Hindawi

Scientific Programming

Volume 2021, Article ID 2592604, 14 pages
https://doi.org/10.1155/2021/2592604

Research Article

Hindawi

Novel Multidimensional Collaborative Filtering Algorithm
Based on Improved Item Rating Prediction

Tongyan Li®,"' Yingxiang Li,' and Chen Yi-Ping Phoebe’

'Chengdu University of Information Technology, Department of Communication Engineering, Chengdu 610225, China
Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia

Correspondence should be addressed to Tongyan Li; sunny_cs061@163.com

Received 26 August 2021; Accepted 9 October 2021; Published 5 November 2021

Academic Editor: Punit Gupta

Copyright © 2021 Tongyan Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current data has the characteristics of complexity and low information density, which can be called the information sparse data.
However, a large amount of data makes it difficult to analyse sparse data with traditional collaborative filtering recommendation
algorithms, which may lead to low accuracy. Meanwhile, the complexity of data means that the recommended environment is
affected by multiple dimensional factors. In order to solve these problems efficiently, our paper proposes a multidimensional
collaborative filtering algorithm based on improved item rating prediction. The algorithm considers a variety of factors that affect
user ratings; then, it uses the penalty to account for users’ popularity to calculate the degree of similarity between users and cross-
iterative bi-clustering for the user scoring matrix to take into account changes in user’s preferences and improves on the
traditional item rating prediction algorithm, which considers user ratings according to multidimensional factors. In this al-
gorithm, the introduction of systematic error factors based on statistical learning improves the accuracy of rating prediction, and
the multidimensional method can solve data sparsity problems, enabling the strongest relevant dimension influencing factors with
association rules to be found. The experiment results show that the proposed algorithm has the advantages of smaller rec-
ommendation error and higher recommendation accuracy.

1. Introduction

Recommendation algorithms are mainly divided into six
categories: content-based filtering, collaborative filtering,
recommendation based on association rules, recommen-
dation based on utility, recommendation based on knowl-
edge, and mixed recommendation [1, 2]. Collaborative
filtering (CF) algorithms are the most widely used and classic
because of their easy implementation, high accuracy, and
high recommendation efficiency. However, in the era of big
data, one typical feature is that the amount of data is huge
but the information density is low, which can also be called
information sparse data. Collaborative filtering algorithms
are often ineffective when dealing with large amounts of
sparse data. Furthermore, the complex data environment
results in many factors affecting the recommendation. With
the development of the mobile Internet, mobile devices can
easily obtain more information about dimensions, such as

location, weather, and social relationships. Under different
external influences, the recommendation results will change
greatly. However, most of the current collaborative filtering
algorithms are based on a single dimension for
recommendation.

In order to improve the performance of collaborative
filtering recommendation algorithms, researchers resolve
the problems from different perspectives and propose a
variety of recommendation algorithms. Some researchers
optimized the user scoring matrix using different methods
[3-6], and others used fuzzy sets to efficiently represent user
teatures [7, 8]. These methods all effectively alleviate the
problem of sparse data. In order to find a neighbor set that is
more similar to the target user’s interest and improve the
accuracy of recommendations, some researchers improved
the similarity calculation method [7, 9, 10], and others used
location information and trust relationship information,
such as [11, 12]. The potential relationship between


mailto:sunny_cs061@163.com
https://orcid.org/0000-0002-3741-4026
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2592604

information mining users provides new ideas for finding
neighbors. Researchers have also used demographic
knowledge [13, 14] to achieve major breakthroughs, while
some scholars used score ranking prediction methods to
enhance recommendation performance such as [15-17], and
others chose the genetic algorithm used in the prediction
process to improve recommendation performance, such as
[18, 19]. Context as a dynamic description of an item and a
user’s situation affects the user’s decision-making process;
hence, it is essential for any recommendation system in a big
data environment [20-22].

These algorithms alleviate the problems caused by data
sparsity to some extent, improve the accuracy of calculation
similarity and recommendation quality with different
methods, but the implementation of the algorithm depends
on a large amount of user information and calculation,
which can be due to high complexity and hard
implementation.

In this paper, we focus on the recommendation algo-
rithm of data in complex environments. Firstly, we study the
traditional item rating prediction algorithm and make some
improvements with adding the weight problem considering
user score. We introduce the system error factor based on
statistical learning for the user to develop a personalized
rating prediction algorithm. Then, we propose a personal-
ized rating prediction method that is combined with a
classical collaborative filtering algorithm User-Inverse Item
Frequency (User-IIF) [23] to develop a novel collaborative
filtering algorithm. This method is based on both User-IIF
and personalized rating prediction. Secondly, we focus on
the impact of multidimensional factors and propose a novel
multidimensional method, which can separate user groups
based on context-aware dimensions combined with both
user clustering and item clustering. Finally, we conduct a
series of experiments to prove that our algorithms and
methods are effective and efficient. The experiment results
prove that our algorithms are easy to implement with low
computational overhead. In addition, our algorithms can
also process sparse data and improve the accuracy of
recommendations.

The rest of the paper is organized as follows. The works
related to our research and our novel methods to deal with
multidimensional recommendation are proposed in Section
2, and the experiment results and discussion are presented in
Section 3. Finally, the conclusion and suggestions for future
work are given in Section 4.

2. Methodology

2.1. Proposed Item Rating Prediction Method. Traditional
item rating prediction algorithms take the target user’s
average item historical score as the reference center and then
use the similarity between similar neighbors to perform item
rating prediction. When user data is sparse, the error rate of
traditional item rating prediction algorithms increases and
the accuracy rate decreases. This proposed method adds

Scientific Programming

weights to consider user ratings and introduces systematic
error factors based on statistical learning to improve tra-
ditional item rating prediction algorithms.

2.1.1. User Rating Weighting Factor. Traditional item rating
prediction algorithms take the historical average score of the
target user as the central value and rely on the neighbor’s
score to correct it. Traditional algorithms rely too much on
the user’s score and its anti-interference ability is ineffective
when it is faced with data sparseness. For example, when a
user has not scored many items, even if the average user
score is close to 0, using the user’s historical average score as
the center value may result in inaccurate recommendation
results. The item scoring prediction method proposed in this
work considers the factors of public scoring, improves the
algorithm using (1), introduces the weighting factor a of the
user’s score, and assigns the weight of the scoring (1 — «) to
the scoring of the item.

ZVEs(u,KhN(i)Simuv (rvi - rv)
Zves(u,KhN(i)'Simuv|

ry=a-r,+(l—a)-r;+

(1)

2.1.2. Systematic Error Factor Based on Statistical Learning.
A large number of studies show that there are errors in item
rating prediction, which only a few algorithms have
addressed by performing a statistical analysis calculation on
each recommendation result. In order to achieve more
personalized recommendations, it is necessary to establish a
system error factor generated by the recommendation
system for each user.

