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(is study aimed to explore positron emission tomography-computed tomography (PET-CT) images based on support vector
machine (SVM) algorithm for the classification of thyroid nodules (TN) and its evaluation value in postoperative injury rate
(PPIR) of recurrent laryngeal nerve (RLN). (e parameters of the SVM algorithm were optimized using the particle swarm
optimization (PSO) algorithm. A total of 58 patients who were diagnosed with TN by PET/CT at a hospital were divided into a
group with benign nodules (group B, 25 cases) and a group with malignant nodules (groupM, 33 cases). (e characteristics of the
PET-CT images and difference in the max standardized uptake value (SUVmax) of PET-CTwere analyzed. (e PPIR of RLN was
calculated. It was found that when the number of iterations was 19, the fitness and the classification accuracy of the SVM algorithm
was 98.3% and 91.1%, respectively. When SUVmax � 4.56, its sensitivity and specificity were 81.33% and 76.18%, respectively. (e
SUVmax of group B was much lower (P< 0.01). It indicated that the established method could realize higher classification accuracy
on TN and was of great significance in the evaluation of the PPIR of RLN.

1. Introduction

TN is a common endocrine system disease second only to
diabetes. (e incidence rate is relatively high in middle-aged
and elderly women, ranking the fifth in female malignancies.
Statistics have shown that the incidence of TN has increased
nearly 10 times in the past 10 years, and it is in a trend of
continuous increase, with an average annual growth rate of
6.2% [1]. (e pathogenesis of TN is still unclear. It can be
classified into two categories: benign and malignant. Early
differentiation of benign and malignant lesions is of great
value for clinical diagnosis, treatment, and prognosis. In
clinical work, it is found that the detection rates of these
diagnostic methods can be 50%∼70%, and the 69% TN is
misdiagnosed as adenocarcinoma [2]. With the continuous
development of medical technology, PET-CT has been
widely used in the diagnosis of malignant tumors, but there

is still a lot of controversy in the differentiation of benign and
malignant TN. At present, the TN are mainly treated by
surgery, but various complications are prone to occur after
the surgery. Among them, the RLN injury is the most
common and themost serious complication after the thyroid
surgery. A severe RLN can cause the patient to breathe with
difficulty and can even be life-threatening [3]. Many studies
have shown that the PPIR of RLN in patients with benign TN
is greatly lower than that of patients with malignant TN [4].

PET-CT can clearly show the location of nodules with
high accuracy and precise positioning, but it is controversial
in the diagnosis of benign and malignant TN [5]. As there
are many types of diseases associated with thyroid, the
nodules are complex and diverse, and the manifestations of
PET-CT images are also more diverse. During the diagnosis,
it is necessary to have a qualitative analysis by experienced
doctors, which is subjective and unstable. Machine learning
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in artificial intelligence (AI) technology can semiautomat-
ically diagnose the nodules and reduce the workload and
subjective influence of doctors. SVM can transform a given
set of space vectors into another space with a higher di-
mension according to a given nonlinear mapping, and then
solve the optimal classification solution in this space [6].
SVM is capable of minimizing the resolution and maxi-
mizing the generalization and has been applied to classifi-
cation of cancer gene expression data, classification of
isolated lung nodules in the lungs, and regression. (e se-
lection of SVM parameters is correlated with the classifi-
cation and regression results [7]. However, there is no
definite theory to guide the selection of parameters.

In summary, PET-CT has to be further studied for the
differentiation of benign and malignant TN, and there is no
clear theoretical guidance for the selection of SVM pa-
rameters. (erefore, TN patients were selected as the re-
search objects, the SVM parameters were optimized, and a
SVM optimized classification method based on the PET-CT
image characteristics of TN was established in this study. It
was done to explore the value of PET/CT in the differential
diagnosis of benign and malignant TN and the evaluation of
PPIR of RLN.

