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Traditional sports aid systems analyze sports data via sensors and other types of equipment and can support athletes with
retrospective analysis, but they require several sensors and have limited data. This paper examines a sports aid system that uses
deep learning to recognize, review, and analyze behaviors through video acquisition and intelligent video sequence processing.
This paper’s primary research is as follows: (1) With an eye on the motion assistance system’s application scenarios, the network
topology and implementation details of the two-stage Faster R-CNN and the single-stage YOLOV3 target detection algorithms are
investigated. Additionally, training procedures are used to enhance the algorithm’s detection performance and training speed. (2)
To address the issue of target detection techniques’ low detection performance in complicated backgrounds, an improved scheme
from Faster R-CNN is proposed. To begin, a new approach replaces the VGG-16 network in the previous algorithm with a ResNet-
101 network. Second, an expansion plan for the dataset is provided. (3) To address the short duration of action video and the high
correlation of image sequence data, we present an action recognition method based on LSTM. To begin, we will present a motion
decomposition scheme and evaluation index based on the key transaction frame in order to simplify the motion analysis
procedure. Second, the spatial features of the frame images are extracted using a convolutional neural network. Besides, the spatial
and temporal aspects of the image sequence are fused using a two-layer bidirectional LSTM network. The algorithm suggested in

this research has been validated using a golf experiment, and the results are favorable.

1. Introduction

More and more people are devoting their time to sports such
as golf and skiing as China’s burgeoning sports and health
industry becomes more active. When there is no systematic
learning, beginners may not develop their technical level
because of nonstandard movements, and in certain cases,
they may even injure themselves playing sports. To achieve
continuous improvements, you must assess and analyze
your efforts constantly. Traditionally, sports coaches have
done one-to-one coaching. High labor costs and poor
flexibility are difficulties for the company. As it currently
stands, there is a problem that has to be fixed when it comes
to teaching and training. In professional athletes’ daily
training, they use sports assist devices. Professional training
analysts, modeling the athletes based on motion sensor data,
use the data of the limbs to track and correct the specifics of
the athletes’ motions. Because of the high price and the need
for specialized motion sensors, the present sports aid system

is difficult and costly for sports enthusiasts who are not
professional athletes [1-8].

These recent advances in computer vision and natural
language processing, made possible by a boost in the amount
of training data and the addition of sophisticated feature
expression capabilities, have been achieved using deep
learning. A great number of practical achievements have
been accomplished in the target detection, machine trans-
lation, and action identification departments. Many vision
tasks are based on object detection, which is a research issue
in computer vision. As a result, face recognition, autono-
mous driving, and target tracking have all seen widespread
use in real life. This traditional target detection method
extracts characteristics artificially, and the results are
sometimes inferior due to poor feature extraction or in-
adequate recognition. Deep convolutional neural networks
can automatically extract task-related feature information
from enormous data because of the development of con-
volutional neural networks. Traditional machine learning
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methods, which can easily be implemented by specifying
rules for feature extraction, have clear advantages. The deep
learning target detection technique, on the other hand, has
improved the accuracy and speed of detection significantly.
By further expanding the applications of computer vision, it
increases the overall value. Another field of computer vision
study is semantic analysis of video, specifically human action
recognition, which has a variety of possible applications,
such as human-computer interaction and gesture recogni-
tion. The primary goal of it is for videos. Pure static graphics
no longer serve as a proper means of describing video as-
pects. Human motion recognition hence has to assess the
temporal features in addition to extracting the spatial fea-
tures of each frame of video. Recurrent neural networks are
now frequently employed in machine translation, text
generation, and personalized recommendation applications.
Recurrent neural networks and convolutional neural net-
works are being combined to address the demanding
problem of processing video sequences [6-15].

This paper studies the exercise assistance system, which
does not require sensors. It can recognize movements only
through video sequences, which is convenient for users to
quickly review and analyze their movements in real time. It
not only enriches the learning methods of sports but also
provides new ideas for the development of sports assistance
systems, which is extremely important for the promotion of
the development of sports events.