The system error ¢, generated by the recommendation of
target user u is calculated by (2), where the actual score of
user u on item i is represented as R,;, and r,; describes the
predicted rating of user u generated by the system. Ny,
describes the number of items in the itemsets I (1) that target
user u adopts from the recommendation results. Through
statistical learning, the system sets the error factor for each
user, and then this is applied to the collaborative filtering
algorithm to correct the item rating prediction, as shown in
(3), for a more accurate personalized recommendation al-
gorithm for the target user.

_ Zie](u) (Rui - rui)

) (2)
¢ Niw
- _ asim,, (r,; — 7,
r,y=a-r,+ (1 - a) ST+ ZVES(%K}W(I) MV.( = V) +é&,.
Zves(u,KhN(i)lSImuv|
(3)

Based on the above calculations, this paper proposes a
novel algorithm, namely, improved item-rating prediction
(IIP) for user scoring. The main steps of IIP are shown in
Figure 1(a). The basic idea is to form a set of error factors for



Scientific Programming

ALGORITHM 1: IIP (Improved Item-rating Prediction)

ALGORITHM 2: cross-iterative biclustering

Input: (1) R, user rating matrix (R[user][item]=rating);
(2) U_R, user's average historical rating (U_R[user]=rating);
(3) I_R, average rating of item (I_R[item]=rating);
(4) S, user similarity matrix (S[user][sim_user]=sim);
(5) A, user rating weighting factor (0<A<=1);
Output: P_R, predicted item-rating (P_R[user][item]=rating);

Input: (1) U, user set;
(2) 1, item set;
Output: Adjusted cluster;

01. Foreach userinRdo

02. { N[user]<—Number of items that user like;

03.  E[user]<—The sum of the difference between the predicted rating
and the true;

04. AVGE[user]<E[user] / N[user];

05. Setfz<@; fm<~0@;

06.  For each sim_user, sim in Top-K S[user] do

07. { Foreach item in R[sim_user] do

08. { If item not in R[user] then

09. { fz.setdefault(item, 0.0); fm.setdefault(item, 0.0);

10. fz[item]<fz[item]+sim*(R[sim_user][item])-U_R[sim_user]);
11. fm[item]<—fml[item]+sim;

12. }

13. }

14. '}

15.  For each item in fm do

16. P_R[user][item]<-A*U_R[user]+(1-A)*|_R[item]+fz[item]/
fm[item]+AVGE[user];

17. }

(a)

01. By K-means clustering method, get the initial user cluster UC ={uc,,
uc,, **+, ucy) and clustering center UCC ={uccy, ucc,, ***, uccy), the initial
item cluster IC= {icy, ic,, ***, ick) and clustering center ICC ={iccy, iccy, ***,
iccy );

02. Repeat;

03. For each user cluster uc;UC do

04. { For each user ujuc;do

05. { Calculat the correlation S y(uj, ucci) between u; and clustering
center ucc;

06. If (Sy(u;, ucc)) > €)

07. continue;

08. else

09. Calculate the similarity between u j and other cluster centers,
and add it to the cluster with the most similarity;

10. }

1. }

12. Recalculate the center of each cluster in UC and update to UCC;

13. For each item cluster ic/IC do

14. { For each item ijic;do

15.  { Calculat the corr elation S (ij, icc)) betweeni; and clus tering
center icc;;

16. If (Sy(ij, icc;) > n)

17. continue;

18. else

19. Calculate the similarity between i ; and other cluster centers,
and add it to the cluster with the most similarity;

20. }

21, }

22. Recalculate the center of each cluster in IC and update to ICC;
23. Until clusters, the elements in the cluster are no longer separated
or reach the set number of iterations.

(b)

ALGORITHM 3: Context similarity calculation

ALGORITHM 4: Multi-dimensional context-aware

Input: (1) I_R, average rating of item (I_R[item]=rating);
(2) I, user rating and corresponding context information;
(3) contexts X and Y;
(4) current context t;

Output: S,y;, similarity between contexts X and Y;

Input: (1) user, target user;
(2) 1, user rating and corresponding context information;
(3) U_R, user's average historical rating (U_R[user]=rating);
(4) S, user similarity matrix (S[user][sim_user]=sim);
Output: P_R, predicted item-rating (P_R[item]=rating);

01. X.<Standard deviation of context dimension X;
02. Y.< Standard deviation of context dimension Y;
03. f<@;

04. For each user, itemin | do

05. { f.setdefault(item, 0.0);

06.  f—f+(l[user][item]-I_R[item])*(l,:[user][item]-
I_R[item]);

07. }

08. Sxyi:f/( Xt* Yt);

()

01. Foreachu,iinldo

02. // Apply the context similarity algorithm to calculate S(c,x,t);
03. R[ul[i] <

04. Setfz<@; fm<~@;

05. For each sim_user, sim in Top-K S[user] do

06. { For each item in R[sim_user] do

07. { Ifitem not in R[user] then

08. { fz.setdefault(item, 0.0); fm.setdefault(item, 0.0);

09. fz[item]—fz[item]+sim*(R[sim_user][item])-U_R[sim_user]);
10. fm[item]<—fm[item]+sim;

11. }

12.  }

13. }

14.  For eachitemin fm do
15. P_R[item]<—U_R[user]+fz[item]/fm[item];

(d)

FiGgure 1: Multidimensional collaborative filtering algorithm based on improved item rating prediction. (a) Algorithm 1. (b) Algorithm 2.
(c) Algorithm 3. (d) Algorithm 4.




each user through statistical learning, and then apply it to the
collaborative filtering algorithm to correct the item rating
prediction.

2.2. User Scoring Based on Multidimensional Context

2.2.1. User Similarity Calculation. The first step of our
method is to get the user’s neighbor cluster, which is ob-
tained through the user’s scoring matrix. Users in the user
group whose interests are similar to each other can be se-
lected as neighbor users. This paper utilizes Pearson’s
similarity [24] to measure the distance between users as
shown in (4). Pearson’s similarity is similar to cosine sim-
ilarity in form. The average evaluation value of users is
subtracted during calculation, which is to normalize the
cosine similarity and unify the user’s scoring standard. The
range of Pearson’s similarity is [-1, 1], which is more ac-
curate than that of Jaccard’s correlation coefficient and
cosine similarity.