2. Materials and Methods

2.1. Research Objects and Grouping. 58 patients who had
performed the PET/CT examinations at a hospital from
December 2018 to April 2020 and were confirmed to have
TN from pathological results were selected as the research
subjects. (ere were 16 males and 42 females, whose age
range was 22–79 years, with an average value of
61.17± 10.62. According to the PET-CTdiagnosis results, the
patients were divided into group B with benign nodules (25
cases) and group M with malignant groups (33 cases). (ere
were 33 patients with malignant nodules and 25 patients
with benign nodules. All patients underwent thyroidectomy
after diagnosis. (e experimental procedure had been ap-
proved by the ethics committee of the hospital, and all
subjects included had signed the informed consent forms.

2.2. Establishment of the SVM Algorithm. For a given
training dataset A, a set of n nodes could be expressed as

A � xi, yi( 􏼁|xi ∈ R
P
, yi ∈ (−1, 1)􏽮 􏽯

n

i�1. (1)

In the above equation, yi was 1 or −1, referring to the
category the node xi belonged to. Each classification surface
had to meet ω · x + b � 0, where · is the dot product, ω
represents the normal vector of the classification surface,
and b is the spatial bias. (e normal vector of the hyperplane
distance was determined by b/‖ω‖, and the classification
interval could be expressed as 2/‖ω‖.

Maximizing the distance between the two classification
planes could be achieved by minimizing ‖ω‖. To prevent the
training node from falling into the boundary area of the two
classification planes, each sample node i had to
satisfy ω · x + b≥ 1 or ω · x + b≤ − 1.(en, the classification
plane could be given as

yi(ω · x + b)≥ 1, 1≤ i≤ n. (2)

In summary, the optimization was mainly achieved by
minimizing ‖ω‖, so that each node could satisfy
yi(ω · x + b)≥ 1. A given training set was set with the pair
(fi, di) of feature value and grade label, where f ∈ Rn re-
ferred to the feature value of the model. (e optimization of
the classification surface was transformed into a constrained
optimization issue, which could be indicated as
minΦ(ω) � 1/2‖ω‖2.(e objective of the SVMmodel was to
solve the following optimization issues:
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In the equation, B is the penalty factor for dividing the
wrong term, and ω refers to a possible high-dimensional
vector variable.

(e classification of benign and malignant TN was a
nonlinear and separable case, which could be described as

min
ω,b,ε
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‖ω‖

2
+ B 􏽘

n
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εi,

yi ω · xi + b( 􏼁≥ 1 − εi,

εi ≥ 0, i � 1, 2, . . . , n.

(4)

(e dual solution is given as follows:
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(5)

In the above equation, μi refers to the Lagrangian co-
efficient, which satisfied μi > 0, and K(xi, yi) is the kernel
function.

By introducing the kernel function K(xi, yi), SVM could
transform the inseparable data in the low-dimensional
feature space into the high-dimensional, linear, and sepa-
rable specialization space, and convert the nonlinear clas-
sification into the appropriate linear classification. (e
penalty factor B controlled the balance between the two
classifications [8]. Appropriate K(xi, yi) and parameter B
were selected to solve equation (5), and then the obtained
decision function was written as

f(x) � sgn 􏽘
n

i�1
μ∗i yiK xi, yi( 􏼁 + b

∗⎛⎝ ⎞⎠. (6)

In the above equation, sgn() is the function symbol, b∗

refers to the intercept of the classification function, and μ∗i
represents the optimal solution of the function.
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(ere were many ways to express the kernel function
K(xi, yi). Among them, the radial basis function (RBF)
showed better learning ability under different conditions,
which was applicable for small samples with low dimen-
sionality [9]. (e RBF expression is given as follows:

K xi, yi( 􏼁 � exp −
xi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

c
2

⎛⎝ ⎞⎠. (7)

