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Firmware formats vary from vendor to vendor, making it difficult to track which vendor or device the firmware belongs to, or to identify
the firmware used in an embedded device. Current firmware analysis tools mainly distinguish firmware by static signatures in the
firmware binary code. However, the extraction of a signature often requires careful analysis by professionals to obtain it and requires a
significant investment of time and effort. In this paper, we use Doc2Vec to extract and process the character information in firmware,
combine the file size, file entropy, and the arithmetic mean of bytes as firmware features, and implement the firmware classifier by
combining the Extra Trees model. (e evaluation is performed on 1,190 firmware files from 5 router vendors. (e accuracy of the
classifier is 97.18%, which is higher than that of current approaches.(e results show that the proposed approach is feasible and effective.

1. Introduction

With the continuous development of network infrastructure
in recent years, the Internet of (ings (IoT) has attracted
much attention and the number of IoTdevices has increased
dramatically. People are gradually aware of the problems in
IoT while enjoying the convenience brought by IoT devices.
(e security of IoTapplications is one of the major concerns,
and the security of firmware is one of the most important
issues. However, it is hard to analyze and detect vulnera-
bilities in firmware. Different firmware has different in-
struction sets and corresponding hardware environments.
(us, the hardware type of the target firmware needs to be
known before analyzing the firmware. Without knowing the
hardware type of the target firmware, there is no way to build
an emulation environment for the target firmware. Also,
since routers are mostly small devices with limited memory
capacity, the firmware usually consists of some files and
needs to be compressed to reduce the memory footprint of
the device. But this also means that it is much more difficult
to extract semantic information from the unpacked firm-
ware through static analysis, making it almost impossible to
analyze the firmware statically. (erefore, accurate access to

the hardware information of the firmware is a necessary
prerequisite for further analysis of the firmware.

Before training the firmware classification model, the
acquisition of the dataset (i.e., firmware) is the most im-
portant prerequisite work. (ere are two main ways to
obtain the firmware: one is from the router vendor’s website
and the other is to extract the firmware directly from the
hardware device. (e latter requires disassembling and
further analysis of the hardware to obtain the firmware
corresponding to the device, which is less efficient. (ere-
fore, the sources of firmware in this paper are obtained from
the web.

After the firmware acquisition, we need to determine the
virtual execution environment of the current firmware to
perform the dynamic analysis of the firmware. (us, con-
figuring the execution environment of the firmware is a
crucial part, and the most critical information is the ar-
chitecture information of the firmware. Generally, the ar-
chitecture information contains the manufacturer
information and the operating device information of the
current hardware device. (e “type information” in this
paper refers to the firmware vendor information of the
device. Once the above type information is obtained, it is

Hindawi
Scientific Programming
Volume 2021, Article ID 2666153, 9 pages
https://doi.org/10.1155/2021/2666153

mailto:topmint@gmail.com
https://orcid.org/0000-0003-3264-1681
https://orcid.org/0000-0001-5381-9202
https://orcid.org/0000-0003-2589-1164
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2666153


possible to configure the corresponding virtual execution
environment and proceed to the next stage of firmware
analysis. (e most representative and widely used firmware
analysis tool to solve this problem is Binwalk [1], a firmware
type analysis tool that analyzes compressed firmware
through a signature database. Typically, Binwalk traverses all
bytes in a binary file to extract and match signatures, while
Binwalk can also split or extract the entire file.

Binwalk analyzes the firmware by matching signatures
to the target firmware. Once a signature is found in the
signature library, the corresponding analysis rules are
applied to analyze the target firmware and obtain the
unpacked file for further analysis of the firmware. However,
Binwalk is not always able to display the firmware infor-
mation well and may sometimes fail to obtain the structure
information corresponding to the firmware file. For ex-
ample, in the example in Figure 1, when using Binwalk to
analyze Tenda’s firmware named 4G300_V1.01.30, the
structure information corresponding to the firmware file
cannot be obtained.