B Zie]unlv(ru,i - ru)(rv,i - rv)
SM,V - — 2 )
\/Zielunlv(ru,i - ru) Zie]umIV(rv,i - rv)

where s, , represents the similarity value between target user
a and its neighbor cluster user, I,, represents the set of items
that target user u has scored, and I, indicates the set of
products scored by neighbor cluster user v. i represents the
item that the target user u and neighbor cluster user v scored
together. r,; indicates the rating of item i by target user u,
and r,, indicates the average rating of target user u. Following
the same principle, ,; is the score of neighbor cluster user v
for item i, and r, indicates the average rating of neighbor
cluster user v. The traditional collaborative filtering

(4)

Sy (ut’uc) = 1

Yot th L=
k=1"tk k=17 ck i€l (upu) i€l (upu.)

where 7, is the score of user u, for each item and r is the
score of user u, for each item. I (u,, u,) is a collection of items
that u, and u, have scored together, and sim (i, j;) is the
similarity between items i; and j.. Here, we also use Pear-
son’s similarity to calculate this. If there are a lot of items that
have been rated together, they can be considered as users

S (it’ iC) = 1

Tkt Teke 2k Tek weU (

Scientific Programming

algorithm uses the above formula to calculate the similarity
between users.

A user will have different scoring standards under dif-
ferent contexts, such as the user’s rating of a hotel when
traveling on business and the rating criteria for a hotel when
traveling privately. So after considering the context, it has
nothing to do with the previous rating and is replaced by a
new symbol, we use r,, . instead of r,, and r,_ instead of 7,
where r, . represents the average rating of user u under
context condition c. The range of ¢ can be appropriately
generalized or filtered as needed. The proposed improved
method can be described as follows:

_ Zi&]uﬂlv(ru,i - ru,c)(rv,i - rv,c)
Suwe = 2 —\2
Zie]umIv(ru,i - ru,c) Zielunlv(rv,i - "v,c)

The improved user neighbor cluster similarity calcula-
tion formula takes into account the influence of context
factors on the basic rating, making the calculation formula
closer to the context recommendation environment. After
considering the context, the user’s similarity calculation (4)
is improved to (5), and the influence of the context on the
user’s rating is taken into account when using the mean
calibration error of the score.

(5)

2.2.2. User and Item Cross-Iterative Bi-Clustering. The cross-
iterative bi-clustering method is used for cluster users and
items separately. Due to the sparsity of the user-item matrix,
the initial clustering is not accurate enough. Therefore, we
use the cross-iterative method to adjust both user clustering
and item clustering.

User clustering adjustment is calculated by (6), and item
clustering adjustment is calculated by (7)

u, = ug,

6
sim(ii, ij), else, ©

with similar interests. If the obtained S, (u,,u,.) is greater
than a certain threshold ¢, it can be kept in the cluster;
otherwise, it will be separated from the current cluster. Then,
we calculate the similarity between u, and the other cluster
centers. This is added to the cluster with the most similarity
to complete the adjustment of the user cluster.

i =i,

(7)

sim(ui, uj), else,

inic) u;eU (ipi,)



Scientific Programming

where 1, is the score of each user on item 7, and r is the
score of each user on item i.. U (i,, i) is the set of users that i,
and i. have scored together. sim(u;,u;) is the similarity
between items u; and u ;. Here, we use Pearson’s similarity. If
the obtained S; (i,,1,) is greater than a certain threshold 7,
the item will be kept in the cluster; otherwise, it will be
separated from the current cluster. Then, we calculate the
similarity between i, and the other cluster centers. This is
added to the cluster with the most similarity to complete the
adjustment of the user cluster. Algorithm 2 is proposed for
cross-iterative bi-clustering, as shown in Figure 1(b).

2.2.3. Context Similarity Calculation. When the scope of the
context is very large, there are many different dimensions,
such as time, place, surrounding people, etc. According to
the characteristics of the dataset and the environment col-
lection ability, the context dimension selected by the rec-
ommendation system will be different. As far as the time
dimension is concerned, it can also be specifically subdivided
into seasons, weeks, moments, holidays, and so on.
Assume that we select a system with z different di-
mensions, which is shown as ¢ = (cy,¢,,...,¢,), where
¢(t=1,...,2) is a contextual dimension (such as time,
location, weather, etc.). The similarity of the context between
two score records x, y on dimension t can be recorded as
sim, (x, y). We use the degree of influence of the context
dimension on the score to measure the similarity between
the two context variables as follows:
sim, (x, v, i) = ZZ:I(ru,i,xt - ri) : (ru,i,yt - ri)’ (8)

Gxt ’ O'yl

where u is the user and r,,;, describes the rating of item i
under the context of x, by user u. r; is the average score of
item i. Similarly, r,;, is user u’s rating of item i under
context y,, o, is the standard deviation of context di-
mension x;, and o, is the standard deviation of context
dimension y,. This paper proposes a novel method to
measure the similarity of context x and y, according to the
influence degree of different contexts on the score of the
same commodity 7 in the t dimension. Algorithm 3 is shown
in Figure 1(c) to calculate context similarity efficiently.

2.2.4. The Proposed Multidimensional Context-Aware Based
Method. In multidimensional recommendation, the addi-
tion of context results in a lot of interesting rules and mining
high-frequency patterns between contexts and items can
help discover the impact of different contexts on user de-
cisions. In this paper, we select the multidimensional context
from strong association rules with the algorithm FP-growth.

Generally, when determining the neighbor user group,
the N-user with the largest similarity can be selected as the
cluster neighbor of the target user according to the similarity
calculation formula. The context can help the user to filter
out some of the user score records that have a large dif-
ference in context from the current recommendation en-
vironment. Because some commodity decisions are closely
related to a certain context factor, the context is called a hard

context and must be considered and satisfied in the rec-
ommendation. Some score records that do not satisfy the
current context can be filtered out preferentially and are not
considered when calculating the similarity of neighbor
clusters.

Due to the influence of the context, the user’s rating
record has its own context background, and the target user’s
current background is different, so the rating record in
different contexts is different from the user in the current
context. In order to distinguish the relevance of the rating
record under the current context, we use the contextual
similarity calculation method to calculate sim, (x, y,i),
which describes the similarity between context x and context
y in the t dimension. The user rating predictions in a
multidimensional context can be described as follows:

Tu,i,cza'a+ﬁ'r_i+(1_“_ﬁ)'r_c
%) 9)

ZveS(u,K)W(i)SImu,v(rv,i -r,
+ &,

Zves(u,Km(i) Isimw|

where c is the context in which the target user is located and
g, is the system error (the other symbols are described in the
previous formula). It is well known that contexts can have
many specific dimensions, depending on the data collection,
such as time, location, and related personnel. The time
dimension can be divided into seasons, weeks, moments,
holidays, and so on.

After comprehensively considering the influence of
context on the recommendation system, (10) can be replaced
with (11). The basic clustering rating prediction formula is
modified as follows:

Ru,i,c =k Z i ru,i,c : Simt (x’ Y C)’ (10)

x€cc=1

ZVEN[(RV,i,C - rv,c) X sim (u’ v, C)

Yven, sim (1, v, ¢)

P=r_+ (11)

Algorithm 4 shown in Figure 1(d) is proposed as the
multidimensional context-aware based method. Using this
algorithm, item scores can be obtained under multidi-
mensional conditions.

