
Review Article
Evaluation of Compilers’ Capability of Automatic Vectorization
Based on Source Code Analysis

Jing Ge Feng ,1,2 Ye Ping He,1,2 and Qiu Ming Tao1,2

1Institute of Software Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence should be addressed to Jing Ge Feng; jingge@iscas.ac.cn

Received 31 October 2021; Revised 14 November 2021; Accepted 16 November 2021; Published 30 November 2021

Academic Editor: Fazli Wahid

Copyright © 2021 Jing Ge Feng et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Automatic vectorization is an important technique for compilers to improve the parallelism of programs. With the widespread
usage of SIMD (Single Instruction Multiple Data) extensions in modern processors, automatic vectorization has become a hot
topic in the research of compiler techniques. Accurately evaluating the effectiveness of automatic vectorization in typical
compilers is quite valuable for compiler optimization and design.+is paper evaluates the effectiveness of automatic vectorization,
analyzes the limitation of automatic vectorization and the main causes, and improves the automatic vectorization technology.+is
paper firstly classifies the programs by two main factors: program characteristics and transformation methods. +en, it evaluates
the effectiveness of automatic vectorization in three well-known compilers (GCC, LLVM, and ICC, including their multiple
versions in recent 5 years) through TSVC (Test Suite for Vectorizing Compilers) benchmark. Furthermore, this paper analyzes the
limitation of automatic vectorization based on source code analysis, and introduces the differences between academic research
and engineering practice in automatic vectorization and the main causes, Finally, it gives some suggestions as to how to improve
automatic vectorization capability.

1. Introduction

Automatic vectorization [1] is a method to realize data-level
parallelization by analyzing program characteristics through
a compiler and making full use of SIMD extension in-
structions. Compared with programmers manually writing
SIMD vector programs using in-line assembly, intrinsic
functions [2], and function libraries, it does not require
programmers to deeply understand the functions and fea-
tures of SIMD extension components, thereby reducing the
burden of vector programming. Automatic vectorization has
always been a hot research topic in the field of compiler
performance optimization. Endless demand for computer
performance and the development of SIMD extended in-
struction set promote the advancement of automatic vec-
torization technology. Vectorization technology brings new
challenges. Firstly, SIMD extended instruction set only has
relatively simple vector instructions such as basic operations
and continuous memory access. Compilers can only

vectorize programs with the same types of operations and
regular memory access. +eir main applications are limited
to the multimedia field. With the rapid development of
hardware processor technology, most processors currently
support SIMD extension components, such as Intel’s SSE/
AVX instruction set、NEON [3]/SVE [4] instruction set
introduced by ARM, and RISC-V [5] instruction set in-
troduced by the University of California. With the advent of
more powerful vector instructions such as discontinuous
and reorganization instructions, the compiler can vectorize
more complex programs. +e application of automatic
vectorization technology is extended to complex application
scenarios such as scientific computing, signal processing,
high-performance computing, and artificial intelligence.

+e work of evaluation of automatic vectorization ca-
pability is necessary. Firstly, the main goal of automatic
vectorization evaluation is to find the limitations of auto-
matic vectorization, which is very beneficial to the further
research and development of compilers. +en, in recent

Hindawi
Scientific Programming
Volume 2021, Article ID 3264624, 15 pages
https://doi.org/10.1155/2021/3264624

mailto:jingge@iscas.ac.cn
https://orcid.org/0000-0003-4010-9281
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3264624


years, automatic vectorization has been very active in both
academic research and industrial compiler circle. It is
necessary to evaluate the ability of automatic vectorization
for the latest version of compilers. In recent years, automatic
vectorization research has developed rapidly and there have
been more groundbreaking research works. For example, in
2017, GaoWei [6] first put forward the concept of automatic
vectorization parallelism. According to the number of
parallel programs contained in the program, automatic
vectorization parallel method was dynamically selected. +is
provided a new solution for the research of automatic
vectorization. In 2018, Charith Mendis [7] proposed a
mathematical representation model of the cost of automatic
vectorization describing automatic vectorization as an in-
teger linear programming problem.+is provided a new idea
for solving the problem of automatic vectorization grouping.
In 2019, they abstracted automatic vectorization as a Markov
decision process [8] and used the method of imitation
learning to solve the group selection problem of automatic
vectorization, which effectively improved the performance
of automatic vectorization. Automatic vectorization sup-
ported by industrial compilers technology is also advanced
by leaps and bounds. For example, in 2017, GCC supported
an improved method of loop distribution combined with
automatic vectorization. In the same year, LLVM developers
proposed a Vectorization Plan (Vplan), which used an
evaluation cost model to guide automatic vectorization and
loop-related optimizations. Finally, there were certain dif-
ferences in the application fields of different compilers. +e
automatic vectorization evaluation of specific compilers has
practical application. For example, GCC is a standard
compiler for Unix-like operating systems. LLVM is in ac-
ademic research and there are many applications in domain
and program-related analysis. LLVM has a wide range of
applications in both academia and engineering. In academia,
a lot of research work is based on the LLVM compiler source
code to achieve more functions, such as PSLP, LSLP, SN-
SLP, and other optimization methods. In the engineering
world, many processor manufacturers are based on the
LLVM compiler for secondary development, such as AMD
and Huawei.

+e researchers evaluated and analyzed the impact of
different compilers, different SIMD extension instruction
sets, and different data types on automatic vectorization by
manually modifying the test program comparing the per-
formance of automatic vectorization to infer the limitations
of automatic vectorization. In 2012, S. Malek et al. [9] used
TSVC, PACT, and Media Bench 2 to compare ICC (version
12.0), XLC (version 11.01), and GCC (version 4.7.0) auto-
matic vectorization capabilities that have been evaluated.
Test the speedup ratio of automatic vectorization to program
performance, manually rewrite the test program, and
compare it with automatic vectorization to optimize per-
formance. Inferring the limitations of automatic vectori-
zation, it is found that there is a big gap between automatic
vectorization and manual vectorization in improving pro-
gram performance. In 2015, Zhao Bo et al. [10] used NPB
and SPEC CPU 2006 test programs to evaluate different
SIMD extensions.+e impact of instruction set on automatic

vectorization. It is found that the longer the parallel length of
SIMD extended instruction set, the greater the speedup of
automatic vectorization. In 2017, Moldavanova et al. [11]
used TSVC to evaluate the impact of different data-type
programs on automatic vectorization and found that au-
tomatic vectorization has different effects. +e performance
impact of data type programs was different. +e most
compilers can vectorize fp type of codes much better than int
type of code codes. With the bit width of codes longer, the
performance improvement is more significant.

Researchers use different types of programs to evaluate
the ability of automatic vectorization. In 2013, Li Chunjiang
et al. [12] used SPEC CPU 2006 and SPEC OMPM 2001
combined with the method of manually writing test pro-
grams to automatically vector ICC (version 11.1), PGI
(version 11.8), and GCC (version 4.6.1). In 2015, Mahesh
Rajan et al. [13] used TSVC, LCALS, and SNL SIERRA test
suites for CRAY (version 5.2.40), ICC (version 15.0.2), and
GCC (version 4.9.2). +e automatic vectorization ability of
PARSEC was evaluated. +e speedup ratio of automatic
vectorization to the program performance improvement was
tested, and the automatic vectorization ability was evaluated.
In 2017, Yazdanpanah et al. [14] used the PARSEC [15] test
program to evaluate and analyze automatic vectorization
ability and found that ICC (version 16.0) and GCC (version
5.3) did not automatically vectorize most of the hot pro-
grams in PARSEC test program. In 2018, Amiri et al. [16]
used the test program composed of the core function of
multiplication matrix with manual and automatic vectori-
zation capabilities, and they are evaluated. +ey found that
the performance of using internal functions in different
compilers to achieve vectorization is the same, while the
performance of automatic vectorization using different
compilers is quite different. +e abovementioned automatic
vectorization evaluation work is not combined with the
compiler source code and in-depth analysis of the limita-
tions of automatic vectorization, for example, lack of
analysis of the theory and implementation of the automatic
vectorization method. Previous evaluation work is “black
box test.” +ese methods are limited by the selected test
program, cannot fully accurately evaluate the limitations of
automatic vectorization, and cannot determine the essential
reasons for limitations.

+is paper focuses on automatic vectorization eval-
uation and researches the following questions: What is the
optimization capability of automatic vectorization tech-
nology proposed and implemented by academia and in-
dustry? What are the limitations? What are the essential
reasons for these limitations? +e technical imple-
mentation of industrial compilers and the difference
between academic research and optimization direction of
subsequent automatic vectorization. +ese works con-
tribute to the further development of automatic vecto-
rization research and applications, and lay the foundation
for improving the next generation of automatic vectori-
zation compilation technology.

Compared with the existing automatic vectorization
evaluation work, our paper is different in the following two
aspects:

2 Scientific Programming



(1) +is paper adopts the automatic vectorization
evaluation method based on source code analysis of
compilers and proposes a new idea for the estab-
lishment of an automatic vectorization standard
evaluation system. +e source code analysis method
based on compiler can relatively comprehensively
explore the limitations of automatic vectorization
and determine the essential reason for the limitation.
Based on this, this paper also analyzes and thinks
about the differences in automatic vectorization
between industry and academia and the reasons for
the differences.