(e reason for the above problem is that Binwalk uses
signatures to match firmware. If the signature of the target
firmware does not exist in the signature database, then
Binwalk does not work well. Also, Binwalk cannot update its
signature database timely, which makes it difficult to analyze
some new firmware.

(is paper addresses the above issue by using machine
learning to classify unknown firmware, compensating for
the limitation of matching and analyzing firmware by sig-
nature only. A firmware classification model combining
Extra Trees and Doc2Vec is proposed to improve the ac-
curacy of firmware classification. Also, it can have a high
classification accuracy for unknown firmware.

(e main contributions are as follows:

(1) We propose a firmware classification model com-
bining Extra Trees and natural language processing
technology to improve the accuracy of firmware
classification. It can also have high classification
accuracy for firmware that is not recorded in the
firmware signature database.

(2) We implement the prototype and evaluate it on 1,190
router firmware.(e accuracy of the proposedmodel
is 97.18%. We open-source our implementation at
https://github.com/qiujing/firmware.

(e rest of this paper is arranged as follows. Section 2
gives the details of the proposed solution. Section 3 shows
the evaluation result and discussion. Section 4 introduces the
related work. Section 5 concludes the paper.

2. Solution

In this paper, ten candidate models are mainly selected to
classify firmware. (ey are Decision Tree, Random Forest,
XGBoost, Support Vector Machine (SVM), Extra Trees,
Decision Tree +Doc2Vec, Random Forest +Doc2Vec,
XGBoost +Doc2Vec, SVM+Doc2Vec, and Extra
Trees +Doc2Vec.

2.1. Model Selection. (e main reasons for choosing tree
classifier as firmware classification in this paper are shown
below.

From the perspective of dataset, there are few large
public datasets available due to the small number of publicly
available firmware on the market. Current deep learning
methods are widely used for their excellent accuracy, and
their classification results are generally better than those of
tree classifiers. However, this phenomenon is predicated on
having a large dataset to train the model. Deep learning can
only achieve better results when it is sufficiently trained, and
the amount of firmware that can be collected at present
clearly does not meet this requirement. Most tree classifiers,
on the other hand, require only a small amount of training
data to achieve good results. (us, tree classifiers are more
suitable for firmware classification.

In terms of the classification methods, a tree classifier is
more like a stepwise filtering of features. (is makes a tree
classifier relatively less computationally intensive and easy to
translate into classification rules. As long as the tree roots go
down to the leaves, the splitting conditions along the way can
uniquely determine a classification result. Secondly, the
classification rules mined by a tree classifier are highly ac-
curate and easy to understand. A decision tree can clearly
show which fields are more important, and it is easy to
understand the classification basis of the model intuitively;
that is, it can generate rules that can be understood. (irdly,
a tree classifier does not require any domain knowledge and
parameter assumptions, which can be more easily brought
into various application scenarios. Furthermore, the struc-
ture of a tree classifier itself is more suitable for multiple
classifications. SVM can only achieve multiclassification by
combining multiple binary classifications. Extra Trees/
Random Forest, a forest classifier, is a good remedy for the
limitations of a single decision tree. Each tree of the forest
class has its own category judgment rule.(us, it can analyze
a set of data frommultiple perspectives and finally decide the
final category by the voting method, which greatly improves
the accuracy.

In terms of the training/recognition time, the training
time of a tree classifier is short. (is can also be seen by the
experimental results, where the training time of each clas-
sifier is within a good range. Since a tree classifier determines
the classification rules after the training is completed, only
the input feature values need to be brought into the clas-
sification rules layer by layer during prediction. (is
structure greatly improves the recognition speed.