3. Experiments and Results

3.1. Experimental Datasets and Environment. In order to
verify the impact of a user’s scoring weight on the recom-
mendation results and to prove that the recommendation
accuracy of the collaborative filtering algorithm based on the
user and improved item scoring is more accurate, it is
necessary to compare our proposed algorithm with tradi-
tional algorithms that are based on classical item scoring
prediction methods.

These experiments were conducted under the following
conditions: (1) CPU dual core i7-8750H with frequency
2.5GHz; (2) main memory of 8 G; (3) Windows 10 64-bit
operating system; (4) database software version MySQL 5.7.
The proposed machine learning algorithms are implemented



using an object-oriented dynamic type interpreted scripting
language Python, including Python itself with some pow-
erful libraries and third-party modules which cover scientific
computing, database interfaces, etc., such as NumPy,
pandas, etc. The integrated development environment is
JetBrains PyCharm Professional 2018.2.5.

The experiments to improve user rating prediction
utilize two datasets, MovieLens and Jester. The Jester dataset
was developed by Ken Goldberg and his team at the Berkeley
University of California. The Jesters dataset scored [-10, 10],
the jester-dataset-1 comprises data from 24,983 users who
have rated 36 or more jokes, a matrix of 24983 x101; and
jester-dataset-3 comprises data from 24,938 users who have
rated between 15 and 35 jokes, a matrix of 24938 x101
dimensions. The MovieLens dataset was organized by the
Group Lens team at the University of Minnesota. The
MovieLens 100K dataset comprises 100,000 ratings from
1000 users for 1,682 movies, rated between 1 and 5. The
sparsity of the set is about 93.7%, and the data sparse
problem is evident. In the experiment, in order to simulate
datasets of different scales and different sparsity levels, the
existing datasets were processed to generate four datasets as
shown in Table 1. From this table, we can see that the
datasets were randomly divided into training sets and test
sets during the experiment, where the training set accounted
for 80% of the entire dataset, and the test set accounted for
the remaining 20%. When the Jesters dataset was processed,
the score was formulated with the value 0 to 5 by
r*=(r+10)/4.

The source of the experimental datasets for testing the
multidimensional collaborative filtering algorithm is CAR-
SKit (https://github.com/irecsys/CARSKit/), which is an
open-source Java-based context-aware recommendation
engine. We used two datasets: DePaulMovie [25] and Tri-
pAdvisor_v1 [26]. In the experiments, DePaulMovie kept its
original shape, and TripAdvisor_vl was filtered and ad-
justed. We used 70% of the dataset as the training set and
30% as the test set.

3.2. Evaluation Indicators of the Experiment Results. In order
to study the performance of the improved recommendation
algorithm, the experiment used four indicators, namely,
precision, recall, mean absolute error (MAE), and root mean
square error (RMSE).

Precision is an important indicator for evaluating the
performance of a recommendation algorithm. It describes
the proportion of the recommended items that the rec-
ommendation system makes for the user. The larger its
value, the higher the accuracy of the system, and the better
the system’s recommendation. Precision is computed as
shown in the following formula:

YR NT (u)
YulR@I
where u is the target user who uses the system, R (1) is the set

of recommended items for the user, and T (u) is the set of
items in which the user is actually interested.

precison = (12)

Scientific Programming

“Recall” describes how many of the products the user is
interested in and how many are actually recommended to
him by the system. Recall is computed as shown in the
following formula:

Recall = M (13)

2T ()]

The molecular weight of recall is the same as the mol-
ecule of the precision, which is the intersection of R (1) and
T (u); however, their denominators are different. The de-
nominator part of the accuracy rate is R (1), which is the set
of all items recommended to the user, and the denominator
of the recall rate is T (1), which is the collection of all the
items of interest of the user. A larger recall corresponds to a
better performance.

MAE avoids the problem where the errors cancel each
other out and accurately reflects the actual prediction error.
The calculation method is as shown as in formula (14), which
averages the absolute value of the difference between the
actual score and the predicted score.

1 m
MAE = — ;|Y,- - (14)

where Y; and y; denote the original data and predicted data,
respectively.

RMSE is used to measure the deviation between the
observed value and the true value. The calculation method is
shown in formula (15), that is, the ratio of the square of the
difference between the predicted score and the actual score
to the m number of observations squared.

(15)

The smaller the MAE and RMSE values, the better the
recommended performance of the algorithm.

3.3. Experiment Results

3.3.1. Choosing the Best Value for the User Score Weighting
Factor. Firstly, the optimal value for the user’s score
weighting factor a is determined for the collaborative fil-
tering algorithm (U&IPRP-CF), based on the user and the
improved item rating prediction. To ensure the accuracy of
the experiment, the number of item recommendations N of
the Jester-500-100, Jester-1000-100, and Jester-1000-200
datasets is set to a constant N = 10, meaning that 10 items are
recommended to each target user. However, the number of
items in the MovieLens dataset is large, and the number of
recommended items N is set to a constant N =30, meaning
that 30 items are recommended to each target user. The K
number of the most similar neighbors selected for each
target user is a variable, and K is taken from 50, in incre-
ments of 10, and sequentially taken to 100, that is, [50, 60, 70,
80, 90, 100].

Each dataset was tested on a set of values of a=1, 0.9, 0.8,
0.7, 0.6, 0.5 for a. The experiment results of the Jester-500-


https://github.com/irecsys/CARSKit/

Scientific Programming 7
TaBLE 1: Dataset and related parameters.

Item User number Item number Score Sparseness

Jester-500-100 500 100 35,861 0.283

Jester-1000-100 1000 100 70,675 0.293

Jester-1000-200 1000 200 50,516 0.747

MovieLens 943 1,682 100,000 0.937

100 dataset are shown in Tables 2 and 3. The best value of a is
around 0.9. The experiment results of the Jester-1000-100
dataset are shown in Tables 4 and 5. The best value of a is
around 0.8 and 0.9. The experiment results of the Jester-
1000-200 dataset are shown in Tables 6 and 7. The best value
of a is around 0.7. The experiment results of the MovieLens
dataset are shown in Tables 8 and 9. The best value of a is
around 0.7. In summary, as the size of the dataset increases
and sparsity increases, the optimal value of the user’s score
weighting factor a decreases.

After determining the best value of the user’s score
weighting factor, a comparative experiment is carried out,
and the algorithms are first sorted and named, as shown in
Table 10.

The algorithms are compared in Table 10. In order to
ensure the accuracy of the experiment, the recommended
number N of Jester-500-100, Jester-1000-100, and Jester-
1000-200 datasets is a constant N = 10. The recommended N
number of items in the MovieLens dataset is a constant
N=30. The K number of most similar neighbors selected for
each target user is a variable. K has a value from 50 to 100
with an interval of 10, expressed as [50, 60, 70, 80, 90, 100].