(2) Previous work mainly focused on evaluating the
impact of different compilers, different hardware
platforms, different SIMD, extended instruction sets,
and different data types on automatic vectorization.
+is paper uses TSVC test suite to evaluate the
impact of the same compiler in the past 5 years.
Automatic vectorization evaluation and analysis
work for each historical version. Unexpectedly for
some TSVC programs, the automatic vectorization
capability of the latest version of compilers is not as
good as the historical version.

Based on the evaluation work of automatic vectorization,
this paper found that the main problem of automatic vec-
torization is that the compiler lacks the ability to acquire and
analyze important information related to automatic vecto-
rization, such as dependency information, discontinuous
memory access information, and so on. +e inspiration for
this is that fully acquiring and effectively analyzing infor-
mation related to automatic vectorization is the key to
automatic vectorization.

+e first section of this paper introduces the current
research status of automatic vectorization. +e second
section introduces the evaluation and analysis of auto-
matic vectorization capabilities based on source code
analysis. Firstly, programs are classified according to the
main factors that affect automatic vectorization (program
features and transformation methods). +en, they eval-
uate the automatic vectorization ability of each type of
program and use TSVC to evaluate the automatic vec-
torization ability of multiple different historical versions
of GCC, LLVM, and ICC compilers. Finally, they analyze
the source code of compilers in depth, clarify the limi-
tations of automatic vectorization, discuss the differences
between industrial compiler implementation technology
and academic research, and give optimization suggestions
for automatic vectorization. Section 3 summarizes the full
paper.

2. Academic Research of
Automatic Vectorization

Automatic vectorization refers to the process of converting a
scalar program into vector program by compiler under the
constraints of the original program semantics and the
support features of SIMD extension components. Automatic
vectorization is mainly affected by the following four factors:

(1) Semantic analysis and transformation
Semantic analysis and transformation refers to how
to analyze the code for automatic vectorization to
ensure that the conversion does not change the se-
mantics of the original program. Automatic vecto-
rization is related to the compiler’s semantic analysis
and transformation capabilities. When the compiler
is not sure whether the program transformation will
change the semantics of the original program, it
adopts a conservative strategy not to perform the
transformation. +e stronger the compiler’s se-
mantic analysis and transformation capabilities, the
greater the possibility of automatic vectorization.

(2) Group analysis and transformation
Vectorization grouping is the process of converting
multiple scalar data into one vector data, which
affects whether it can be automatically vectorized
and the benefits. Semantic analysis is the foundation
and precondition of grouping analysis.

(3) Analysis and transformation of processor-related
characteristics
Automatic vectorization is closely related to pro-
cessor characteristics. In order to ensure the normal
operation of program, the compiler cannot generate
SIMD extension instructions that the processor does
not support. In order to effectively improve per-
formance, the compiler generates efficient vector
instructions as much as possible [17].

(4) Evaluation analysis of performance
Automatic vectorization is related to compiler per-
formance evaluation and analysis, and performance
evaluation ultimately determines whether the pro-
gram implements automatic vectorization.

2.1. Semantic Analysis and Transformation. +e core of se-
mantic analysis for automatic vectorization is dependency
analysis. Operations that include dependencies cannot be
stored in the same vector register, as the semantics of the
original program will be changed. Dependencies are wide-
spread in programs, when two different the operation ac-
cesses the same data. And, one of the operations is writing
data; then, these two operations have dependencies.
Sometimes, it is difficult to determine whether there is a
dependency between statements in a program, such as a
program that includes nonlinear array access and pointer
indexing. Usually, the compiler uses static dependency
analysis method. However, the dependencies of some pro-
grams can only be determined at runtime, and the depen-
dencies of these programs cannot be completely determined
only through static compilation analysis.

2.2. Group Analysis and Transformation. Grouping analysis
and transformation refers to saving multiple scalar opera-
tions to the same vector register for parallel execution. Some
logically complex programs contain multiple levels of nested

Scientific Programming 3



loops. +e compiler sometimes has a variety of vectorization
grouping methods for these programs. +e automatic vec-
torization grouping strategy affects the vectorization and its
benefits. Gao Wei et al. [1] from the basic block level, loop
level, and function-level granularity considered the grouping
problem of programs in automatic vectorization.

Basic block-level automatic vectorization is a grouping
method to find the vector parallelism of sentences in basic
blocks. In 2000, Larsen [18] proposed SLP (Superword Level
Parallelism) basic block-level automatic vectorization
method, which was based on continuous memory access
operations and combined the definition/use or use/defini-
tion chain to find multiple isomorphic sentences that can be
executed in parallel. +e researchers subsequently improved
SLP method based on the expansion of seed [19], the se-
lection of optimization chain [20], or based on global search
method to optimize the grouping strategy and improve the
performance of automatic vectorization. Researchers also
expand the scope of use of SLP based on auxiliary program
transformation [21–25], enabling SLP to realize automatic
vectors across basic block sentence changes.

Loop-based automatic vectorization grouping is a
method to find the vectorization parallel of sentences be-
tween loop iterations. Allen R and Kennedy et al. [26]
proposed the loop-based automatic vectorization method.
+is method was based on dependency analysis and converts
multiple scalar sentences that do not form a dependency
loop between different iterations into vector sentences.
Follow-up researchers have extended loop-based automatic
vectorization to support outer loop vectorization [27] and
multi-level nested loop optimal group selection [28].

Function-level automatic vectorization refers to the
method of identifying data-level parallelism in the program
from function-level granularity [29]. From the perspective of
analysis object, the program structure of a function is
sometimes complicated, for example, the function can
contain sequential execution statements, branch decision
statements and loop statements. +is brings uncertainty to
compiler program analysis.

Loops contain basic blocks. Basic block-level automatic
vectorization methods can solve the automatic vectorization
problem of loops. Functions can contain loops and basic
blocks. Basic block-level automatic vectorization and loop-
level automatic vectorization can be applied to solve the
problems of automatic vector of functions.

2.3. Analysis and Transformation of Processor Related
Characteristics. +e essence of automatic vectorization is to
use parallel features of SIMD extension components to
improve performance. Automatic vectorization is closely
related to the parallel features of SIMD extension compo-
nents and memory access. Due to the limitations of SIMD
extension components, the compiler cannot directly use
SIMD extension instructions to achieve automatic vectori-
zation for some programs.

In terms of computing parallel feature support, most
processors only support the same type of computing
parallel vector instructions. +e compiler cannot directly

use SIMD extension instructions to automatically vectorize
multiple statements with different operation types. How-
ever in reality there are a large number of programs with
different operation types, such as complex number
operations.

In terms of memory access parallel feature support
most processors only support aligned/contiguous vector
memory access instructions or even support non-
aligned/non-contiguous vector memory access instruc-
tions. However, the delay of non-aligned/non-contigu-
ous vector memory access instructions is relatively large.
Non-aligned memory access is one of the problems
encountered in program vectorization process. Due to
the large delay of non-aligned vector memory access
instructions, if you use non-aligned memory direct
vector access instructions, the vectorization of programs
that include non-aligned memory accesses, will reduce
the benefits of automatic vectorization [30] At present
the problem of non-aligned automatic vectorization is
more fully studied. In terms of analyzing alignment
information, the compiler mainly uses static analysis
methods. However, sometimes it is not possible to de-
termine whether the program is aligned or not through
static analysis [31]alone. Researchers used multiple
versions [32] to solve this problem. +e compiler is not
sure whether it is aligned access or has been determined
to be non-aligned when aligned access, data arrangement
methods such as shifting and reorganization can be used
to reduce non-aligned memory access [33–35]. Non-
contiguous memory access is another problem en-
countered in program vectorization. Due to non-con-
tiguous vector memory access instructions have a large
delay.

2.4. X ∈ R
Iauthorl1

×Ipaperl2
×Ivenuel3

×Iterml4 Evaluation Analysis of
Performance. +e compiler uses the performance cost
model to determine whether to vectorize. +e perfor-
mance cost model needs to be as accurate as possible to
ensure that the entire program gains benefits from vector
execution. It also needs to be relatively simple to reduce
the compiler optimization time. Especially with the rapid
growth of amount of program code, fast performance
evaluation models are becoming more and more im-
portant. +e accuracy of performance cost model and the
speed of algorithm are often contradictory. +e more
accurate the performance cost model, the multiple factors
of the processor need to be considered. +is leads to an
increase in the algorithm complexity of performance
evaluation model. Most automatic vectorization studies
use methods based on instruction delay statistics. +ere
are also researchers who comprehensively consider
memory access alignment, memory access continuity, and
other factors to improve the performance evaluation cost
model [36].

In addition, there are many researches on the use of
SIMD to accelerate dynamic binary translation; for example,
Yu Ping applies SLP to dynamic binary translation to im-
prove performance [23].