2.2. Model Introduction. (e decision tree algorithm is a
relatively common machine learning method. A decision
tree is a tree structure in which each nonleaf node within the
tree represents a judgment of an attribute, and the leaf nodes

qiujing: ~/firmware/MERCURY$ binwalk –A isp1_2. bin

qiujing: ~/firmware/MERCURY$ |

DECIMAL HEXADECIMAL DESCRIPTION

Figure 1: Binwalk fails to identify Mercury isp1_2.bin.
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represent the category of its final classification. Such a tree
structure as decision tree is extremely suitable for firmware
vendor classification. Compared to deep learning, using
decision tree only requires less training data to achieve a
better classification effect, which also solves the problem that
firmware datasets are less resourceful and difficult to obtain.

XGBoost, which stands for Extreme Gradient Boosting,
is an improvement and extension of the gradient-boosted
decision tree algorithm, which has a faster computing speed
and higher accuracy [2]. XGBoost draws on the advantages
of random forests and supports feature sampling to prevent
overfitting of the final classification results, while also re-
ducing computational effort. XGBoost also supports par-
allelization, which greatly reduces the time of model
operations.

Random Forest is a modification of decision tree [3]. Its
main idea is to integrate multiple decision trees through the
idea of integrated learning. Each tree in a random forest is a
classifier. (e final classification result is determined by the
vote of all the decision trees. Each tree in the random forest is
randomly sampled from the training set, which ensures that
each tree is a nonrepeating decision tree. If random sampling
is not used, the entire random forest will have the same result
as one decision tree. Similarly, random forests can achieve
better classification results with fewer datasets.

Extra Trees [4] is very similar to Random Forest, which is
composed of many decision trees. (e differences between
them are as follows.

(1) For the training set of each decision tree, Random
Forest uses a random sampling bootstrap to select
the sampling set as the training set of each decision
tree, while Extra Trees generally does not use random
sampling; that is, each decision tree uses the original
training set. Random Forest applies the bagging
model, and Extra Trees uses all the samples; only the
features are randomly selected. Because the splitting
is random, the results are somehow better than those
obtained by Random Forest.

(2) After selecting the splitting features, the Random
Forest decision tree will select an optimal feature
value based on the principles of information gain,
Gini coefficient, mean squared deviation, and so on
to divide the points, which is the same as the tra-
ditional decision tree. However, extra tree is more
aggressive and randomly selects a feature value to
divide the tree. (is results in a decision tree that is
generally larger than the one generated by Random
Forest because the random selection of the eigen-
value division point is not the optimal point. (at is,
the variance of the model is further reduced relative
to Random Forest, but the bias is further increased
relative to Random Forest. In some cases, the gen-
eralization ability of Extra Trees is better than
Random Forest.

(e basic idea of a support vector machine (SVM) is to
find the separating hyperplane with the largest geometric
separation from each class, while ensuring the correct

classification of the training data. For multiclassification
problems, the main idea of SVM classifier is to combine
multiple binary classifiers to achieve the construction of
multiclassifiers. (e most common construction method is
“one-against-one” (one-against-one). (is method requires
two combinations of classes of training data to build n(n −

1)/2 SVMs, each of which is trained with two different classes
of data, and the final classification result is decided by
“voting.”

In the early days of natural language, the main choice for
data processing was to use One-hot Representation as the
most common word representation method. But this
method has some drawbacks. (e words represented by the
one-hot method are isolated from each other and lack the
connection between words. Besides, as the words in the word
list increase, the dimensionality of thematrix also rises, and a
dimensional disaster occurs. (is requires a word vector
representation that can represent both the word itself and
the semantic connection between words, which is the
emergence of Word2Vec [5]. But Word2Vec is only based
on the dimensionality of words for semantic analysis, ig-
noring the connection between contexts.

(e Doc2Vec algorithm can handle variable-length text
data [6]. It can infer the connection between sentences and
sentences and possesses the ability to analyze the semantics
of context. Two methods also exist in Doc2Vec: distributed
memory and distributed bag of words. Distributed memory
is to predict the probability of a word given the context and
the paragraph vector. Distributed bag of words is to predict
the probability of a set of randomwords in a paragraph given
the paragraph vector. In this paper, the main function of
Doc2Vec is to represent the string in binary code as a vector
form. Compared to Word2Vec, Doc2Vec has a better un-
derstanding of the semantic content of the whole sentence,
which makes the features used in subsequent analysis have a
better classification effect.