The comparison results of the performance for different
datasets are shown in Figure 2. The experiment results for
the Jester-500-100 dataset are shown in Figures 2(a) and
2(b). The experiment results for the Jester-1000-100 dataset
are shown in Figures 2(c) and 2(d). The experiment results
for the Jester-1000-200 dataset are shown in Figures 2(e) and
2(f). The experiment results for the MovieLens dataset are
shown in Figures 2(g) and 2(h). It can be seen that for the
different datasets, the error generated by the U&IPRP-CF
algorithm is smaller than the traditional algorithm, and it
has obvious advantages in terms of the accuracy of
recommendations.

In the three datasets Jester-500-100, Jester-1000-100, and
Jester-1000-200, the U&KURWEFRP-CF algorithm does not
reduce the recommendation error, whereas the recom-
mendation error for the UKURWEFRP-CF algorithm is re-
duced in the MovieLens dataset. This shows that when the
dataset is small and sparse, the user’s score is very reliable;
otherwise, when the dataset is large and information sparse,
the user’s score is less likely to be referenced under a large
base. In this situation, the weights of the user ratings need to
be considered.

From these figures, it can be seen that when the scale and
sparsity of the dataset are gradually increased, the recom-
mendation error of the U&IPRP-CF algorithm is also re-
duced and the performance becomes increasingly better,
which alleviates the data sparsity problem to some extent.

It can be seen from the experiment results that using the
average score of the public to replace the average historical

score weight of the user alone can enable the system to
predict the user’s score on the unrated item, resulting in less
error, thus making more accurate recommendations. To
reduce the error of score prediction, a systematic error factor
is established for each user, and statistical learning is im-
proved on each recommendation, which can effectively
correct the error and improve the accuracy of
recommendations.

In addition, combined with experiment 3.3.1, it can be
seen that choosing the correct parameters is also key to
improving the accuracy of recommendations. When the
number of items recommended by item N, the number of
neighbors of target user K, and the user’s score weighting
factor a are in a practical application, the recommendation
system needs to compare and select appropriate values for
the experiment.

3.3.2. Performance Comparison Experiments Using Different
Algorithms. The experimental results were verified by
DePaulMovie and TripAdvisor_v1 datasets published by
GroupLens. Our paper compared four recommendation
algorithms: CF, CF-AR, Multi-CF, Multi-CF-AR, CF-AR-
IIP, and Multi-CF-AR-IIP, the latter two being the algo-
rithms proposed in this paper. The algorithms are explained
as follows:

(a) CF: classical user-based collaborative filtering rec-
ommendation algorithm

(b) CF-AR: user-based collaborative filtering recom-
mendation algorithm combined with association
rules mining

(c) CE-AR-IIP: user-based collaborative filtering rec-
ommendation algorithm combined with association
rules mining and improved item-rating prediction,
which is proposed in this paper

(d) Multi-CF: classical multidimensional context-aware
user-based collaborative filtering algorithm

(e) Multi-CF-AR: multidimensional context-aware
user-based collaborative filtering algorithm com-
bined with association rules mining

(f) Multi-CF-AR-IIP: user-based collaborative filtering
recommendation algorithm combined with associ-
ation rules mining and improved item-rating pre-
diction, which is proposed in this paper

In the experiments based on the DePaulMovie datasets,
the top-K (K=10, 15, 20, 25) neighbors with the highest
similarity for each user and the top-N (N=10, 15, 20)
recommended items with the highest predicted rating for the
target users are selected. The system has three context



8 Scientific Programming
TaBLE 2: Comparison of MAE using Jester-500-100.
a K=50 K=60 K=70 K=80 K=90 K=100
1 0.5791 0.5781 0.5985 0.5723 0.5539 0.5574
0.9 0.5530 0.5655 0.5591 0.5334 0.5480 0.5675
0.8 0.5411 0.5795 0.5710 0.5350 0.5597 0.5815
0.7 0.5754 0.5729 0.5903 0.5630 0.5356 0.5871
0.6 0.5632 0.5917 0.5917 0.5782 0.5618 0.5746
0.5 0.5747 0.6027 0.5973 0.5806 0.5712 0.5800
TaBLE 3: Comparison of RMSE using Jester-500-100.
a K=50 K=60 K=70 K=80 K=90 K=100
1 0.8860 0.8982 0.9618 0.9141 0.8662 0.8731
0.9 0.8710 0.8975 0.8942 0.8560 0.8542 0.8966
0.8 0.8529 0.9222 0.9120 0.8507 0.8922 0.9335
0.7 0.9032 0.9243 0.9456 0.8928 0.8469 0.9438
0.6 0.8928 0.9568 0.9396 0.9212 0.8770 0.9056
0.5 0.8976 0.9722 0.9466 0.9487 0.8865 0.9084
TaBLE 4: Comparison of MAE using Jester-1000-100.
a K=50 K=60 K=70 K=80 K=90 K=100
1 0.5091 0.5105 0.5528 0.5385 0.5199 0.5058
0.9 0.5029 0.5081 0.5366 0.5432 0.5195 0.5225
0.8 0.5006 0.5302 0.5191 0.5263 0.5233 0.5460
0.7 0.5090 0.5141 0.5289 0.5364 0.5377 0.5409
0.6 0.5330 0.5289 0.5572 0.5431 0.5429 0.5337
0.5 0.5417 0.5440 0.5647 0.5534 0.5509 0.5455
TaBLE 5: Comparison of RMSE using Jester-1000-100.
a K=50 K=60 K=70 K=80 K=90 K=100
1 0.8212 0.8322 0.8932 0.8659 0.8242 0.8212
0.9 0.8120 0.8372 0.8736 0.8865 0.8345 0.8332
0.8 0.8130 0.8713 0.8474 0.8692 0.8418 0.8788
0.7 0.8345 0.8543 0.8753 0.8832 0.8713 0.8722
0.6 0.8783 0.8707 0.9133 0.8792 0.8740 0.8590
0.5 0.8918 0.8885 0.9246 0.8993 0.8822 0.8667

dimensions, namely, C=(C1, C2, C3)=(Time, Location,
Companion), where C1 (Time) = (Weekday, Weekend), C2
(Location) = (Cinema, Home), and C3=(Companion)
= (Alone, Family, Partner).

In the experiments based on the TripAdvisor_v1 dataset,
the top-K (K=20, 30, 40, 50) neighbors with the highest
similarity for each user and the top-N (N=10, 15, 20)
recommended items with the highest predicted rating for the
target users are selected. The system has three context di-
mensions as follows: C=(Cl, C2, C3)=(USER_
TIMEZONE, HOTEL_TIMEZONE, Trip Type), where Cl
(USER_TIMEZONE) = (Eastern, Central, Pacific, Moun-
tain, HI, AK), C2 (HOTEL_TIMEZONE) = (Eastern, Cen-
tral, Pacific, Mountain), and C3 (Trip Type) =(1, 2, 3, 4, 5).
Table 11 shows information on the related context di-
mensions selected for the datasets.