4 Scientific Programming



3. AutomaticVectorizationEvaluationBasedon
Source Code Analysis

+is paper uses TSVC test suite to evaluate the ability of
automatic vectorization, and combines source code analysis
to explore the limitations of automatic vectorization and the
essential reasons for the limitations.

3.1. Program Classification for Automatic Vectorization Ca-
pability Evaluation. Compilers have different automatic
vectorization processing capabilities for different types of
programs. +e more complex the dependencies of program,
the more difficult it is for compilers to automatically vec-
torize. Dependencies are the key factor affecting automatic
vectorization. Programs with simple dependencies are easier
to achieve automatic vectorization. In order to specifically
evaluate the compiler’s automatic vectorization processing
capabilities for different types of programs, this paper
classifies TSVC programs based on dependencies and refers
to the classification information of the original TSVC
program. Table 1 is the classification of automatic vectori-
zation programs.+e table includes typical feature programs
(Feature) and program transformation methods (Method).
Feature is classified according to program dependency
characteristics and there are programs that hinder automatic
vectorization of dependencies. We found that these partial
programs can change their dependencies through program
transformation and then can realize automatic vectorization.
In Method this paper focuses on these programs and cat-
egorizes them according to transformation method that can
change the dependency.

In Feature, this paper categorizes programs according to
typical characteristics that depend on and influence its
analysis factors. Among them it is easy to realize automatic
vectorization for programs that do not contain inter-itera-
tion dependencies (No dependency). Programs containing
branch decision statements (Control flow) and programs
containing unconditional jump statements (Goto) are easy
to introduce control dependencies to the program. De-
pendency analysis brings uncertainty. Programs that include
cross-function calls (Function) and programs that include
aliases (Alias) involve inter-procedural and alias analysis and
transformation methods, which increase the difficulty of
determining dependencies. Programs that include reduction
operations (Reduction) and programs that contain induc-
tion variables (Induction) often introduce dependencies that
hinder automatic vectorization. For simulating operations,
programs that include indirect array access (Indirect
addressing) bring uncertainty to the dependency analysis of
fetched data. Including reverse order Array access programs
(Loop reversal) need to perform dependency analysis based
on the arrangement of reverse order accesses. Programs that
contain continuous memory access within the same loop
(Rerolling) involve automatic vectorization parallel and
related dependency analysis within and between loop iter-
ations. +is paper separately evaluates other programs that
contain dependencies but do not contain dependent loop
statements (Regular Dependency).

In Method this paper classifies programs that contain
dependencies that hinder automatic vectorization according
to the program transformation method. Node splitting
changes the dependencies of the program by splitting the
variables in statement. Loop distribution based on the
statements in the loop body, splitting a loop into multiple
loops is helpful to realize automatic vectorization of loops
that do not contain dependency loops. Loop interchanging
can change the dependence of inner and outer loops. Loop
peeling splits a loop into multiple loops based on different
iteration orders, which helps to realize automatic vectori-
zation of loops that do not contain dependent loop rela-
tionships. Scalar expansion is by expanding the scalar. It is
an array representation that changes the dependencies
contained in programs. Statement reordering changes the
dependency between statements by changing the execution
order of different statements. Different types can record the
same program containing multiple types of features at the
same time.

3.2. Automatic Vectorization Evaluation. +is paper uses
TSVC to evaluate the ability of automatic vectorization.
TSVCwas developed by Callahan, Dongarra and Levine, and
was later extended by Maleki et al. [9] to evaluate the test
suite of automatic vectorization capabilities. +is paper uses
TSVC version evaluation extended by Maleki et al. auto-
matic vectorization capability. TSVC’s program is simple
and easy to analyze including 151 test programs. It contains
nested loops in the form of different typical operations and
memory access, such as branch determination, uncondi-
tional jump, indirect array access, its core data type is single-
precision floating point. TSVC is often used in academia to
evaluate the ability of automatic vectorization. In recent
years, the open source community of industrial compilers
has also paid special attention to it. TSVC has become the
benchmark test set of LLVM. At GCC Cauldron Summit in
2015, Sebastian Pop [37] proposed to evaluate the automatic
vectorization capability of GCC based on TSVC and im-
prove it.

+is paper chooses GCC, LLVM, and ICC compilers for
evaluation, mainly for the following 3 reasons:

(1) GCC, LLVM, and ICC have all supported the au-
tomatic vectorization function [38–41], which sup-
ports the automatic vectorization of programs
including reduction statements, branch decision
statements, induction variables and non-contiguous
memory access programs. GCC, LLVM and ICC is in
academic research and there are many applications
in domain and program-related analysis, such as
performance and security domain.

(2) In recent years, the automatic vectorization capa-
bilities of GCC, LLVM, and ICC have developed
rapidly. In terms of GCC’s support for automatic
vectorization, in 2015 GCC supported automatic
vectorization of inductive variable assignment pro-
cedures in conditional branches [42]. In 2016 GCC
supported automatic vectorization of loop epilogues

Scientific Programming 5



[43]. In 2017, GCC supported an improved method
of automatic vectorization based on alias informa-
tion to break the loop of program dependence [44].
In 2018, GCC supported a vectorization factor se-
lection method based on an estimated cost model
[45]. In 2019, GCC supported SLP method based on
mask loading and memory access [46]. LLVM’s
automatic vectorization technology is also devel-
oping rapidly. In 2015 LLVM supported the auto-
matic vectorization method based on loop
distribution [47]. LLVM developed in 2017 the au-
thor proposed the Vplan, which used the cost model
to comprehensively guide cycle-related transfor-
mations and automatic vectorization [48]. ICC has
mainly improved the support for AVX512 instruc-
tion set and OpenMP [49] in recent years.

(3) GCC, LLVM and ICC are widely used in reality.
GCC and LLVM are open source compilers, and
their corresponding open source communities are
the most active compiler communities. ICC is a
commercial compiler developed by Intel, which is
recognized as automatic compiler with strong vec-
torization ability. We searched international paper
databases such as ACM, IEEE, Elsevier and Springer,
and domestic databases such as Wanfang and
HowNet, finally obtained more than 100 papers
directly related to automatic vectorization. Statistics
on the use of specific compiler development or ex-
perimental comparison in these papers are shown in
Table 2. +e first line indicates the compiler, the
second line indicates the creator of corresponding
compiler, and the third line indicates the number of
papers that use corresponding compiler. Among
them, ICC, GCC, and LLVM are used in the field of
automatic vectorization research.

+is paper evaluates and tests the historical versions of
GCC, LLVM, and ICC in the past 5 years. +e version and

compilation option information of specific compiler is
shown in Table 3. +is paper compares the performance of
test program under the conditions of turning on and turning
off automatic vectorization optimization option. +e com-
pilers all use the default O3 optimization option c99 com-
pilation standard, and use Sse4.2 instruction set. Baseline
options are the benchmark compilation optimization op-
tions after the compiler turns off automatic vectorization.
+e vector optimization compilation options (Vectorization
options) enable the automatic option of the vectorization
function. Since GCC’s automatic vectorization is closely
related to the optimization of induction variables and array
element conversion. GCC’s compilation options add in-
duction variable optimization (Fivopts) and vector array
conversion optimization (Flax-vector-conversions). +e
core of TSVC main data type of program is single-precision
floating-point. GCC is conservative in the optimization of
floating-point operations and needs to turn on the unsafe-
math-optimizations compilation option.

+e processor model of the computer used in the ex-
periment is Intel i7-4790, its main frequency is 3.2GHz, it
supports AVX2, AVX1 and SSE vector instruction set, the
vector register of AVX2 is 256 bits long and can handle 4
doubles or 8 floats at the same time. AVX1 and SSE have a
128 bit vector register that can handle two doubles or four
floats simultaneously. L1D is 32KB (8way, 64 B/line), L2 is
256KB (8 way, 64 B/line), L3 is 8MB (shared memory),
memory is 20GB, and the operating system is Ubuntu16.04,
glibc2.8. +e specific test process is as follows: Based on the
compilation and optimization options of baseline options

Table 1: Automatic vectorization classification description.

Group Type Description

Feature

Control flow Contain if statements
Function Contain function statements
Goto Contain goto statements

Indirect addressing Contain indirect addressing statements
Induction Contain induction statements

No dependency +ere is no dependency which prevent automatic vectorization
Loop reversal Contain reversal memory access in a loop
Reduction Contain reduction statements

Regular dependency Contain regular dependency in a loop
Rerolling Rerolling
Alias Contain aliasing statements

Symbolic resolution Contain variables which prevent automatic vectorization

Method

Node splitting Node splitting
Loop distribution Loop distribution
Loop interchanging Loop interchanging

Loop peeling Loop peeling
Scalar expansion Scalar expansion

Statement reordering Statement reordering

Table 2: Application of compilers in Automatic vectorization.

Compiler ICC GCC LLVM OPEN64 SW-
VEC XL SUIF

Creator Intel GNU Illinois SGI SW IBM Stanford
Numbers 33 27 20 16 13 6 6

6 Scientific Programming



and Vectorization options respectively, TSVC program is
compiled using GCC, LLVM, and ICC. Test the compilation
and execution time respectively, run 10 times, and take the
arithmetic average. +en use GNU Objdump tool to print
the program and compile the optimized assembler. By an-
alyzing the assembly program, it is determined whether the
program realizes automatic vectorization.