The contribution of this paper can be summarized as
follows: (1) the detection efficiency of target detection al-
gorithm is improved in complex background; (2) a sports
recognition algorithm based on LSTM is proposed, which
can fuse spatial features as well as temporal features; and (3)
the proposed method achieved advanced performance.

2. Related Work

Literature [16] proposed a deep convolutional neural network
AlexNet. In the ImageNet competition that year, excellent
results were achieved, which proved the huge potential of
convolutional neural networks in image processing tasks.
Literature [17] proposed R-CNN, which used a selective
search algorithm to generate about two thousand candidate
regions for each image. Then through the forward propa-
gation of the convolutional neural network, feature extraction
was performed on each candidate area, and finally, the feature
information of each candidate area was classified using linear
SVM. R-CNN can output and correct the bounding box. mAP
can reach 58.5%, which was a relatively large improvement
compared to the previous algorithm. However, the selective
search method needed to extract feature values and classify
each candidate frame. This process generated a lot of re-
dundant calculations, which consumed a lot of memory and
calculation time, and the average processing time for each
picture was about 3 s. The fully connected layer as a classi-
fication also required a fixed-size input and forced conversion
of the size of the input image would also cause image dis-
tortion. In literature [18], the Faster R-CNN was designed for
the problem that the candidate region generation algorithm
was too time-consuming and space-consuming. The principle
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of the Faster R-CNN was as follows: first, the image was
extracted from the convolutional network to learn the feature
and output to the RPN network, and then the RPN network
determined in the classification layer that the anchor belonged
to the foreground or the background and finally converted the
region of interest into a feature vector. At the same time, it was
output to the type recognition classifier and the border
correction regressor. Faster R-CNN replaced the fully con-
nected layer with a fully convolutional layer, which truly
realized end-to-end calculation, and the detection speed and
accuracy had been further improved. Literature [19, 20]
proposed the YOLO series of algorithms. Divide the input
image into several grids. If the target object’s center was in the
grid, each grid needed to predict the value of N boundary
candidate boxes and output the position coordinates and
confidence of each boundary box. End-to-end training could
be achieved. Although the detection performance was not as
good as the two-stage algorithm, its detection speed was
faster. But it could only detect target objects that fall into the
grid. When a grid contains multiple target objects that are
close to each other, the detection performance is relatively
poor.

Literature [21] proposed a dual-stream convolutional
network, which divided the network into two independent
streams, and the spatial convolutional stream learned the
spatial characteristics of a single frame of pictures. The
optical flow convolutional flow learned the optical flow
sequence that represents the characteristics of video timing
information. Finally, the two network streams were fused
and output. The dual-stream network used a single-frame
image and optical flow field bands to represent the spatial
and temporal characteristics of the video sequence. How-
ever, it was difficult to represent the spatial characteristics of
long-term video using a single-frame image. In view of the
limitations of the dual-stream model for the sampling of
long-term video sequences, literature [22] proposed a time
segmentation network to improve the input of the dual-
stream network. The long video was randomly divided
into K segments and input into K dual-stream networks. Use
random sampling to sample image frames from fragments
and input them into the spatial convolution stream. Finally,
the results of K optical flow networks were merged to obtain
the final result, which obtained a high score of 94.2 on the
UCF101 dataset. Literature [23] extended the two-dimen-
sional convolutional neural network directly to the three-
dimensional convolutional neural network. By adding in-
formation in the time dimension, the two-dimensional
convolution kernel was extended to the three-dimensional
convolution kernel, and the convolution kernel slides in the
time dimension. The features of the time dimension could be
effectively extracted. Literature [24] designed the I3D net-
work, extended the pooling kernel to three dimensions, and
added the optical flow information to the three-dimensional
convolutional neural network. Literature [25] added the idea
of jump connection of residual network and deepened the
network depth of the three-dimensional convolutional
network. The proposed network structure based on the
three-dimensional convolutional network neural network
was relatively simple and inherited the weight sharing and
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integration of the convolutional network. The three-di-
mensional convolutional network was limited by the width
of the convolution kernel, and it was difficult to learn long-
time information. Literature [26] designed an action rec-
ognition algorithm based on a double stream network for
hockey action analysis. The network first obtained human
body posture information through a partial affinity field,
secondly used optical flow field to extract time features, and
finally combined posture information and optical flow to
estimate the hockey player’s movements. Literature [27]
proposed that SoccerNet was used for football game video
analysis. According to the image information of the football
game video, it automatically recognized the key event time
nodes in the football game, such as red and yellow cards,
goals, and replacement players.