Figures 3(a) and 3(b) show the precision of the algo-
rithms. Multi-CF-AR-IIP achieves the best precision, and
Multi-CF-AR is the second best. Particularly when N is

small, Multi-CF-AR-IIP has obvious advantages. As N
increases, the precision of all the algorithms decreases, and
the difference between the algorithms becomes increasingly
smaller. This shows that the increase in the number of
recommendations reduces the accuracy of the recom-
mendation. Different algorithms will exhibit different
characteristics in different datasets. Multi-CF has an ad-
vantage in DePaulMovie, but it does not work well in
TripAdvisor_vl1.

Figures 3(c) and 3(d) show the recall of the algorithms.
The result is the same as for precision, where Multi-CF-AR-
IIP achieves the best recall, and Multi-CF-AR is the second
best. However, recall increases significantly as N increases.
This is because the denominator of recall is the number of
items in which the user is actually interested and its value is
small.

Figures 3(e) and 3(f) show the MAE of the algorithms
and Figures 3(g) and 3(h) show the RMSE of the algorithms.
In DePaulMovie, except CF, the resulting errors of the other



Scientific Programming 9

TaBLE 6: Comparison of MAE using Jester-1000-200.

a K=50 K=60 K=70 K=80 K=90 K=100
1 0.4139 0.3714 0.2611 0.1727 0.2059 0.1799
0.9 0.3562 0.4590 0.2103 0.2422 0.1879 0.1815
0.8 0.2933 0.3235 0.2426 0.2472 0.1991 0.1999
0.7 0.2309 0.3507 0.1582 0.2160 0.2616 0.2489
0.6 0.3161 0.3401 0.2105 0.2445 0.2566 0.2718
0.5 0.2940 0.3113 0.2763 0.2415 0.2604 0.3213
TaBLE 7: Comparison of RMSE using Jester-1000-200.
a K=50 K=60 K=70 K=80 K=90 K=100
1 0.8962 0.6459 0.3511 0.3651 0.4679 0.3333
0.9 0.9843 0.5405 0.4266 0.3451 0.4401 0.3403
0.8 0.7912 0.6234 0.4295 0.3887 0.3769 0.3676
0.7 0.7718 0.4226 0.4382 0.5201 0.5442 0.4873
0.6 0.7545 0.5812 0.5336 0.4989 0.5547 0.5323
0.5 0.6692 0.5975 0.5068 0.5343 0.5589 0.6286
TaBLE 8: Comparison of MAE using MovieLens.
a K=50 K=60 K=70 K=380 K=90 K=100
1 0.2634 0.6377 0.7479 0.7883 0.7851 0.3524
0.9 0.1978 0.4791 0.4692 0.3977 0.0811 0.0249
0.8 0.2178 0.3709 0.3448 0.2918 0.0931 0.1255
0.7 0.2456 0.2994 0.3058 0.2271 0.1942 0.1589
0.6 0.3610 0.3881 0.3552 0.2668 0.1889 0.1499
0.5 0.4612 0.4560 0.3491 0.2803 0.2177 0.2261
TaBLE 9: Comparison of RMSE using MovieLens.
a K=50 K=60 K=70 K=80 K=90 K=100
1 0.7249 1.4619 1.5619 1.4962 1.5344 0.3524
0.9 0.6457 1.0449 1.0487 1.0665 0.3218 0.0249
0.8 0.6294 0.9029 0.8317 0.7804 0.3212 0.1255
0.7 0.6488 0.7891 0.7623 0.6921 0.4911 0.1589
0.6 0.8638 0.9174 0.8160 0.7339 0.5431 0.1499
0.5 0.9838 1.0053 0.7864 0.7406 0.5577 0.2261

TaBLE 10: The names of the algorithms.

English abbreviation Full name

COS&TPRP-CF

Collaborative filtering algorithm based on cosine and traditional item rating prediction

U&TPRP-CF Collaborative filtering algorithm based on user and traditional item rating prediction
U&URWEFRP-CF Collaborative filtering algorithm based on user and user scoring weight factor rating prediction
U&IPRP-CF Collaborative filtering algorithm based on user and improved item rating prediction (our algorithm)

five algorithms are almost similar. But the error gap in
TripAdvisor_v1 is obvious, and the multidimensional al-
gorithms produce a high number of errors. MAE and RMSE
calculate the difference between the predict rating and the
user’s true rating, which aims to measure the difference
between the recommended result and the user’s true pref-
erence. The smaller the MAE and the RMSE, the more users
like the recommended items. Association rule mining
(ARM) improves the precision and recall of the

recommendation, which means that it improves click vol-
ume and purchase amount. At the same time, it also makes it
difficult for the recommender system to predict the rating,
and the probability of the system recommending items that
the user does not like is increased. From the experiment
results, it can reduce MAE and RMSE with improved item-
rating prediction (IIP) method.

In general, the fusion algorithm Multi-CF-AR-IIP has
better recommendation performance than the others. It



10

MAE

MAE

MAE

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.6

0.4

0.2

Jester-500-100

r 4 p r

=

I

50 60 70 80 90 100

U&URWEFRP-CF
—x— U&IPRP-CF

()
Jester-1000-100

—— COS&TPRP-CF
—m- U&TPRP-CF

w\;{m;ﬁ;

)/H)H——Hx// XK

50 60 70 80 90 100

U&URWERP-CF
—x— U&IPRP-CF

(c)
Jester-1000-200

—— COS&TPRP-CF
—m— U&TPRP-CF

'<Q—<t><!>.<:

\/x—x\*’,(

50 60 70 80 90 100

—— COS&TPRP-CF
—m— U&TPRP-CF

U&URWEFRP-CF
—x— U&IPRP-CF

(e)

RMSE

RMSE

RMSE

1.05

0.95

0.9

0.85

0.8

0.75

0.95

0.9

0.8

0.75

0.7

1.4

1.2

0.8

0.6

0.4

0.2

Scientific Programming

Jester-500-100

o

50 60 70 80 90 100

U&URWEFRP-CF
—x— U&IPRP-CF

—— COS&TPRP-CF
—m- U&TPRP-CF

(b)
Jester-1000-100

= S

50 60 70 80 90 100

U&URWEFRP-CF
—x— U&IPRP-CF

—— COS&TPRP-CF
-m U&TPRP-CF

(d)
Jester-1000-200

50 60 70 80 90 100

U&URWERP-CF
—— U&IPRP-CF

—o— COS&TPRP-CF
—m- U&TPRP-CF

6]

Ficure 2: Continued.