3.2.1. Compile Time Evaluation. +is paper evaluates the
time taken by compilers to compile TSVC. Figure 1 is a
statistical graph of the time for GCC, LLVM, and ICC to
compile TSVC with the automatic vectorization option
turned on and off. It reflects the compilation and optimi-
zation speed of TSVC programs for a specific version of
compilers, where the horizontal axis represents compilers,
and the vertical axis represents the compilation time in
seconds. In general, automatic vectorization increases the
compilation time. As shown in Figure 1(a), in 5 versions of
GCC as GCC version is updated, the compilation and op-
timization time is getting longer and longer, and the impact
of automatic vectorization on the overall compilation time of
GCC is gradually reduced. Especially in the latest version 9,
the compilation time introduced by automatic vectorization
only accounts for 4.5% of total compilation time. Among the
5 versions of LLVM, as shown in Figure 1(b), with the update
of LLVM version, the compilation of LLVM time has in-
creased significantly. Especially, the latest version 9 of
LLVM, its compilation optimization time is 1.45 times that
of LLVM5 version. Among the 5 versions of ICC, as shown
in Figure 1(c), with the update of ICC version, the com-
pilation time of ICC fluctuates. Among them, the compi-
lation time of ICC16 is the longest, and the compilation time
of ICC17 is the shortest. As shown in Figure 1(d), we
compare the latest versions of GCC, LLVM, and ICC. +e
total compilation time of LLVM and the compilation time
introduced by automatic vectorization are the longest. +e
total compilation time of GCC and the compilation time
introduced by automatic vectorization are the shortest.

3.2.2. Running Time Evaluation. +is paper evaluates the
running time of TSVC. Figure 2 is a statistical chart of the
program running time, which reflects the impact of auto-
matic vectorization on overall performance of the TSVC
program. +e horizontal axis in Figure 2 represents the
compiler version, and the vertical axis represents TSVC after
automatic vectorization. +e total running time is in sec-
onds. Figure 2(a) shows the automatic vectorization opti-
mization performance of five historical versions of GCC.

After GCC turns on automatic vectorization, it can signif-
icantly improve the performance of TSVC. With version
update, the running time of TSVC shows a slight decrease.
Figure 2(b) shows the automatic vectorization performance
of 5 historical versions of LLVM. After LLVM turns on the
automatic vectorization, the performance of TSVC can be
effectively improved as the version is updated. +e running
time of TSVC program fluctuates, and its latest version 9 is
not the best for TSVC optimization ability of its historical
version. Figure 2(c) shows the automatic vectorization
performance of 5 historical versions of ICC. ICC can sig-
nificantly improve the performance of TSVC with the up-
date of version after turning on automatic vectorization.+e
running time of TSVC fluctuates, and its latest version 19’s
optimization ability for TSVC is not the best in historical
version. Figure 2(d) is the performance comparison chart of
the latest version of GCC, LLVM, and ICC. Automatic
vectorization is turned on and off under the condition of
compilation options, the performance of the program after
ICC compilation and optimization is the best, and the
performance after LLVM compilation and optimization is
the worst. Automatic vectorization makes the performance
of GCC and ICC compilers significantly improved and
makes LLVM compilation. +e performance of the program
is only slightly improved. It can be seen that the automatic
vectorization ability of GCC and ICC is relatively strong,
while the automatic vectorization ability of LLVM is rela-
tively weak.

We are based on the same type of compiler (GCC,
LLVM,or ICC) using different historical versions to compile
TSVC with the automatic vectorization option turned on
and off.Figure 3is a statistical diagram of the optimal per-
formance of TSVC programs. +e horizontal axis represents
different versions of compilers with the automatic vectori-
zation option turned on and off, and the vertical axis rep-
resents the number of programs that compile TSVC with the
corresponding version to obtain the optimal performance. If
the optimal performance of the program exists in multiple
versions at the same time, then record the program in these
versions at the same time. We found that:Usethe latest
version of GCC, LLVM,and ICC to compile TSVC with
automatic vectorization turned on,andthe performance of
most programs in TSVC is not the best in historical versions.
At present, the latest GCC9, LLVM9,and ICC19 in the
historical version correspondsto the same type of compi-
ler,andthe number of compiled TSVC optimal performance
programs accounted for 33.8%, 13.2%,and 16.6% respec-
tively. GCC9 compiled TSVC S115, S277, and S315 com-
pared with the performance of the best compiler of its

Table 3: Compiler’s versions and flags used in the evaluation.

Compiler GCC LLVM ICC
Version 9.2.0,8.3.0,7.4.0,6.5.0,5.5.0 9.0.0,8.0.0,7.0.1,6.0.1,5.0.1 19.0.1,18.0.5,17.0.4,16.0.4,15.0.6

Baseline options
-std� c99 -O3 -fivopts -flax-vector-conversions
-funsafe-math-optimizations -msse4.2 -fno-tree-

vectorize

-std� c99 -O3 -msse4.2 -fno-
vectorize -std� c99 -O3 -msse4.2 -no-vec

Vectorization
options

-std� c99 -O3 -fivopts -flax-vector-conversions
-funsafe-math-optimizations -msse4.2 -std� c99 -O3 -msse4.2 -std� c99 -O3 -msse4.2

Scientific Programming 7



historical version, and the performance of program has
decreased from 37.3% to 72.2%. LLVM9 compiles the S1111
and S442 programs of TSVC, and the performance of the

best compiler of LLVM is reduced by 40.5% and 60.7%,
respectively. ICC19 compiles the S252 and S4114 programs
of TSVC, and the performance of the optimal compiler in

0

0.5

1

1.5

GCC5 GCC6 GCC7 GCC8 GCC9

vect
not vect

(a)

0

2

1

3

4

LLVM5 LLVM6 LLVM7 LLVM8 LLVM9

vect
not vect

(b)

0

1

2

3

ICC15 ICC16 ICC17 ICC18 ICC19

vect
not vect

(c)

0

1

2

4

3

GCC9 LLVM9 ICC19

vect
not vect

(d)

Figure 1: Compare the compilation time in TSVC. (a) Compilation time in TSVC by using GCC. (b) Compilation time in TSVC by using
LLVM. (c) Compilation time in TSVC by using ICC. (d) Compilation time in TSVC by using new compilers.

0

500

1000

1500

2000

GCC5 GCC6 GCC7 GCC8 GCC9

vect
not vect

(a)

1400

1500

1600

1700

1800

LLVM5 LLVM6 LLVM7 LLVM8 LLVM9

vect
not vect

(b)

0

500

1000

1500

ICC15 ICC16 ICC17 ICC18 ICC19

vect
not vect

(c)

0

500

1000

2000

1500

GCC9 LLVM9 ICC19

vect
not vect

(d)

Figure 2: : Execution time of TSVC. (a) Execution time of TSVC. (b) Execution time of TSVC. (c) Execution time of TSVC. (d) Execution
time of TSVC.

8 Scientific Programming



historical version of ICC drops by 60.4% and
31.5%,respectively.

3.2.3. Statistical Evaluation for the Number of Automatic
Vectorization Programs. +is paper counts the number of
programs inwhichdifferent compilers implement auto-
matic vectorization of TSVC test suites.Figure 4is a sta-
tistical diagram for the number of TSVC programs that
can be automatically vectorized by compilers.+e hori-
zontal axis represents the version of compiler and the
vertical axis represents the number of programs that the
corresponding compiler can vectorize TSVC successfully.
ICC can vectorize the most programs in TSVC success-
fully, and it is much better than GCC and LLVM. +is
paper counts the number of automatic vectorization
programs of the same type of compiler and finds that in
different versions of GCC as the version is updated, GCC
can vectorize more and more TSVCs. LLVM and ICC are
in their respective versions,andthe number of vectorized
programs fluctuates. +e number of vectorized TSVC
programs of the latest version of LLVM and ICC is not the
most in its historical version. We found historical com-
pilation by analyzing compiler source code and viewing
the log information of compiling TSVC. +e main reasons
why the latest version of compilers can be vectorized are:
(1) +e improvement of the automatic vectorization
evaluation cost model;the automatic vectorization eval-
uation model of the previous historical version of com-
pilers is notveryaccurate. Sometimes,although it can be
vectorized for a specific program, its performance drops
instead. For example, such as S352 program, ICC15 and
ICC16 can vectorize S352 successfully, but performance of

S352 degrades. +e automatic vectorization evaluation
model of ICC17 is further improved, so that the compiler
does not automatically vectorize S352. (2) +e update of
compilers optimization method interferes with the pro-
cessing capability of automatic vectorization for specific
programs, such as the S252 program. ICC17 can realize
automatic vectorization of the program and can signifi-
cantly improve the performance of programs. However,
ICC18 and ICC19 do not implement automatic vectori-
zation for this program. We use the compilation option
Qopt-report to view the compilation log information and
find that ICC19 believes that S252 program has a de-
pendency that prevents automatic vectorization, and thus
does not implement automatic vectorization.