3. Target Detection Based on Deep Learning

With the continuous development of deep learning, target
detection algorithms have gradually replaced traditional
target detection algorithms. The proposal of R-CNN first
applies deep learning technology to target detection tasks.
Fast R-CNN is improved and optimized on the basis of
R-CNN and has achieved good performance in detection
efficiency and training time.

The current research on target detection algorithms is
divided into two branches: one is the two-stage target de-
tection with priority in detection accuracy, represented by
Faster R-CNN. The feature information is classified and
output. The regional suggestion network can output
according to the feature information of different scales. Since
the algorithm performs regression correction on the target
object frame in the process of generating candidate regions
and classifying, the algorithm has good detection accuracy;
the other is single-stage target detection algorithm with
priority on detection speed, and its representative is the
YOLO series of algorithms. The principle of the algorithm is
as follows: divide the picture into a fixed-size network and
use a priori box of preset size to directly perform feature
extraction and classification on the a priori box of each grid.
Due to the entire process is required, the speed of YOLO is
faster. Aiming at the application scenarios of the motion
assistance system, this chapter compares and analyzes the
current mainstream target detection algorithms based on
deep learning. Finally, a comparative experiment is carried
out on the motion video keyframe image dataset, and its
application scenarios are analyzed according to the detection
performance of different algorithms.

3.1. Faster R-CNN. 1t is the first target detection algorithm
that can be trained in an end-to-end method. The subse-
quent two-stage target detection algorithm is basically im-
proved according to the idea, and Faster R-CNN is
considered to be a milestone of the two-stage target de-
tection algorithm. As shown in Figure 1, the workflow of
Faster R-ANN is as follows: first, the input image is extracted
by the backbone, and then the feature map is input into RPN
to obtain the proposal. Cut out the feature map of the

candidate area and output it to the ROI Pooling to generate a
candidate area, and finally output it to the classifier for type
classification and the regression to correct the prediction
frame.

Faster R-CNN introduces RPN to extract candidate
regions. This is a CNN that can share features of the con-
volutional layer and extract candidate regions from this. The
extracted part of the candidate region is embedded into the
network, which in a true sense realizes the end-to-end target
detection. After obtaining the candidate area, perform target
classification and bounding box regression. RPN’ imple-
mentation is as follows: use a 3x3 sliding window to generate
a feature vector of length 256 or 512 on the feature map
extracted by the network, and then output this feature vector
to two fully connected layers for prediction of the center
coordinates; width and height of the candidate area are used
to predict whether the candidate area belongs to the fore-
ground or the background. This sliding window method can
ensure that the regression layer and the classification layer
cover the entire space of the feature map. For each sliding
window, k region suggestions can be predicted at the same
time, so there are 4k outputs for the regression layer, that is,
the 4 coordinate parameters corresponding to the candidate
region, and the classification layer is 2k, that is, whether the
candidate region is the target or the background. The k
candidate regions are the parameterization of k anchors.
Each anchor has a strong translation invariance, which is
beneficial to improve the quality of detection.