2.3. Feature Selection. In this paper, the following properties
of a firmware are used as features.

(1) File size: the size of a firmware file is directly related
to the hardware design and function design. (e
more complex the function is, the larger the cor-
responding firmware will be and vice versa. Mean-
while, the size of a firmware will not exceed the
memory limit of the corresponding embedded de-
vice. (erefore, the size of a firmware file can well
reflect the corresponding device model and manu-
facturer information.

(2) File entropy: since there has not been a standardized
form requirement for writing firmware and there are
some differences in firmware structures among
major firmware vendors, the information contained
in each vendor’s firmware has a specific distribution
and density. (erefore, the knowledge of informa-
tion theory is introduced here, and entropy values
are used as a feature to distinguish vendors. (e
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Shannon entropy formula is used to calculate the
entropy value of each byte.(e entropy value is taken
in the range of 0 to 8. (e larger the value is, the
higher the compression rate of the whole file and the
denser the information is. It also means that the
distribution of bytes in the current firmware is highly
random.

(3) Arithmetic mean of bytes: this value is computed by
summing up all the byte values and then calculating
the average value.

(4) Strings in firmware: visible characters could exist in a
firmware. Currently, if a byte is a digital number or
an English letter, it is called a visible character.
Adjacent visible characters could be regarded as a
string, and these strings are used as a feature of a
firmware. Figure 2 shows examples of strings that
exist in firmware.

2.4. Extra Trees with Doc2Vec. In this paper, a firmware
classifier is proposed by combining the techniques of both
natural language processing and Extra Trees. (is combi-
nation will produce an algorithmwith better accuracy as well
as applicability than the current common algorithms (such
as Decision Tree, Random Forest, and XGBoost) for firm-
ware classification.

Figure 3 shows the main structure of the whole firmware
classifier. (e construction of the dataset can be divided into
two parts. (e first part is for the processing of strings in the
firmware. (e second step is to build the corpus. It consists
of all words in the strings that are extracted from a firmware
file. Words of a string are extracted by a segmentation al-
gorithm. (en the extracted words of a firmware file are
passed into the trained Doc2Vec model to obtain a vector
representation. Finally, the vector representation is com-
bined with other features inputting to the classifier.

3. Evaluation

3.1. Setup. All models in this experiment were evaluated on
the same dataset and conducted on a computer running
Windows 10 operating system. (is computer is equipped
with 16GB memory, 512GB Samsung 981 SSD, and Intel
Core i5-8300H processor. (e prototype is implemented
with Python 3.7, Scikit-learn 0.23.2, Gensim 3.8.3, Pandas
1.3.4, and NumPy 1.18.5.

(e datasets in the experiment are sourced from the
official websites of major manufacturers, so all sources are
regular and secure, ensuring the accuracy and authenticity of
this classification experiment. A total of 1,190 firmware files
were collected from 5 different companies as the dataset in
this experiment. All firmware files are not duplicated, while
some of them with large similarity in versions were elimi-
nated. Table 1 shows the detail of firmware files in each
category.

(e frameworks used in this experiment are Scikit-learn
and Gensim. Scikit-learn is mainly applied to three classical
machine learning models, and Gensim is mainly applied to
Doc2Vec. Table 2 lists the detailed parameter settings for

each model. All parameters not given in Table 2 use the
default parameters of frameworks.

(e fourth feature, the Doc2Vec-processed document
vector, is used to verify the impact on the classification
results. Since the number of firmware from each vendor in
the dataset is uneven, the dataset is created by selecting
firmware from each category by percentage as training
samples. A portion of the data set is taken as the training set,
starting from 10% and going up to 90%. For each training set
extraction, a random sampling method is used to select the
firmware. For each percentage of the training set results, the
average classification accuracy is calculated using the results
of 50 experimental runs as the final results.