+is paper conducts automatic vectorization evaluation for
different types of programs in TSVC. Table 4 is a statistical table
of the automatic vectorization speedup ratio of TSVC compiled
with GCC9, LLVM9, and ICC19. It reflects the ability of au-
tomatic vectorization to process specific types of programs.+e
numbers column in the table indicates the number of specific

0

20

40

60

G
CC

5-
…

G
CC

-5
-…

G
CC

6-
…

G
CC

6-
…

G
CC

7-
…

G
CC

7-
…

G
CC

8-
…

G
CC

8-
…

G
CC

9-
…

G
CC

9-
…

(a)

0

20

40

60

II
vm

5-
…

II
vm

5-
…

II
vm

6-
…

II
vm

6-
…

II
vm

7-
…

II
vm

7-
…

II
vm

8-
…

II
vm

8-
…

II
vm

9-
…

II
vm

9-
…

(b)

0

20
10

40
30

50

IC
C1

5-
…

IC
C1

5-
…

IC
C1

6-
…

IC
C1

6-
…

IC
C1

7-
…

IC
C1

7-
…

IC
C1

8-
…

IC
C1

8-
…

IC
C1

9-
…

IC
C1

9-
…

(c)

Figure 3: Number of best performance programs in TSVC, which is compiled by compilers in multiple versions. (a) Number of best
performance programs in TSVC. (b) Number of best performance programs in TSVC, which is compiled by GCC, which is compiled by
LLVM. (c) Number of best performance programs in TSVC, which is compiled by ICC.

0

20

40

60

80

100

120

G
CC

5

G
CC

6

G
CC

7

G
CC

8

G
CC

9

LL
V

M
5

LL
V

M
6

LL
V

M
7

LL
V

M
8

LL
V

M
9

IC
C1

5

IC
C1

6

IC
C1

7

IC
C1

8

IC
C1

9

Figure 4: Number of automatic vectorization programs in TSVC.

Scientific Programming 9



types of programs in TSVC. +e data on the left of the vertical
bararethe number of automatic vectorization programs
implemented by compilers, and the data on the right of the
vertical bar is the average speedup ratio of automatic vectori-
zation. In general, once the programs in TSVC realize automatic
vectorization, the performance improvement is significant. ICC
has the strongest automatic vectorization ability, and the
number of test programs that can be vectorized accounts for the
entire TSVC 64.9% of the program, the next is GCC. GCC can
vectorize 43.7% of the test programs in TSVC. +e automatic
vectorization ability of LLVM isrelativelyweak under this test
condition and can only vectorize 32.4% of the test programs in
TSVC. +e compiler has a strong ability to automatically
vectorize programs that contain simple dependencies. However,
the automatic vectorization processing capability ofrelatively-
complex programs including conditional/unconditional branch
jump statements and indirect array access is insufficient.

3.3. Automatic Vectorization Analysis. +e previous section
introduced the experimental results of using TSVC to evaluate
automatic vectorization. +is section focuses on programs with
poor automatic vectorization performance, combined with the
compiler source code to analyze the limitations of automatic
vectorization and the essential reasons for limitations.
According to the program classification method introduced in
Section 2.1, they are introduced from two aspects: typical
programs and program transformations.

3.3.1. Typical Program. Since the compiler has a serious lack
of automatic vectorization capabilities for branch decision
statements and indirect array access programs, this paper
focuses on the analysis of these two types of programs.

(1) Automatic vectorization of branch decision senten-
ces: Branch decision statements often appear in programs.
TSVC has 16 test programs that contain branch decision
statements. GCC9 and LLVM9 can only vectorize 2 and 1
test programs of this type of program,respectively, and
ICC19 can vectorize 13 of them. As shown inFigure 5, taking
the S271 program of TSVC as an example, it shows that the
compiler is for this type of program. +e processing capa-
bility of program automatic vectorization. ICC19 can realize
the automatic vectorization of S271, but GCC9 and LLVM9
do not realize automatic vectorization. +rough the source
code analysis of GCC and LLVM, it is found that GCC and
LLVM are based on control dependence to data dependence
(If-conversion) method, and realizes the automatic vecto-
rization of branch decision program. For S271 program,
GCC and LLVM did not implement automatic vectorization
because they did not perform If-conversion.

+e automatic vectorizationmethod based on If-conversion
was proposed by Allen R et al. to convert control dependence
into data dependence [50], and then performed automatic
vectorization. Figure 6 is an example diagram of automatic
vectorization based on If-conversion; on the left it is the original
program, and the right side shows that the compiler uses If-
conversion and uses a select instruction to automatically vec-
torize the statement containing branch decision.

+ere are three problems with automatic vectorization
method based on If-conversion: +e first problem is that If-
conversion is performed on all programs without the
guidance of the cost model, and more redundant select
instructions are generated. +e second problem is that the
vector parallelism contained in the control flow unit is not
considered, and it is easy to produce more redundant
branch-processing-related instructions.+e third problem is
that the automatic vectorization method based on If-con-
version is restricted by If-conversion. Once the program
cannot perform If-conversion, the program cannot be au-
tomatically vectorized.

Researchers of automatic vectorization improved auto-
matic vectorization method based on If-conversion. Aiming
at the first problem based on If-conversion automatic
vectorization method in 2007,Shinet al. [51]used predicates
to determine whether a specific statement of the program
will be executed, bypassing some statements that are not
actually executed. +is method reduced the number of re-
dundant instructions generated. In 2018,Simon Moll
et al.[52]adopted a partial branch linearization method
based on data flow and control flow analysis to reduce the
number of unnecessary conditional branch conversions for
If-based.In 2017, Gao Wei et al. [53]vectoried the codes
within the basic block specified by branch statement and
proposed a direct control flow vectorization method based
on data reuse between basic blocks.Vectorization contained
loops of more isomorphic sentences and the cost model was
used to guide the generation of vectorized instructions. +is
method did not depend on If-conversion and is suitable for
conditional branch corresponding basic blocks containing
more vectorized parallel programs. For the third problem of
If-conversion, we did not find a corresponding solution. A
solution to this type of problem is introduced in Section 5.

Table 4: Automatic vectorization speedup ratio.

Group Type Numbers GCC LLVM ICC

Feature

Control flow 16 2|1.36 1|0.90 13|
1.94

Function 6 4|1.93 5|1.82 6|2.24
Goto 12 1|1.99 0 7|1.76

Indirect addressing 10 0 1|0.99 0
Induction 10 8|2.00 4|1.5 7|1.79

No dependency 16 12|
2.15 9|2.12 11|

2.96
Loop reversal 2 2|1.89 1|1.91 1|2.03

Reduction 16 9|8.81 0 13|
3.66

Regular
dependency 9 3|1.5 2|1.91 2|1.41

Rerolling 3 1|2.33 3|1.00 2|2.68
Alias 5 5|2.29 5|2.44 4|1.25

Symbolic resolution 10 10|
2.45 9|2.43 7|2.29

Method

Node splitting 6 1|1.01 2|1.93 6|2.28
Loop distribution 3 1|4.02 0 3|1.51
Loop interchanging 6 3|2.20 1|1.07 3|1.81

Loop peeling 4 0 0 2|2.51
Scalar expansion 14 6|1.82 6|1.82 8|1.81

Statement
reordering 3 0 0 3|1.77

10 Scientific Programming



(2) Automatic vectorization of indirect array access:
Indirect array[54]is a programwhereinthe index of the ex-
ponent group is obtained indirectly through array access
valuesor array access operations. For example,Figure 7is the
core program of TSVC S4112, where a[], b[] are single-
precision floating-point-type arrays. ip is a 32 bit integer
pointer, s is a single-precision floating-point variable, b[ip
[i]] is an indirect array access, and access to the content of
arrayb requiresidxretrieval. For some programs that include
array access[55], the compiler does not vectorize without
knowing whether it accesses continuous, aligned,or de-
pendent information[56].

TSVC has 10 indirect array-access-type programs.
ICC19 and GCC9 do not implement automatic vectorization
of this type of program. LLVM9 only vectorizes one of them.
+is paper found through source code analysis that GCC
uses similar pattern matching methods to handle indirect
array access types. +e program does not support the mode
of indirect array access programs in TSVC. LLVM supports
automatic vectorization of indirect array access programs,
but the efficiency of generating vector instructions is low and
its cost model determines that automatic vectorization has
no benefit. It is worth mentioning that ICCsupports vec-
torization of indirect array access types. For example, ICC17
can automatically vectorize 6 programs in TSVC,whichcan
significantly improve the performance oftheprogram. We
use the compilation optionQopt-report to view the com-
pilation loginformation of ICC19 and find that ICC19 de-
termines that there is a block that prevents automatic
vectorization. +ere is no benefit to the dependency or
evaluation cost and the automatic vectorization of indirect
array access program in TSVC is not implemented.