In order to achieve the optimal B value and the c value in
K(xi, yi), the PSO algorithm was introduced in this study.
(e PSO algorithm had the characteristics of a simple al-
gorithm and fast convergence speed and was an efficient and
practical search method [10]. (e position of the ith particle
in the A-dimensional space could be written as
Xi � (xi1, xi2, . . . , xiA), the speed was Vi � (vi1, vi2, . . . , viA),
the experienced position was Pi � (pi1, pi2, . . . , piA), the best
position was recorded as the individual extreme point gb,
and the best position for each particle was
Gi � (pbi1, pbi2, . . . , pbiA). For the tth iteration of particle i
in A-dimensional space (1≤ d≤A), its corresponding ve-
locity and position could be calculated using the following
equations:

υt+1
id � ωυt

id + σ1rand1 pb
t
id − x

t
id􏼐 􏼑

+ σ2rand2 gb
t
id − x

t
id􏼐 􏼑,

(8)

x
t+1
id � x

t
id + υt+1

id , i � 1, 2, . . . , N. (9)

In the above equations (8) and (9), υt+1
id is the velocity of

the particle i at the tth iteration, rand1 and rand2 are the
random numbers within [0, 1], and xt

id refers to the position
of the particle i at the tth iteration. pbt

id represents the in-
dividual extreme point of the particle i at the tth iteration, σ1
and σ2 are the learning factors, gbt

id represents the social
extreme point of particle i at the tth iteration, and ω is the
inertia weight value. υ refers to the velocity of each di-
mension of the particle, satisfying −υdmax ≤ υ≤ υdmax, the
position of the particle in the d-dimensional space is
[−xdmax ,xdmax], and υdmax � kxdmax (0.1≤ k≤ 1).

In the optimization application of complex objective
functions, PSO was prone to premature convergence [11]. In
order to avoid this phenomenon, the step-by-step PSO al-
gorithm was adopted in this study. (en, the position xt+1

id of
the particle in the t+1th iteration is given asfollows:
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(10)

2.3. Flows of SVM Parameter Optimization Using PSO
Algorithm. (e PSO algorithm was utilized to optimize
SVM parameters, and the specific optimization steps are

shown in Figure 1. (e relevant parameters of the PSO
algorithm and the SVM classifier were determined first. (e
number of moves S was set to 0 based on the number of
particles, and the samples were trained with SVM. (e next
step was to judge whether the termination conditions were
met or not, and then the optimal parameter was outputted if
the termination conditions were met; or otherwise, it was
necessary to further determine whether S was 0. If S� 0, the
position of the particle swarm was determined according to
the path, so as to start the SVM training on the sample. If S
was not equal to 0, the pheromone in the path should be
updated, and the position of the particle swarm was moved
according to the path determination probability, so as to
start the loop of SVM training on the sample until the
termination conditions were met.

2.4. Scanning Method of PET-CT. (e patient was instructed
to fast for at least 6 hours before the scan and to keep breathing
calmly during the scan. (e PET-CT scan parameters were
defined as follows: voltage 120kV, current 140mA, pitch
5.0mm, and layer thickness 5.0mm. Image acquisition was
performed in a two-dimensional mode with 5minutes for each
patient. Attenuation correction was performed on the collected
images, and the number of reconstruction iterations was set to
2, and Siemens was used to fuse the images.

2.5. Observation Indicators. All the collected images were
read by two experienced physicians to obtain the PET-CT
density uniformity, boundary definition, nodule size, cal-
cification, capsule, and semiquantitative index SUVmax for
each nodule. In addition, the PPIR of RLN of the two groups
of patients was counted statistically. (e SUVmax was cal-
culated with SUVmax � Sa/Ia/W, where Sa is the specific
activity of the lesion, Ia refers to the imaging agent injection
dose, and W is the body weight.

2.6. Statistical Methods. (e test data were processed using
SPSS19.0 statistical software. (e measurement data were
expressed as mean± standard deviation (x ± s), and the
count data were indicated with percentage (%). (e diag-
nostic efficacy between groups was compared with the χ2

test; and receiver operating characteristic (ROC) curve
analysis was employed to analyze SUVmax as the best critical
value. P< 0.05 indicated statistical difference.