3.2. Result. Strings of a firmware that are too short may not
be helpful for recognition. Different experimental results
were obtained by limiting the minimum length of words
separately (Figure 4). For Random Forest, Decision Tree,
XGBoost, SVM, and Extra Trees, it can be seen that the
minimum word lengths for which they have the best ac-
curacy are 3, 6, 6, 2, and 4, respectively. For these classifiers,
these values are also taken in the later experiments. Figure 5
shows how the accuracy of these three classifiers with and
without string features varies with the size of the training
set. Overall, as the training set increases, the accuracy
increases.

(e best classification results for each classifier are given
in Table 3. As a comparison, the results of Binwalk are also
listed in the table. From Table 3, it can be seen that Extra
Trees is the best classifier. Table 4 gives the classification
results of Extra Trees for each vendor firmware. Table 5 gives
the specific classification results of Extra Trees on the test set.
Figure 6 shows the time spent by models.

3.3. Discussion

3.3.1. Accuracy. Figure 5 shows three facts. First, on the
whole, the accuracy of classifiers with Doc2Vec are higher
than that of them without Doc2Vec. (erefore, the intro-
duction of string features has a positive impact on these
classifiers and can significantly improve their accuracy.

Second, the accuracy of each classifier increases grad-
ually with the increase of the number of training sets. In
particular, the accuracy of all three sets of classifiers im-
proves dramatically as the percentage of training sets in-
creases from 10% to 75%. (is experiment uses a dataset
consisting of 1,190 firmware, which has a higher accuracy
compared to the classifier trained from a few firmware files
[7]. If more datasets are collected later, it can be optimis-
tically estimated that the classifier will have better classifi-
cation performance.

(ird, the accuracy of both Extra Trees and Random
Forest is better than that of XGBoost. Random Forest is
slightly less effective than Extra Trees. (us, the best firm-
ware classifier is Extra Trees +Doc2Vec.

Table 4 shows that Extra Trees +Doc2Vec has excellent
classification results in most of the vendors, but the accuracy
for Mercury firmware is slightly lower than other vendors.
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(is may be due to the similarity of Mercury’s classification
features with other vendors. For HiWiFi and MiWiFi, which
have only a small dataset, they have better classification
results in this experiment. Especially, this paper greatly
improves the accuracy of MiWiFi compared with the work
of Lee S [7] where their accuracy is only 66% for MiWiFi.
With the evaluation metrics such as Recall and F1-score, the
accuracy of the classifier proposed in this paper for MiWiFi
possesses no less than other vendors, indicating that the

Extra Trees +Doc2Vec classifier proposed in this paper
possesses a good classification performance.

3.3.2. Time. Figure 6(a) shows that the training time of most
of the models gradually increases as the percentage of the
training set keeps increasing. (is phenomenon is partic-
ularly evident in XGBoost, and it can be seen that the length
of the features also affects the training time of a model to a

Table 2: Model parameters.

Model Framework Parameters
Decision Tree Scikit-learn criterion� “entropy,” random_state� 0
Random Forest Scikit-learn criterion� “entropy,” min_samples_leaf� 2, class_weight� “balanced”
XGBoost Scikit-learn random_state� 27
Extra Trees Scikit-learn Default
SVM Scikit-learn Default
Doc2Vec Gensim min_count� 1, window� 5, size� 10, sample� 1e-3, negative� 5, workers� 4

HiWiFi:
HiWiFi R34 Sysupgrade image images boot openwrt ipq40xx R34 boot stripped elf 00000002 ...

Mercury:
Rar MW54R V1 071219 mw54rpv1 up bin PH Tc Da 0a Wl1K ...

MiWiFi:
HDR1 xiaoqiang version config core version ROM ver option ROM 10 14 channel option CHANNEL ...