+e academic community mainly uses special hardware
vector instructions or local memory access reorganization
methods to solve the automatic vectorization problem

including indirect array access procedures. For example, in
2018,Jianget al.[57]based on the equivalent transformation
of the associative law using AVX512 conflict detection and
horizontal reduction instructions can effectively handle the
vectorization of indirect array access programs based on
commutative reduction types. In the same year,Yao Jinyang
et al. [58]assigned indirect arrays to temporary arrays and
loaded the data in the temporary arrays to SIMD vector
register to achieve vectorization. If you need to store it in an
indirect array after the operation is over, most of the indirect
array access programs of TSVC can be processed by the
above method. However, the above method has not been
applied to industrial compilers. +e automatic vectorization
technology of industrial compilers for indirect array access
programs needs to be further improved by learning from the
methods of academia.

3.3.2. Program Transformation Related to Automatic
Vectorization. According to the evaluation work of auto-
matic vectorization, this paper finds that automatic vecto-
rization is closely related to multiple program
transformation methods. Although some programs have
dependencies that hinder automatic vectorization, the de-
pendencies can be changed through program transforma-
tion to achieve automatic vectorization. For TSVC and
automatic vectorization-related transformation programs
(Method class in Table 1), ICC’s automatic vectorization
processing capability is better than GCC and LLVM. GCC
and LLVM cannot realize automatic vectorization for most
of these programs.+rough the source code analysis of GCC
and LLVM, it is found that the automatic vectorization of
GCC and LLVM is not perfect in combination with other
related program transformation methods. Because there is
no necessarypre-transformation of program, the depen-
dency that hinders automatic vectorization in the program
has not been changed, and the program has not been vec-
torized. +e following takes TSVC S221as an example to
illustrate the limitations of compilers’automatic vectoriza-
tion of methodprograms. Asshown inFigure 8, there is a true
dependencebetweendifferent iterations of the program,-
whichhinders automatic vectorization. Ifthecompiler
transformsthe program into two loops, loop 1 can be vec-
torized and loop 2 cannot be vectorized.+e vectorization of
loop 1 by compilers improves the performance and ICC

float a[1024],b[1024],c[1024];/*Global
varibal*/
for (int i= 0; i< LEN; i++)
{

if (b[i] > (float)0.)
a[i] += b[i] * c[i];

}

(a)

mulss 0x80b8c0 (%rax),%xmm0
addss 0x82acc0 (%rax),%xmm0
movss %xmm0,0x82acc0 (%rax)
add $0x4,%rax
cmp $0x1f400,%rax

(b)

cmpltps %xmm1,%xmm2
cmpltps %xmm4,%xmm5
mulps %xmm0,%xmm1
mulps %xmm3,%xmm4
andps %xmm1,%xmm2
andps %xmm4,%xmm5
addps 0x853400 (,%rdx,4),%xmm2
addps 0x853410 (,%rdx,4),%xmm5
movups %xmm2,0x853400 (,%rdx,4)
movups %xmm5,0x853410 (,%rdx,4)

(c)

Figure 5: TSVC S271.

for (i=0;i<256;i++)
{

if (m[i]!=4)
n[i]=m[i];

}

for (i=0;i<256;i+=4)
{

v4= (4,4,4,4);
vp=m[i:i+3]!=v4;
n[i:i+3]=select (n[i:i+3], m[i:i+3],vp);

}

Figure 6: An example of automatic vectorization method based on
If-conversion.

Scientific Programming 11



handles it like this. However, GCC and LLVM did not
implement automatic vectorization of TSVC S221 programs.

+ere have been related studies on the combination of
automatic vectorization and other program transformations
in the academic field. In 2013, Suo Weiyi [59] obtained
definition/use and use/definition relations and reuse be-
tween different basic blocks based on control flow and data
flow analysis, using the information of loop distribution to
increase the number of parallel programs of the program and
improve the performance of automatic vectorization. In the
same year, Kong M et al. [60] based on the polyhedron
model, combined vectorization, parallelization, and locality
factors for program transformation. +is method selected
the relatively optimal vectorization scheme according to the
program characteristics, which effectively reduced the
generation of memory access and rearrangement instruc-
tions. In 2017, Zhao Jie et al. [61] used dependency analysis
to guide the transformation, and divided the dependencies
according to the program features. For true dependence,
anti-dependence, and output dependence, techniques such
as program rearrangement and node splitting were used to
change the dependence between sentences. +is method can
realize the vectorization of programs containing anti-de-
pendency statements. +e above method can solve the au-
tomatic vectorization problem of most method programs in
TSVC.+e fusion technology of automatic vectorization and
related transformations supported by industrial compilers
needs to be further improved.

+is paper sorts out the analysis and transformation
methods related to automatic vectorization. Table 5 is a
statistical table of program analysis and transformation
related to automatic vectorization. Program transformation
affects automatic vectorization’s preservation judgment,
operation arrangement, memory access arrangement, and
the number of parallel statements.

Preservation analysis and transformation directly affect
automatic vectorization and its benefits. In terms of cor-
relation analysis and transformation, dependency analysis,
alias analysis, and inter-procedure analysis are all related to
automatic vectorization. Dependency analysis and alias
analysis affect the compiler’s judgment of dependency be-
tween statements. Inter-procedural analysis affects the
compiler’s cross-function judgment of dependencies be-
tween call statements. Some program transformations affect

the dependencies between statements, which in turn affect
automatic vectorization, such as loop distribution, If-con-
version, and scalar expansion. Loop distribution can divide
the statements in a loop into vectorization part and non-
vectorizable parts. After loop distribution, the automatic
vectorization of vectorizable parts in statement in the loop is
realized. If-conversion converts control dependence into
data dependence and increases the possibility of compilers to
auto-vectorize programs that contain control dependence.
Scalar expansion and array expansion are based on, at the
expense of memory overhead, reducing dependencies within
loops increasing the possibility of automatic vectorization.
Similarly, scalar renaming and array renaming can reduce
anti-dependence. Loop interchange changes the execution
order of statements in the loop, thereby changing the
statements in the loop instruction scheduling optimization
and reducing anti-dependence by changing the execution
order of instructions, thereby increasing the possibility of
automatic vectorization. Software pipeline can change the
execution order of statements and affect the compiler’s
judgment on dependency of statements.

Since most processors only support the parallel opera-
tion of the same operation type, the operation arrangement
affects automatic vectorization. Intensity reduction and
instruction fusion affect the operation arrangement of au-
tomatic vectorization-related sentences, and the intensity
reduction transformation replaces operations with higher
instruction delays. For operations with relatively low latency,
in traditional compilers, intensity reduction optimization
only considers the benefits of its own scalar statements, not
the benefits of automatic vectorization. Intensity reduction
optimization can increase the benefits of scalar operations,
but sometimes it will destroy the arrangement of automatic
vectorization. As shown in Figure 9, the compiler can au-
tomatically convert the last line of multiplication operations
into left shift operations, which makes the types of opera-
tions of these statements different and hinders automatic
vectorization. Similarly, instruction fusion optimization
merges multiple instructions into one, which affects the
layout of the calculation data of automatic vectorization.

+ememory access arrangement, such as memory access
alignment or continuous nature, affects automatic vectori-
zation and its benefits. Loop tiling [61] and loop interchange
affect the memory access arrangement of automatic

for (int i= 0; i< LEN; i++)
{

a[i] += b[ip[i]] * s;
}

(a)

……
movslq 0x0 (%rbp,%rdx,8),%rcx
movss 0x6f87c0 (,%rcx,4),%xmm0
mulss %xmm2,%xmm0
addss 0x853400 (,%rdx,8),%xmm0
movss %xmm0,0x853400 (,%rdx,8)
movslq 0x4 (%rbp,%rdx,8),%rsi
movss 0x6f87c0 (,%rsi,4),%xmm1
mulss %xmm2,%xmm1
addss 0x853404 (,%rdx,8),%xmm1
……

(b)

Figure 7: TSVC S4112.

12 Scientific Programming



vectorization-related sentences, which in turn affects the
benefits of automatic vectorization. Loop tiling and loop
interchange can change the order of statement execution,
rearrange the fetched data, and affect cache performance.

Most processors only support vectorization parallelism
with powers of 2 and a limited length. +e number of
parallelized statements affects vectorization and its benefits.
Loop unrolling, loop fusion, and redundant instruction
elimination affect the number of statements that affect
automatic vectorization parallelism. Loop unrolling expands
loop multiple iterations to increase the number of parallel
statements inside the loop body. Loop fusion merges
multiple loops into the same loop, expanding the number of
statements inside the loop body. Redundancy elimination
optimization sometimes reduces automatically the number
of vectorization parallel statements.