3. Results

3.1. Basic Information of Patients. (e age, gender ratio, and
nodule size of the two groups of patients were compared and
analyzed, and the results are shown in Table 1. It revealed
that the differences in the age, gender ratio, and nodule size
of patients with benign and malignant nodules were not
observable (P> 0.05).

3.2. Fitness and Accuracy of the SVM Algorithm. (e PSO
algorithm was applied for optimizing the SVM parameters
and analyzing the fitness of the optimization algorithm. (e

Scientific Programming 3



results shown in Figure 2 illustrate that as the number of
iterations increased, the fitness showed an increasing trend,
and the fitness level suddenly increased when the number of
iterations was 19, and then remained at a stable level. During
this process, the fitness level was 98.3%. Further analysis of
the accuracy by taking the pathological diagnosis result as
the gold standard revealed that the accuracy rate of the
optimized SVM algorithm reached 89% and 95.2% for
malignant and benign classification of TN, respectively. (e
final classification accuracy could be 91.1%.

3.3. PET-CT Images of TN Patients. (e PET-CT imaging
manifestations of TN were analyzed. It showed that plain CT
images and enhanced CTimages of patients with benign TNs
were mostly irregular in shape (as shown in Figure 3). In
patients with malignant TNs, the density of TN in plain CT
images and enhanced CT images was uniform, and the
calcifications were diverse and mostly located in the lesion
(as shown in Figure 4).

3.4. Selection of Optimal Critical Values of SUVmax. (e
benign andmalignant nodules for the patients included were
evaluated with the SUVmax indicator by taking the patho-
logical results as the gold standard. (e ROC curve for
SUVmax to diagnose TN was drawn accordingly, and the
results are shown in Figure 5. It disclosed that the area under
the ROC was 0.795. When SUVmax � 4.56 was undertaken as
the best critical point for diagnosis, the sensitivity and the
specificity of SUVmax in diagnosing the benign and malig-
nant nodules was 81.33% and 76.18%, respectively.

3.5. Comparison of SUVmax in Patients of Two Groups.
(e SUVmax values were compared in the two groups of
patients, and the results are shown in Figure 6. It indicated
that the SUVmax value of patients in the benign and ma-
lignant nodule group was 3.09± 0.36 and 8.74± 0.92, re-
spectively.(us, the SUVmax value of patients in group B was
obviously lower in contrast to group M with statistical
difference (P< 0.01).
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Figure 1: Flows for parameter optimization based on the SVM algorithm.
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Figure 2: Fitness of the parameter optimization algorithm based on SVM.

(a) (b)

Figure 3: PET-CT images of patients with benign TN (images of a female patient aged 43 years). (a) (e plain CT and (b) enhanced CT
images of a TN patient.

Table 1: Basic information of patients with benign and malignant nodules.

Group Male (cases (%)) Female (cases (%)) Age (years) Size of TN (mm)
Group B 6 (37.5) 19 (45.24) 60.92± 11.11 24.05± 0.19
Group M 10 (62.5) 23 (54.76) 62.44± 12.06 19.02± 0.21
P value 0.77 0.65 0.092 0.073

(a) (b)

Figure 4: PET-CT images of patients with malignant TN (images of a male patient aged 67 years). (a) (e plain CT and (b) enhanced CT
images of a thyroid cancer patient.
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3.6. PPIRs of RLN of Patients in Two Groups. After the two
groups of patients were treated with thyroidectomy, the
postoperative complications of the RLN injury were
counted, and the results are illustrated in Figure 7. After
treatment with the same method, the PPIR of RLN in group
B and group M was 8% and 15.15%, respectively, one month
after the surgery, that in groups B andMwas 4% and 15.12%,
respectively, two months after the surgery, and that was 0
and 9.09%, respectively, three months after the surgery. It
suggested that the PPRI of RLN of malignant TN was higher
than that of the benign TN, showing great difference
(P< 0.01).