Tenda:
PK US 4G300mt V1 01 38 TD BIN Vg Tw Linux Kernel Image r9aQ …

TP-LINK:
PK QL4K TL IPC333K V1 20170904 up yTL IPC333K V1 20170904 PK JW ...

Figure 2: Strings in firmware.

0101
10101
00010

Classifier

File size

File entropy

Arithmetic
mean of bytes

Strings Doc2Vec Document
vector

Features

Firmware

Figure 3: Overview of the proposed model.

Table 1: Dataset.

Manufacturer #of firmware File size (GB)
HiWiFi 30 0.34
Mercury 190 0.61
MiWiFi 31 0.68
Tenda 273 1.17
TP-LINK 666 6.65
Total 1,190 9.45
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certain extent. (e longer the features, the longer the
training time of a model. (e difference between the
remaining four models is not obvious in Figure 6(a), except
for XGBoost, which requires a longer training time. (is
may be due to the structure of the models themselves. (e
classification process of the tree classifier is similar to the
feature selection process, in which the final category

determination is achieved by gradually filtering certain
feature values. (e SVM multiclassifier, on the other hand,
combines multiple binary classifiers to form the final linear
classifier. (e structure of these two classifiers determines
that they do not require much training data to obtain a good
classifier, and the internal structure of the classifier is fixed
after the training is completed, so that the category deter-
mination can be done quickly by judging the values of each
feature value step by step with fixed rules.

Figure 6(b) shows that the classification time of a model
is extremely short, and even the longest time of XGBoost is
within the acceptable range. (e reason for the long judg-
ment time of XGBoost compared with other models is that
the internal structure of XGBoost is more complicated. (is
is because the decision tree only needs to train a tree
classifier, and the SVM only needs to train a few binary
SVMs to achieve the effect of multiple classifications. In
contrast, Random Forest, Extra Trees, and XGBoost need to
train hundreds or even more tree classifiers to achieve the
final firmware classifier, which is the fundamental reason for
the relatively long time. (e experimental results of the
above two figures show that Extra Trees can achieve a more
desirable classification result in a shorter training time, and
the combined classification results show that Extra Trees is
clearly superior to other classifiers.

Table 4: Evaluation result of Extra Trees +Doc2Vec.

Label Precision Recall F1-score
HiWiFi 1.0000 1.0000 1.0000
Mercury 0.9524 0.9091 0.9302
MiWiFi 1.0000 0.8000 0.8889
Tenda 0.9706 1.0000 0.9851
TP-LINK 0.9730 0.9818 0.9774

Table 5: Classification result of Extra Trees +Doc2Vec on the test
set.

Label
Predict

HiWiFi Mercury MiWiFi Tenda TP-LINK Total
HiWiFi 7 0 0 0 0 7
Mercury 0 20 0 0 2 22
MiWiFi 0 0 4 0 1 5
Tenda 0 0 0 33 0 33
TP-LINK 0 1 0 1 108 110

Random Forest + Doc2Vec
Decision Tree + Doc2Vec
XGBoost + Doc2Vec

SVM + Doc2Vec
Extra Trees + Doc2Vec

4 6 8 102
Minimum word length

0.8

0.9

1.0

A
cc

ur
ac

y

Figure 4: Accuracy of classifiers with different minimum word
lengths.

Decision Tree
Decision Tree + Doc2Vec
XGBoost
XGBoost + Doc2Vec
Random Forest
Random Forest + Doc2Vec
SVM
SVM + Doc2Vec
Extra Trees
Extra Trees + Doc2Vec

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

20 40 60 80 1000
Training set size (% from dataset)

Figure 5: Accuracy of classifiers with and without Doc2Vec.

Table 3: Evaluation result.