4. Conclusion

Automatic vectorization has always been a hot topic in the
field of compiler performance optimization. +is paper uses
TSVC to evaluate and analyze multiple historical versions of
GCC, LLVM, and ICC for automatic vectorization capa-
bilities by using source code analysis methods and com-
bining industrial compiler support technologies. +e
limitations of automatic vectorization have been clarified
and optimization suggestions have been given based on the
current situation of academic research. In order to establish
a standardized evaluation system, the evaluation method

based on source code analysis is conducive to systematically
clarifying the limitations of automatic vectorization and the
essential reasons for these limitations. +is paper is found
through evaluation: (1) +e limitation of automatic vecto-
rization for industrial compilers is not only in automatic
vectorization method itself but also in the analysis and
auxiliary transformation methods related to automatic
vectorization. (2) At present, the main problem with au-
tomatic vectorization is that compilers lack the ability to
acquire and analyze important information related to au-
tomatic vectorization. (3)+e latest versions of GCC, LLVM,
and ICC compile and optimize some programs of TSVC,
and compare them with the corresponding historical ver-
sions, and their performance is not optimal.+emain reason
is the inaccurate evaluation cost model of compilers and the
interference from other compilation optimizations on au-
tomatic vectorization.

With the rapid development of software, there are more
and more logically complex programs, and the evaluation of
automatic vectorization becomes more and more difficult.
For those programs with complex logic which cannot be
automatically vectorized, it is increasingly difficult for re-
searchers to manually determine whether the program really
cannot be vectorized or is caused by insufficient automatic
vectorization capabilities. +e automation of evaluation is
very beneficial for the development of automatic vectori-
zation technology. +e academia has carried out research
work on loop automatic vectorization evaluation based on
dependency analysis. We will start research work on vec-
torization related evaluation of basic blocks and functions
based on coverage statistics in the future.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

for (int i= 1; i< LEN; i++)
{ 

a[i] += c[i] * d[i]; 
b[i] = b[i-1] + a[i] + d[i]; 

}

for (int i= 1; i< LEN; i++)
{ 

a[i] += c[i] * d[i]; 
}
for (int i= 1; i< LEN; i++)

{ 
b[i] = b[i-1] + a[i] + d[i]; 

}

(a)

……
movss 0x6ebac0 (,%rcx,4),%xmm0
mulss %xmm2,%xmm0
addss 0x846700 (,%rdx,8),%xmm0
movss %xmm0,0x846700 (,%rdx,8)
movslq 0x4 (%rbp,%rdx,8),%rsi
……

(b)

……
mulps %xmm2,%xmm3
movups %xmm1,0x40 (%rsp,%r12,4)
addps 0x853400 (,%r9,4),%xmm3
movups %xmm3,0x853400 (,%r9,4)
……

(c)

Figure 8: An example of loop distribution.

Table 5: Analysis and transform methods that are related to Automatic vectorization.

Number Influence factors Transform methods

1 Semantics
Dependence analysis, alias analysis, interprocedural analysis
Loop distribution, if-conversion, scalar expand, scalar rename

Array rename, loop interchange, instruction schedule, software pipeline
2 Opcode Strength reduction optimization, instruction fusion
3 Memory Loop tiling, loop interchange
4 Number of parallel programs Loop unrolling, loop fusion, redundancy elimination

a[0] = b[0] *5;
a[1] = b[1] *6;
a[2] = b[2] *7;
a[3] = b[3] *8;

a[0] = b[0] *5;
a[1] = b[1] *6;
a[2] = b[2] *7;
a[3] = b[3]<< 3;

Figure 9: An example of intensity reduction optimization.

Scientific Programming 13



Conflicts of Interest

+e author declares that there are no conflicts of interest
regarding this study.

References

[1] W. Gao, R. C. Zhao, L. Han, J. M. Peng, and R. Ding, “Re-
search on SIMD automatic vectorization compiling optimi-
zation,” Ruan Jian Xue Bao/Journal Of Software, vol. 26, no. 6,
pp. 1265–1284, 2015.

[2] “Streaming Simd Extensions[Eb/Ol],” 2016, https://en.
wikipedia.org/wiki/Streaming_SIMD_Extensions.

[3] R. G. Venu, Neon Technology Introduction, ARM Corporation
4.1, 2008.

[4] N. Stephens, S. Biles, M. Boettcher et al., “+e ARM scalable
vector extension,” IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017.

[5] A. Waterman, Y. Lee, D. A. Patterson et al., 4e RISC-V
instruction set manualVol. 1, California University Berkeley
Dept Of Electrical Engineering And Computer Sciences, CA,
USA, 2014.

[6] W. Gao, L. Han, R. C. Zhao, J. L. Xun, and C. R. Chen,
“Vectorization method for loops guided by SIMD parallel-
ism,” Journal of Software, vol. 27, no. 5, 2016.

[7] C. Mendis and S. Amarasinghe, “goSLP: globally optimized
superword level parallelism framework,” Proceedings of the
ACM on Programming Languages, vol. 2, no. OOPSLA, 2018.

[8] C. Mendis, C. Yang, Y. Pu et al., “Compiler automatic
vectorization with imitation learning,” Advances in
Neural Information Processing Systems, Article ID 14609,
2019.

[9] S. Maleki, Y. Gao, M. J. Garzaran et al., “An evaluation of
vectorizing compilers,” in Proceedings of the 2011 Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT), pp. 372–382, TX, USA, October 2011.

[10] B. Zhao, W. Gao, R. Zhao, L. Han, H. Sun, and Y. Li,
“Performance evaluation of npb and spec cpu2006 on various
simd extensions,” in Proceedings of the International Con-
ference on Big Data Computing and Communications, August
2015.

[11] O. V. Moldovanova and M. G. Kurnosov, “Automatic vec-
torization of loops on intel 64 and intel xeon phi: analysis and
evaluation,” in Proceedings of the International Conference on
Parallel Computing Technologies, pp. 143–150, Springer,
Nizhni Novgorod, Russia, September 2017.

[12] C. J. Li, J. J. Huang, Y. Xu, Y. F. Du, and J. Chen, “Evaluation
and analysis of effects of automatic vectorization in typical
compilers,” Computer Science, vol. 40, no. 4, pp. 41–46, 2013.

[13] M. Rajan, D.W. Doerfler, M. Tupek et al., “An investigation of
compiler vectorization on current and next-generation intel
processors using benchmarks and sandia’s sierra applica-
tions,” 2015.

[14] F. Yazdanpanah, “An approach for analyzing auto-vectori-
zation potential of emerging workloads,”Microprocessors and
Microsystems, vol. 49, pp. 139–149, 2017.

[15] X. Zhan, Y. Bao, C. Bienia, and K. Li, “Parsec3.0,” ACM
SIGARCH - Computer Architecture News, vol. 44, no. 5,
pp. 1–16, 2017.

[16] H. Amiri, A. Shahbahrami, A. Pohl, and B. Juurlink,
“Performance evaluation of implicit and explicit SIMDiza-
tion,” Microprocessors and Microsystems, vol. 63, pp. 158–
168, 2018.

[17] W. H. Zhang, J. H. Zhu, H. J. Zhang, and B. Y. Zang, “Op-
timizing SIMD parallelism through bitwidth analysis,”

Chinese Journal of Computers, vol. 32, no. 11, pp. 2168–2177,
2009.

[18] S. Larsen and S. Amarasinghe, “Exploiting superword level
parallelism with multimedia instruction sets,” in Proceedings
of the ACM SIGPLAN 2000 conference on Programming
language design and implementation - PLDI, pp. 145–156,
Vancouver, Britith Columbia, Canada, June 2000.

[19] J. Liu, Y. Zhang, O. Jang, W. Ding, and M. Kandemir, “A
compiler framework for extracting superword level parallel-
ism,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 347–358,
2012.

[20] J. Huh and J. Tuck, “Improving the effectiveness of searching
for isomorphic chains in superword level Parallelism,” in
Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 718–729, ACM, MA,
USA, October 2017.

[21] V. Porpodas, R. C. O. Rocha, E. Brevnov et al., “Super-node
slp: optimized vectorization for code sequences containing
operators and their inverse elements,” in Proceedings of the
2019 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pp. 206–216, IEEE, Wash-
ington, DC, USA, February 2019.

[22] V. Porpodas, R. C. O. Rocha, and L. F. W. V. W.-S. L. P. Góes,
“Autovectorization with adaptive vector width,” in Proceed-
ings of the 2018 international conference on parallel archi-
tecture and compilation (PACT), Ser. PACT., Limassol,
Cyprus, November 2018.

[23] Y. P. Liu, D. Y. Hong, J. J. Wu, S. Y. Fu, and W. C. Hsu,
“Exploiting SIMD asymmetry in ARM-to-x86 dynamic binary
translation,” ACM Transactions on Architecture and Code
Optimization, vol. 16, no. 1, pp. 1–24, 2019.

[24] Y. Chen, C. Mendis, M. Carbin, and A. Saman, “VeGen: a
vectorizer generator for SIMD and beyond,” in Proceedings of
the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
pp. 902–914, USA, April 2021.

[25] A. A. Haj, N. K. Ahmed, T. Willke, Y. S. Shao, A. Krste, and
S. Ion, “NeuroVectorizer: end-to-end vectorization with
deep reinforcement learning,” in Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation
and Optimization, pp. 242–255, San Diego CA USA,
February 2020.

[26] J. R. Allen, K. Kennedy, C. Porterfield, and W. Joe, “Con-
version of control dependence to data dependence,” in Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 177–189, ACM,
Austin, TX, USA, January 1983.