Scientific Programming

Movie Lens
1.4

1.2}

0.8 I

MAE

04

0.2+

50 60 70 80 90 100

U&URWERP-CF
—x— U&IPRP-CF

(g)

—— COS&TPRP-CF
—m— U&TPRP-CF

11

Movie Lens

15}

RMSE

0.5 F K
X

50 60 70 80 90 100

U&URWEFRP-CF
—x— U&IPRP-CF

(B)

—— COS&TPRP-CF
—m- U&TPRP-CF

FiGure 2: Comparison of the performance results for the different datasets. (a) Comparison of MAE for Jester-500-100. (b) Comparison of
RMSE for Jester-500-100. (c) Comparison of MAE for Jester-1000-100. (d) Comparison of RMSE for Jester-1000-100. (e) Comparison of
MAE for Jester-1000-200. (f) Comparison of RMSE for Jester-1000-200. (g) Comparison of MAE for MovieLens. (h) Comparison of RMSE
for MovieLens.

TaBLE 11: Information on the related context dimensions for the datasets.

Users Items Ratings Sparsity
. Number 97 79 5043 0.3419
DePaulMovie . . .
Context dimension Time Location Companion
Weekday, weekend Cinema, home Alone, family, partner
Users Items Ratings Sparsity
Number 1129 48 4669 0.9138
TripAdvisor_v1 USER_TIMEZONE HOTEL_TIMEZONE Trip type
Context dimension Eastern, central, pacific, mountain, HI, AK Eastern, central, 1,2,3,4,5

pacific, mountain

DepaulMovie TripAdvisor_v1
0.25 e 0.5
0.2 ‘ 0.4
g o015 g 03 Ll -
| " | |
L2 01 2 02 :
8 | " : | in
0.05 ‘ ‘ ‘ - 0.1 ‘ i ‘ ‘
0 0
10 15 20 25|10 15 20 25|10 15 20 25 K 20 30 40 5020 30 40 50(20 30 40 50 K
N=10 N=15 N=20 N=10 N=15 N=20
K: number of neighbors K: number of neighbors
N: number of recommended items N: number of recommended items
m CF Multi-CF m CF Multi-CF
m CF-AR B Multi-CF-AR m CF-AR B Multi-CF-AR
m CF-AR-IIP B Multi-CF-AR-IIP m CF-AR-IIP B Multi-CF-AR-IIP

(a)

FiGgure 3: Continued.

(b)



12 Scientific Programming

DepaulMovie TripAdvisor_v1
0.5 e 0.8 e
0.7
0.4 0.6 7 ‘
= 03 : : : [ : = 05 ‘ ‘ ' '
5 [ 5 04| g :
o2 o 0 U ool o 0
0.2 -
0.1 ‘ H‘ ' o1 | IR R
. ! 0 AU ECA I REAE
10 15 20 25|10 15 20 25|10 15 20 25 K 20 30 40 50|20 30 40 50|20 30 40 50 K
N=10 N=15 N=20 N=10 N=15 N=20
K: number of neighbors K: number of neighbors
N: number of recommended items N: number of recommended items
m CF » Multi-CF m CF » Multi-CF
m CF-AR B Multi-CF-AR m CF-AR B Multi-CF-AR
m CF-AR-IIP B Multi-CF-AR-IIP m CF-AR-IIP B Multi-CF-AR-IIP
(©) (d)
DepaulMovie TripAdvisor_v1
1 S 12 T
0.8 o 1
0.8
2 06 2 06
. 10 o4 |
0.2 i - 0.2 | ‘ , ‘ ‘
0 | L1 . L AR
10 15 20 25|10 15 20 25|10 15 20 25 K 20 30 40 50|20 30 40 50(20 30 40 50 K
N=10 N=15 N=20 N=10 N=15 N=20
K: number of neighbors K: number of neighbors
N: number of recommended items N: number of recommended items
m CF » Multi-CF m CF » Multi-CF
m CF-AR m Multi-CF-AR m CF-AR m Multi-CF-AR
m CF-AR-IIP B Multi-CF-AR-IIP m CF-AR-IIP B Multi-CF-AR-IIP
(e) (f)
DepaulMovie TripAdvisor_v1
2 o 1.8 P
1.6
15 o 1.4
1.2 -
23] 23]
%] 1 7 %) 1 ‘ |
0.8
Z O z 08 {000 O
0.5 : . 0.4 ‘ ‘ ‘ ‘ |
‘ ‘ ‘ ‘ ‘ 02 By R fU
. 2 0 LR M QL
10 15 20 25(10 15 20 25|10 15 20 25 K 20 30 40 50 (20 30 40 50 (20 30 40 50 K
N=10 N=15 N=20 N=10 N=15 N=20
K: number of neighbors K: number of neighbors
N: number of recommended items N: number of recommended items
m CF m Multi-CF m CF m Multi-CF
m CF-AR B Multi-CF-AR m CF-AR B Multi-CF-AR
m CF-AR-IIP m Multi-CF-AR-IIP m CF-AR-IIP m Multi-CF-AR-IIP
(& (h)

FIGURE 3: Performance comparison of algorithms based on different datasets. (a) Comparison of precision of algorithms based on
DePaulMovie. (b) Comparison of precision of algorithms based on TripAdvisor_vl. (c) Comparison of recall of algorithms based on
DePaulMovie. (d) Comparison of recall of algorithms based on TripAdvisor_vl. (e) Comparison of MAE of algorithms based on
DePaulMovie. (f) Comparison of MAE of algorithms based on TripAdvisor_vl. (g) Comparison of RMSE of algorithms based on
DePaulMovie. (h) Comparison of RMSE of algorithms based n TripAdvisor_vl.



Scientific Programming

recommends more diversified items to users by using
multidimension context and AR and recommends items that
users may prefer by using IIP.

4. Conclusion

In recent years, recommendation systems have been widely
used in various fields. The accuracy and applicability of the
recommendation system is very important. In this paper, we
proposed a novel recommendation algorithm based on
improved collaborative filtering with multidimensional
context and association rules. Firstly, an improved cross-
iterative bi-clustering based user scoring prediction method
is proposed. Then, the multidimensional context-aware
method is introduced into the traditional user collaborative
filtering algorithm by using context-aware related infor-
mation. In this method, a multidimensional context is used
to filter the original data, the excess data is filtered to adjust
the recommendation results, and the context data is inte-
grated into the similarity calculation process of the user and
the product to obtain more accurate recommendation re-
sults. In addition, in order to better compensate for the
impact of data sparseness and increase the user’s satisfaction,
association rules can be used to find similar preferences
between users with low similarity. By mining the context and
the relevance of the user’s selected items, we can find popular
items with a high degree of contextual relevance to com-
plement the algorithm’s novelty and reliability. The algo-
rithm proposed in this paper can enhance the user’s
experience on the recommendation platform and strengthen
the connection between context and recommendation re-
sults. The algorithms we propose provide recommendations
for users in a multidimensional context environment, which
not only complements the omission of the collaborative
filtering algorithm, but also improves the accuracy and ef-
ficiency of the recommendation results.