Model Precision Recall F1-score
Random Forest +Doc2Vec 0.9670 0.9661 0.9648
Decision Tree +Doc2Vec 0.9180 0.9153 0.9162
XGBoost +Doc2Vec 0.9440 0.9435 0.9423
Extra Trees +Doc2Vec 0.9718 0.9718 0.9713
SVM+Doc2Vec 0.9168 0.9153 0.9143
Binwalk 0.9261 0.9261 0.9261
(e bold values show the largest value in the corresponding column. (e
higher the value in each column, the better.
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3.3.3. Error Classification. (e error classification is mainly
distributed among three types of firmware in Mercury,
Tenda, and TP-LINK (Table 5). (e highest percentage of
these errors is the mutual classification error between
Mercury and TP-LINK. Mercury is a sub-brand of TP-
LINK. Some firmware of Mercury is based on improve-
ments made to a particular version of TP-LINK firmware,
which leads to misclassification of the classifier (Figure 7).
Also, the extracted strings are very similar to that of TP-
LINK. It makes the classifier unable to fully learn the string
features.

Another example of error classification is shown in
Table 6, where the first three items are correctly classified
data and the last one is the misclassified data. Compared to
the three correctly classified samples above, the first feature
of the misclassified sample, that is, the file size, is clearly
different from the first three samples. (us, it is inferred that
the cause of the misclassification of this sample is mainly the
obvious difference in file size.

To further verify this inference, the case of TP-LINK
being incorrectly classified as Mercury was sought in the
error case, as shown in Table 7. Firmware files of TP-
LINK are generally quite large. (e file size of the bolded
sample in Table 7 is significantly smaller than the file sizes
of the other samples, being 8.71% of the first one and
8.67% of the second one. (us, it leads to being mis-
classified. (ere are specific models of routers that need
to add or remove some specific features, causing such
firmware files to be too large or too small compared to
similar firmware.

4. Related Work

With the widespread use of IoTdevices, their security is also
a growing concern [8, 9]. Firmware analysis is an important
way to analyze the security of IoT devices, and firmware
classification is a fundamental work for firmware analysis. It
could be done on compressed and unpacked firmware
images, the web system running on a device, or by side-
channel power analysis [10].

4.1. Firmware Classification without Unpacking.
Mkhativari et al. identified firmware supply vendors by using
K-means clustering and unsupervised spectral clustering
[11], and they used 7, 819 uncompressed firmware for de-
tection, ultimately achieving over 90% accuracy.

Costin A et al. addressed the firmware classification
problem by using machine learning and embedded web
interface fingerprinting [12]. (e firmware images are first
distinguished from other types of files, and then the firm-
ware images are classified by the vendor or device type. (e
main classifier used in this paper is random forest. It is
trained through a total of 215 firmware to achieve about 93%
accuracy, but its accuracy in a broader dataset is not clear
due to the small amount of data.

Lee S et al. proposed to build a classifier using a com-
bination of neural network and SVM [7] and collected 480
datasets from 7 companies. (e best classification result for
merchants as classification labels reached 91.7%. However,
the classification results for some firmware, such as the
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20 40 60 80 1000
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Decision Tree
Decision Tree + Doc2Vec
Random Forest
Random Forest + Doc2Vec
XGBoost
XGBoost + Doc2Vec
SVM
SVM + Doc2Vec
Extra Trees
Extra Trees + Doc2Vec

(a)

Decision Tree
Decision Tree + Doc2Vec
Random Forest
Random Forest + Doc2Vec
XGBoost
XGBoost + Doc2Vec
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Extra Trees
Extra Trees + Doc2Vec
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Figure 6: Training/testing time of classifiers with the size of the training/testing set. (a) Training time. (b) Testing time.
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firmware of Xiaomi routers, were not very good. It may be
due to the small number of their datasets and the problem of
feature extraction and selection.

(ese works have good experimental results for their
datasets. But these classifiers lack applicability and cannot be
applied to a wider range of firmware classifications. Also, the
difficulty of dataset collection can be seen from the side by
the limited number of datasets in the early papers, which
cannot make a larger and more diverse prediction.