[27] D. Nuzman and A. Zaks, “Outer-loop vectorization-revisited
for short simd architectures,” in Proceedings of the Parallel
Architectures and Compilation Techniques (PACT), 2008 In-
ternational Conference on. IEEE, pp. 2–11, Toronto, ON,
Canada, October 2008.

[28] S. Wei, R.-C. Zhao, and Y. Yao, “Loop-Nest auto-vectoriza-
tion based on SLP,” Journal of Software, vol. 23, no. 7,
pp. 1717–1728, 2012.

[29] R. E. A. Moreira, C. Collange, and F. M. P. Quintão, “Function
call Re-vectorization,” ACM SIGPLAN Notices, vol. 52, no. 8,
pp. 313–326, 2017.

[30] C. L. Yu and Y. W. Wang, “Design and implementation of
SIMD unaligned memory access structure,” Computer Engi-
neering, vol. 42, no. 9, pp. 1–4, 2016.

[31] P. Wu, A. E. Eichenberger, and A. Wang, “Efficient SIMD
code generation for runtime alignment and length conver-
sion,” in Proceedings of the International Symposium on Code

14 Scientific Programming

https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions


Generation and Optimization, 2005, pp. 153–164, IEEE, San
Jose, CA, USA, March 2005.

[32] C. Fan, R. C. Zhao, Z. Shan, and P. Y. Li, “Storage optimi-
zation for struct vectorization,” Journal Of Chinese Computer
Systems, vol. 37, no. 9, pp. 1889–1897, 2016.

[33] A. E. Eichenberger, P. Wu, and K. O’brien, “Vectorization for
SIMD architectures with alignment constraints,” ACM SIG-
PLAN Notices, vol. 39, no. 6, pp. 82–93, 2004.

[34] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Performance
impact of misaligned accesses in simd extensions,” in Pro-
ceedings of the 17th AnnualWorkshop on Circuits, Systems and
Signal Processing (ProRISC 2006), pp. 334–342, Netherlands,
Veldhoven, November 2006.

[35] J. L. Xu, R. C. Zhao, and X. Y. Xu, “Memory access opti-
mization for vector program of simd form,” Computer Sci-
ence, vol. 42, no. 12, pp. 18–22, 2015.

[36] K. Trifunovic, D. Nuzman, A. Cohen et al., “Polyhedral-model
guided loop-nest automatic vectorization[C]//Parallel Ar-
chitectures and Compilation Techniques,” in Proceedings of
the 2009 18th International Conference on Parallel Architec-
tures and Compilation Techniques, pp. 327–337, Raleigh, NC,
USA, September 2009.

[37] G. C. C. Cauldron, “GNU Wiki,” 2015, https://GCC.gnu.org/
wiki/cauldron.

[38] A. Anderson, A. Malik, and D. Gregg, “Automatic vec-
torization of interleaved data revisited,” ACM Transac-
tions on Architecture and Code Optimization, vol. 12, no. 4,
2015.

[39] A. J. C. Bik, M. Girkar, and P. M. Grey, “Automatic intra-
register vectorization for the Intel architecture,” International
Journal of Parallel Programming, vol. 30, no. 2, pp. 65–98,
2002.

[40] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware SLP in GCC,”
in Proceedings of the GCC Developers Summit, pp. 131–141,
Ontario, Canada, July 2007.

[41] “Automatic Vectorization in LLVM[EB/OL],” 2019,
http://LLVM.org/docs/%20Vectorizers.html.

[42] “Vectorizing conditional expressions [EB/OL],” 2015, https://gcc.
gnu.org/ml/gcc-patches/2015-09/msg00690.html.

[43] “Support vectorization of loop epilogues[EB/OL],” 2016,
https://gcc.gnu.org/ml/gcc-patches/2016-05/msg01562.html.

[44] “Enable tree loop distribution[EB/OL],” 2017, https://gcc.gnu.
org/ml/gcc-patches/2017-06/msg00124.html.

[45] “Consider Multiple Vector Sizes for Vectorization Based on
Cost[EB/OL],” 2018, https://gcc.gnu.org/ml/gcc-patches/
2018-06/%20msg01397.html.

[46] “Add SLP support for masked loads[EB/O L],” 2019, https://gcc.
gnu.org/ml/gcc-patches/2019-01/msg00909.html.

[47] “Loop distribution/Partial vectorization[EB/OL],” 2015,
http://lists.llvm.org/pipermail/llvm-dev/2015-January/
080431.html.

[48] “Vectorization Plan[EB/OL],” 2017, https://llvm.org/docs/
Proposals/VectorizationPlan.html.

[49] S. F. Liu, Y. Q. Zhang, and X. Z. Sun, “An improved guided
loop scheduling algorithm for OpenMP,” Journal of
Computer Research and Development, vol. 47, no. 4,
pp. 687–694, 2010.

[50] J. E. Smith, G. Faanes, and R. Sugumar, “Vector instruction set
support for conditional operations,” in Proceedings of the 27th
International Symposium on Computer Architecture (IEEE
Cat. No.RS00201), ACM, BC, Canada, June 2000.

[51] J. Shin, “Introducing control flow into vectorized code,” in
Proceedings of the 16th International Conference on Parallel

Architecture and Compilation Techniques, pp. 280–291, IEEE,
Brasov, Romania, September 2007.

[52] S. Moll and S. Hack, “Partial control-flow linearization,” in
Proceedings of the 39th ACM SIGPLAN conference on pro-
gramming language design and implementation, pp. 543–556,
ACM, Philadelphia, PA, USA, June 2018.

[53] W. Gao, Y. Y. Li, H. H. Sun, Y. B. Li, and R. C. Zhao,
“Improved simd vectorization method in the presence of
control flow[J],” Journal of Software, vol. 28, no. 8,
pp. 2046–2063, 2017.

[54] H. Sun, R. Zhao, W. Gao, Y. Gong, and L. Gang, “Exploiting
Pure Superword Level Parallelism For Array Indirections,” in
Proceedings of the 2015 Seventh International Symposium on
Parallel Architectures, Algorithms and Programming (PAAP),,
pp. 13–19, Nanjing, China, December 2015.

[55] Q. Wang, L. Han, J. Y. Yao, and H. Liu, “Research on vec-
torization technology for irregular data access,” in Proceedings
of the International Symposium on Parallel Architecture, Al-
gorithm and Programming, pp. 321–334, Springer, Haikou,
China, June 2017.

[56] S. Kim and H. Han, “Efficient SIMD code generation for
irregular kernels,” ACM Sigplan Notices, vol. 47, no. 8,
pp. 55–64, 2012.

[57] P. Jiang and G. Agrawal, “Conflict-free vectorization of as-
sociative irregular applications with recent SIMD architec-
tural advances,” in Proceedings of the 2018 International
Symposium on Code Generation and Optimization, pp. 175–
187, Vienna Austria, February 2018.

[58] J. Y. Yao, R. C. Zhao, Q. Wang, and Y. Y. Li, “Vectorization
methods for indirect array index,” Computer Science, vol. 45,
no. 9, pp. 220–223+236, 2018.

[59] W. Y. Suo, R. C. Zhao, Y. Yao, and X. M. Zhang, “SLP op-
timization algorithm using across basic block transformation
and loop distribution,” Computer Science, vol. 40, no. 10,
pp. 24–28, 2013.

[60] M. Kong, R. Veras, K. Stock, P. Sadayappan, F. Franz, and
N. P. Louis, “When polyhedral transformations meet SIMD
code generation,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, vol. 48, no. 6, pp. 127–138, Seattle, Washington,
USA, June 2013.

[61] J. Zhao, H. Cui, Y. Zhang, X. Feng, and J. Xue, “Revisiting loop
tiling for datacenters: live and let live,” in Proceedings of the
2018 international conference on supercomputing. ACM,
pp. 328–340, Beijing, China, June 2018.

Scientific Programming 15

https://GCC.gnu.org/wiki/cauldron
https://GCC.gnu.org/wiki/cauldron
http://LLVM.org/docs/%20Vectorizers.html
https://gcc.gnu.org/ml/gcc-patches/2015-09/msg00690.html
https://gcc.gnu.org/ml/gcc-patches/2015-09/msg00690.html
https://gcc.gnu.org/ml/gcc-patches/2016-05/msg01562.html
https://gcc.gnu.org/ml/gcc-patches/2017-06/msg00124.html
https://gcc.gnu.org/ml/gcc-patches/2017-06/msg00124.html
https://gcc.gnu.org/ml/gcc-patches/2018-06/%20msg01397.html
https://gcc.gnu.org/ml/gcc-patches/2018-06/%20msg01397.html
https://gcc.gnu.org/ml/gcc-patches/2019-01/msg00909.html
https://gcc.gnu.org/ml/gcc-patches/2019-01/msg00909.html
http://lists.llvm.org/pipermail/llvm-dev/2015-January/080431.html
http://lists.llvm.org/pipermail/llvm-dev/2015-January/080431.html
https://llvm.org/docs/Proposals/VectorizationPlan.html
https://llvm.org/docs/Proposals/VectorizationPlan.html