L({pi}’{ti}) = Nil ZLcls (pi’ pi ) +/\N7 zpl Lreg(ti’ti )’

reg
(1)

where i is the anchor index, p; is the prediction probability of
the anchor i target, if the anchor is positive, p; is 1, oth-
erwise, it is 0, and ¢; represents the 4 coordinate parameters
of the predicted candidate frame. t; represents the coor-
dinate parameters of the real target frame corresponding to
the positive anchor. The specific classification loss and re-
gression loss functions are as follows:

Lys(pi pi) = —logpip; +(1-p;)(1-p)], 2)
Lyeg (tit;) = R(t; = t]),

reg (

where R is the robust loss function, as illustrated in the
following equation:

0.5x%,  iflxl<1,
srn()o’[hL1 (x) = { X 1 |X| < (3)

|x] — 0.5, otherwise.

Faster R-CNN uses VGG-16 as the backbone network. It
has achieved relatively good results in ImageNet classifi-
cation tasks, and its model compatibility is relatively high. It
is widely used as a feature extraction network in various
image analysis tasks. Since the target detection task not only
needs to classify the image but also needs to locate the target,
the ability to extract features may have an important impact
on the accuracy of the model. An improved scheme of
objection detection is proposed, using ResNet-101 instead of
source code VGG-16 as the backbone network of the target
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FiGure 1: The structure of Faster R-CNN.

detection algorithm. Compared with VGG, the ResNet-101
network has a deeper network structure and can extract
richer image feature information. Simultaneously, the net-
work training efficiency is improved by using the residual
module, and the network inference speed is accelerated.

3.2. YOLO. The YOLO algorithm is proposed by Redmon
et al. It is the representative work of a single-stage target de-
tection algorithm. Its core idea is to transform target detection
into a regression task. Different from the two-stage algorithm,
the input image can directly output the type information and
position information of all detected targets in the image after
one inference. In the case of ensuring the accuracy and efficient
performance of the target detection task, the entire network
only uses a single convolutional neural network, which greatly
promotes the training speed and reduces the detection time. As
shown in Figure 2, the principle of the YOLO algorithm: first
divide the input image into grids, and stipulate that each
network is only responsible for detecting objects whose target
center falls in the current grid.

Suppose that each grid can predict B target objects, and
each box needs to output 4 pieces of position information,
that is, the center point coordinates of the target object, the
relative height and width of the border, and the confidence
of the object corresponding to the output border. The

confidence of a five-dimensional tensor represents whether
the box contains the target object and the accuracy of the
position of the box relative to the real object, which is de-
fined as follows:

confidence = Pr(Object) IOUgrueg', (4)
where Pr(Object) represents whether the center of the de-
tected target object falls in the box; if it falls in the box, its
value is 1; otherwise, it is 0. The latter represents the in-
teraction ratio between the predicted object box output by
the network and the box of the actual position of the object.

The total loss of YOLO consists of three parts. The
formula for classification loss is as follows:

52
_ N\ (obj
Lcls - Z li
i=0

where i is the index of the grid, S is the size of the grid
division, ¢ is the category of the objection, and p; (¢) rep-
resents the probability that i-th grid contains ¢ target object.
1°% indicates whether there is a target object in the grid i; a
value of 1 means that the center of the target object falls in
this box; otherwise, it is 0.

The loss function of the bounding box regression is

Y (P -pi0), (5)

ceclasses
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i=0 j=0

where B means that each grid can output B boxes and A
means balance factor.

coord

The loss function of confidence is

$* B ) R $* B ) R
Lconf = z Z 1?jbj(ci - Ci)2 + Anoobj Z Z 1;}OObJ(Ci - Ci)z’
i=0 j=0 i=0 j=0
(7)

where C; is the confidence of j-th output box; 1"°°" indicates
whether the j-th output box of the grid i contains the de-
tection target, if it contains a value of 0; otherwise, it is 1;

Anoobj means balance factor.