4.2. Firmware Classification after Unpacking. (ere have
been several works on firmware classification and analysis
[13–15], where they extract binary images from firmware
images to analyze and eventually classify the firmware. (ey
usually used Binwalk [1] to unpack and collect firmware as the
training set, or only for a specific type or vendor of firmware.

Qian et al. proposed a control flow graph-based bug
search engine for firmware images [13]. Control flow graphs
are converted into high-level numeric feature vectors which
are robust to code variation across different architectures.

Zhang et al. proposed a firmware information extractor
based on graph neural networks [16]. For a firmware, its
directories or files are taken as graph nodes, and the rela-
tionship between nodes is considered as edges. (e exper-
imental results show that it outperforms random forest for
the manufacturer, device type, device model, and firmware
version recognition.

4.3. Firmware Classification by Web Footprinting. Dan Yu
et al. proposed a firmware identification method by ana-
lyzing web pages content [17]. (e features of the login page
of a device is extracted to identify the device type and brand
and then use classification and page segmentation to identify

the model and firmware version. ARGUS is a simple and
practical framework to identify device models and firmware
versions [18]. It uses a heuristic fingerprint scheme and
improves efficiency by an average of 156 times compared to
scanning fingerprints of all web files by default.

Web footprinting can be used to improve the accuracy
and time efficiency of identification. However, it can only be
applied to running devices.

5. Conclusion and Future Work

It is hard to classify compressed firmware because there is no
uniform format for firmware. In this paper, we use the
combined model of Doc2Vec and Extra Trees to complete the
firmware classification, which makes up for Binwalk’s
shortage of matching firmware by signatures. (e combined
model is able with greater accuracy to classify the firmware
not yet collected by Binwalk signature library. Natural lan-
guage processing techniques are used to process the features
in firmware. (rough experimental validation, the document
vectors processed by Doc2Vec as features can significantly
improve the accuracy of a classifier, and the final accuracy of
97.18% is achieved by combining Extra Trees.

In the future, we will collect more router firmware and
apply the proposed method to a broader classification of
firmware, including surveillance devices, smart homes, etc.
Moreover, with the expansion of the dataset, deep learning
methods can be used for firmware classification.

Data Availability

(e firmware data used to support the findings of this study
have been deposited in the GitHub repository (https://
github.com/qiujing/firmware).

Table 6: Example of error classification where the file size of a firmware file is too large compared to the others of the same vendor.

File size File entropy Mean of bytes Document vector Label
1,631,139 0.99998 127.63984 [2.15851, −0.35126, . . .] Mercury
1,601,440 0.99998 127.57772 [−0.69567, 1.79206, . . .] Mercury
1,601,591 0.99998 127.51732 [0.08802, 1.29891, . . .] Mercury
2,327,890 0.99999 127.43466 [2.48045, −1.90191, . . .] Mercury

Table 7: Example of error classification where the file size of a firmware file is too small compared to the others of the same vendor.

File size File entropy Mean of bytes Document vector Label
11,914,969 0.99999 127.50059 [1.37727, 1.01095, . . .] TP-LINK
11,980,813 0.99999 127.50492 [1.87083, 1.52759, . . .] TP-LINK
1,038,373 0.99997 127.71125 [1.85315, 1.06753, . . .] TP-LINK

mr808v2.bin: 
Phk Copyright 2005 TP LINK TECHNOLOGIES PU PU 5B P1r 6b yM VxWorks VxWorks5 Oct 20 2008 15 ... 

mr824v2.bin: 
0I Copyright 2005 TP LINK TECHNOLOGIES PU PU 5B P1r 6b yM VxWorks VxWorks5 Oct 21 2008 14 ... 

mr816v1.bin: 
81 Copyright 2005 TP LINK TECHNOLOGIES PU PU 5B P1r 6b xM VxWorks VxWorks5 Oct 20 2008 16 ...

Figure 7: Some Mercury firmware has the same strings as in the TP-LINK firmware leading to misclassifications.
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