4. Discussion

Based on the SVM algorithm and the PSO algorithm, the
parameters were optimized to adapt to the characteristics of
TN. After the algorithm was optimized, its fitness was an-
alyzed. (e results showed that as the number of iterations
increased, the fitness showed an increasing trend; the fitness
level suddenly increased when the number of iterations was
19, and then remained at a stable level, with a fitness level of
98.3%. Gu et al. [12] mentioned in the research results of
lung nodule classification after algorithm optimization that
the higher the fitness, the greater the classification accuracy.
Further analysis of the accuracy by taking the pathological

diagnosis result as the gold standard revealed that the ac-
curacy rate of the optimized SVM algorithm reached 89%
and 95.2% for malignant and benign classification of TN,
respectively. (e final classification accuracy could be 91.1%.
(ese results showed that the PET-CT image classification
method established based on the SVM algorithm in this
study could avoid the randomness of artificial selection and
the error caused by subjectivity in the clinical operation, and
it had a good effect on the classification of TN.

Some research results showed that the benign and
malignant TN had a reliable correlation with CT image
characteristics [13, 14]. Moreover, PET/CTwas used in more
and more studies to diagnose patients, and the semiquan-
titative index SUVmax could be applied for the diagnosis and
evaluation of benign and malignant nodules [15]. However,
the current research results showed that there was still a
partial overlap of SUVmax between benign and malignant
nodules, making it highly controversial in the diagnosis of
benign and malignant TN [16]. (e results of SUVmax based
on the SVM parameter optimization algorithm in this study
suggested that the area under ROC was 0.795. When
SUVmax � 4.56 was undertaken as the best critical point for
diagnosis, the sensitivity and specificity of SUVmax for di-
agnosing the benign and malignant nodules was 81.33% and
76.18%, respectively. (e results of Sollini et al. [17] showed
that the SUVmax critical value for the diagnosis of benign and
malignant TN was 5.0, and the corresponding diagnostic
sensitivity and specificity was 60% and 91%, respectively.
(us, the sensitivity of SUVmax in the diagnosis of the benign
and malignant nodules had been significantly improved, but
its specificity was decreased to a certain degree. (e SUVmax
value of patients in group B was lower hugely than that of the
patients in group M (P< 0.01), which was similar to the
results of Małkowski et al. [18]. As the main motor nerve of
the throat, the RLNwas mainly responsible for the control of
swallowing [19]. (e degree of RLN injury was one of the
indicators of the success of surgical treatment, and it was the
most serious complication after TN [20]. (e results of this
study showed that the PPIR of RLN in the malignant TN
group was higher in contrast to group B during the three
months after the surgery, and the difference was dramatic
(P< 0.01). A large number of research results had shown
that PPIR of RLN was related to the benign and malignant
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Figure 5: ROC curve for benign and malignant nodules diagnosed
with SUVmax.
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TN, the position of nodules, and the postoperative pre-
ventive measures [21].(e results of this study indicated that
PPIR of RLN was observably correlated with benign and
malignant TN, suggesting that the diagnosis of benign and
malignant TN was of great meaningfulness in evaluating the
PPIR of RLN in patients with TN.

5. Conclusion

(e PSO algorithm was introduced based on the SVM al-
gorithm so as to optimize the parameters of the SVM al-
gorithm to enhance the classification accuracy and was
applied to the clinical diagnosis of benign andmalignant TN,
so as to provide information on the occurrence of PPIR of
RLN in TN patients. (e results revealed that the proposed
SVM algorithm improved the accuracy of the classification
of TN greatly and could realize important significance in the
evaluation of PPIR of RLN. However, there were some
shortcomings in this study. (e PPIR of RLN of the two
groups of patients was counted, and the related factors of
RLN injury were not further analyzed. In future work, the
injury factors for RLN of TN patients will be analyzed to
provide more accurate clinical guidance for postoperative
injury assessment of RLN. In summary, the method
established in this study achieved higher accuracy in the
classification of TN based on the SVM parameter optimi-
zation algorithm, and it had a critical application value for
the evaluation of PPIR of RLN.
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