Therefore, the final loss function of YOLO is

L= Lcls + Lbbox + Lconf' (8)

In the estimation process of YOLO, although the output
between grids will not conflict, when predicting large size or
adjacent objects, multiple grids may predict the same object.
At this time, YOLO uses a nonmaximum suppression al-
gorithm to filter out redundant output boxes. The confidence
of the final output box is equal to the product of the maximum
value P of the category prediction of the grid output and the
maximum value of the confidence of the current grid output
box. This can also filter out some mostly overlapping boxes.
The confidence level of the detected object is output, and the
box and category are considered at the same time so that the
output of the confidence level is more credible.

3.3. Data Enhancement. Aiming at the problem of complex
light sources that may appear in the actual detection scene of
golf courses and the problem from different viewpoints and
distances, we propose a data enhancement strategy to
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expand the dataset. For the open-air golf situation, where
light is relatively strong, the overexposure environment of
the camera is simulated by increasing the exposure value as
well as the contrast. For underexposure environments such
as cloudy days or in the shade of trees, reduce the exposure
and contrast of the original image to increase the pro-
portion of dark parts of the image. For the problem of the
target object scale that does not need to be brought about by
the camera angle and distance, three hybrid data en-
hancement methods are used: (1) random image transla-
tion, which translates the image in the horizontal or vertical
direction; (2) random image zoom; (3) random zoom out
or zoom in the image.

4. Action Recognition Based on LSTM

Action recognition based on LSTM is to add a recurrent
neural network. This kind of hybrid network has the ad-
vantages of both CNN and RNN and can obtain information
in the time dimension very well. Moreover, LSTM can tackle
the problem of RNN due to the disappearance of gradients
and cannot handle long-term video well. The problem has
shown good results in capturing spatial motion patterns,
time-series, and long-term dependencies.

4.1. LSTM Unit. Traditional neural networks, such as con-
volutional neural networks, have no memory function and
cannot pay attention to the relationship between feature
information at adjacent moments. Recurrent neural networks
(RNN) are mainly used to analyze time-series sequences and
can extract the time-series features. RNN combines the
hidden layer with the input and outputs it to the hidden layer.
In this way, RNN can combine the information at the pre-
vious moment to output, and the formula for forward
propagation is as follows:

s, =0(Wx, +Us,_; +b,),

0, =W_s, + by), ©)
where W is the weight parameter of the input data at the
current moment, U represents the weight parameter of the
hidden state at the previous moment in the hidden state, W,
is the weight of the hidden state and output at the current
moment, b represents the offset, and ¢ function represents
the activation function.

RNN is very successful in tasks such as speech recog-
nition and text generation. RNN can transmit characteristic
information from front to back. Theoretically, the long-term
dependence relationship can be solved; that is, the output at
time ¢ contains all the characteristic information at time 0-¢,
but this is not the case. Because in the training process, RNN
also has the problem of gradient disappearance and gradient
explosion, which makes the parameters of the neural net-
work unable to be updated correctly. Therefore, the long-
distance information often cannot be transmitted to the
subsequent output sequence, which makes the input feature
information of the network incomplete and ultimately af-
fects the stability. RNN generally has a relatively good an-
alytical power for data with a short distance between related
information.

In order to solve the gradient explosion and disappearance,
previous research proposed an LSTM network. LSTM unit
records sequence information. The input and output of the
LSTM unit are controlled by the switch of the control gate. The
input gate can control the current input information to par-
ticipate in the transmission of memory cells, and the forget gate
can control the transmission of previous memory cells. The
output gate can control how much information the memory
unit can output at the current moment.

