenerative lumbar scoliosis in this study, and there is
no involvement of patients with degenerative lumbar
spondylolisthesis and lumbar spinal stenosis. .erefore, the
above needs to be further investigated in the future.
However, the study shows obviously that the development
prospect of intelligent algorithm in the field of medical
imaging cannot be underestimated. It has significant effect
on improving the diagnosis and treatment of diseases and
has high clinical application value.
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