In the future, we will study high-dimensional clustering
algorithms, which will help solve the problem of data sparsity
and determine the decision-making of social groups. To es-
tablish a more personalized recommendation system, we must
develop effective recommendation methods from multiple
perspectives. Another new research direction is how to use
recursive neural networks to provide personalized advice.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analysed during the current study.

Conflicts of Interest

The authors declare no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Acknowledgments

This work was supported by Fund Item of the China
Scholarship Council (CSC) and Key Laboratory Project of
Sichuan University (QXXCSYS201705).

13

References

[1] A. K. Sahu and P. Dwivedi, “User profile as a bridge in cross-
domain recommender systems for sparsity reduction,” Ap-
plied Intelligence, vol. 49, no. 7, pp. 2461-2481, 2019.

[2] L. Xu, C. Jiang, Y. Chen, Y. Ren, and K. J. R. Liu, “User

participation in collaborative filtering-based recommendation

systems: a game theoretic approach,” IEEE Transactions on

Cybernetics, vol. 49, no. 4, pp. 1339-1352, 2018.

T. Xiao and H. Shen, “Neural variational matrix factorization

for collaborative filtering in recommendation systems,” Ap-

plied Intelligence, vol. 49, no. 4, pp. 3558-3569, 2019.

[4] B. Loepp, T. Donkers, T. Kleemann, and J. . Ziegler, “In-
teractive recommending with tag-enhanced matrix factor-
ization (TagMF),” International Journal of Human-Computer
Studies, vol. 121, pp. 21-41, 2018.

[5] H. Luo, M. Li, S. Wang, Q. Liu, Y. Li, and J. Wang, “Com-
putational drug repositioning using low-rank matrix ap-
proximation and randomized algorithms,” Bioinformatics,
vol. 34, no. 11, pp. 1904-1912, 2018.

[6] W. Wang, J. Chen, J. Wang, J. Chen, J. Liu, and Z. Gong,
“Trust-enhanced collaborative filtering for personalized point
of interests recommendation,” IEEE Transactions on Indus-
trial Informatics, vol. 16, no. 9, pp. 6124-6132, 2020.

[7] N. V. Dat, P. V. Toan, and T. M. Thanh, “Solving distribution
problems in content-based recommendation system with
Gaussian mixture model,” Applied Intelligence, vol. 5, pp. 1-
13, 2021.

[8] W. Zhang, X. Zhang, and D. Chen, “Causal neural fuzzy
inference modelling of missing data in implicit recommen-
dation system,” Knowledge-Based Systems, vol. 222, no. 10,
pp. 66-78, 2021.

[9] A. A. Amer, H. I. Abdalla, and L. Nguyen, “Enhancing rec-
ommendation systems performance using highly-effective
similarity measures,” Knowledge-Based Systems, vol. 217,
Article ID 106842, 2021.

[10] M. Liu, W. Pan, M. Liu, Y. Chen, X. Peng, and Z. Ming,
“Mixed similarity learning for recommendation with implicit
feedback,” Knowledge-Based Systems, vol. 119, no. 1,
pp. 178-185, 2017.

[11] Z. Duan, W. Xu, Y. Chen, and L. Ding, “Etbrec: a novel
recommendation algorithm combining the double influence
of trust relationship and expert users,” Applied Intelligence,
vol. 2021, no. 3, 2021.

[12] X. Kong, F. Xia, J]. Wang, A. Rahim, and S. k. Das, “Time-
location-relationship combined service recommendation
based on taxi trajectory data,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 3, pp. 1202-1212, 2017.

[13] W. X. Zhao, S. Li, Y. He, L. Wang, J. Wen, and X. Li, “Ex-
ploring demographic information in social media for product
recommendation,” Knowledge and Information Systems,
vol. 49, no. 1, pp. 1-25, 2015.

[14] Y. Wang and X. Li, “Study on improved clustering collabo-
rative filtering algorithm based on demography,” Computer
Science, vol. 44, no. 3, pp. 63-69, 2017.

[15] S. Mandal and A. Maiti, “Deep collaborative filtering with
social promoter score-based user-item interaction: a new
perspective in recommendation,” Applied Intelligence, vol. 51,
pp. 1-26, 2021.

[16] Y. Pan, Y. Huo, J. Tang, Y. Zeng, and B. Chen, “Exploiting
relational tag expansion for dynamic user profile in a tag-
aware ranking recommender system,” Information Sciences,
vol. 545, no. 6, pp. 448-464, 2021.

[3



14

[17] J. Gou, J. Guo, L. Zhang, and C. Wang, “Collaborative filtering
recommendation system based on trust-aware and domain
experts,” Intelligent Data Analysis, vol. 23, no. S1, pp. 133-151,
2019.

[18] X. Y. Xu, L. H. Ren, and Y. S. Ding, “An improved D-S
evidence theory based on genetic algorithm to VIP intelligent
recognition and recommendation system,” Applied Mechanics
and Materials, vol. 347-350, pp. 2442-2446, 2013.

[19] J. Xiao, M. Luo, J.-M. Chen, and J.-J. Li, “An item based
collaborative filtering system combined with genetic algo-
rithms using rating behavior,” Lecture Notes in Computer
Science, vol. 9227, pp. 453-460, 2015.

[20] Y. Lin, P. Ren, Z. Chen, Z. Ren, J. Ma, and M. De Rijke,
“Explainable outfit recommendation with joint outfit
matching and comment generation,” IEEE Transactions on
Knowledge and Data Engineering, vol. 32, no. 8, pp. 1502
1516, 2018.

[21] A. Mcy, B. Ik, and B. Ksl, “Temporal context-aware task
recommendation in crowdsourcing systems,” Knowledge-
Based Systems, vol. 219, Article ID 106770, 2021.

[22] Z. E. Yebdri, S. M. Benslimane, F. Lahfa, M. Barhamgi, and
D. Benslimane, “Context-aware recommender system using
trust network,” Computing, vol. 2021, no. 103, pp. 1919-1937,
2021.

[23] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis
of predictive algorithms for collaborative filtering,” Uncer-
tainty in Artificial Intelligence, vol. 98, no. 7, pp. 43-52, 2013.

[24] B.Hui, L. Zhang, X. Zhou, X. Wen, and Y. Nian, “Personalized

recommendation system based on knowledge embedding and

historical behavior,” Applied Intelligence, vol. 2021, no. 7,

2021.

Y. Zheng, B. Mobasher, and R. Burke, “CARSKit: a java-based

context-aware recommendation engine,” in Proceedings of the

15th IEEE conference on Data Mining Workshops, pp. 1668

1672, IEEE, Atlantic City, NJ, USA, Nov-2015.

Y. Zheng, R. Burke, and B. Mobasher, “Differential context

relaxation for context-aware travel recommendation,” in

Proceedings of the 13th International Conference on Electronic

Commerce and Web Technologies (EC-WEB 2012), pp. 88-99,

Springer, Chicago City, IL, USA, Sep-2012.

[25

(26

Scientific Programming