Each unit of the RNN needs to be connected in series to
ensure that the hidden state of each layer will propagate
backward through the network. Compared with the



traditional RNN, the LSTM network has several more door
controls. Both the number of parameters and the number
of calculations will rise sharply. When the network needs to
predict a longer interval, a multilayer parallel network can
be used for recognition tasks. In the action recognition task,
the output of the task is to assign an action label to the input
video sequence, while in the action detection task, it is
necessary to output the correct label on all keyframes of the
input video sequence. For example, for a 100-frame video
sequence, for action recognition tasks, the network only
needs to detect any 50 frames of data to output the correct
label. In motion detection, if the predicted output tags are
not continuous, multiple motion fragments will be gen-
erated. This is because LSTM can only transfer the char-
acteristics of timing information in one direction, and the
input information at the later stage of the sequence cannot
participate in the output at the early stage of the sequence.
Through this multilayer bidirectional LSTM network, each
output of the sequence can use the input information. In
the task of motion detection, discrete motion fragments can
be automatically supplemented into continuous motions
through multilayer bidirectional LSTM network propa-
gation back and forth. The Softmax layer of the multilayer
two-way LSTM network provides a score for each action
category, and the behavior of the LSTM network is taken as
the score for each action.

4.2. Golf Swing Algorithm. Donahue et al. [28] proposed an
LCRN, which can achieve end-to-end training, take full
advantage of CNN’s strong ability to extract image infor-
mation, and make the network have the ability to process
timing information by adding LSTM. LCRN is composed of
input layer, feature extraction layer, LSTM layer, and output
layer. CNN is used to process variable-length video single-
frame pictures and output the extracted feature maps of the
single-frame pictures to the LSTM network. The final output
layer produces a variable-length output.

This paper uses an action recognition algorithm based on
LSTM. Similar to the method of LRCN, the single-frame
picture of the input video obtains the feature map of the
single-frame picture through the feature extraction network,
and then the feature map is globally averaged and pooled
and then input into the two-layer bidirectional LSTM
network as shown in Figure 3. The LSTM network can add
time-dimensional feature information to the spatial features.
The double-layer LSTM network ensures that image features
can be transmitted in both directions, and the time feature of
each frame of image can fully combine the frame infor-
mation in the front and back directions. The two-layer LSTM
network further integrates the characteristic information of
the single-layer LSTM network. After passing through two
fully connected layers, LSTM’s output is input to the
Softmax layer for classification, and finally, the classification
result of each frame of the input video sequence is obtained.

Time characteristics are the key to golf swing recogni-
tion. Generally, the process from Address (A) to Top (T) is
the same as the process from Top (T) to Impact (I), except
that the swing direction is opposite. The image features are
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basically the same. At the same time, athletes often carry out
repeated pretargeting process before Address (A), and the
video sequence may contain multiple points similar to the
Address (A) image feature. It is difficult to distinguish if the
time sequence feature is not added. The action recognition
network based on the long and short-term memory network
can accurately predict the keyframes of the model through
the context information of the video sequence by adding the
LSTM unit. The spatial features of the output of the feature
extraction network pass through the two-layer two-way
LSTM network to add timing features, then pass to two fully
connected layers, and finally pass through the Softmax
classifier to realize the mapping of spatiotemporal features to
the posterior probability. The definition of the Softmax
function is as follows:
5=

YL

Each frame of image will get a posterior probability
distribution vector of all types, and the final output form is
the mapping e, = (p;, p,»---» p.) of all event probabilities
and the final output of the model (e, e,,...,er), where T
represents the sequence length and ¢ represents the category
of the output frame. This model ¢ has 9 output frame types,
including 8 golf swing motion keyframes and 1 invalid
frame.

(10)

5. Experiments and Discussions

5.1. Evaluation of Golf Detection. The model after the
training convergence is tested, and detection accuracy of golf
ball, the detection accuracy of the golf club head, the average
accuracy of the model, and the average detection speed of a
single picture are, respectively, detected. The detection result
is illustrated in Figure 4.

mAP of Faster R-CNN is 73.7%, and mAP of YOLOV3 is
62.7%. From the experimental data, it can be seen that Faster
R-CNN has a better performance than YOLOv3. Because
Faster R-CNN’s RPN network can extract more prior
frames, its recall rate is higher than that of YOLOV3.
However, because the two-stage target detection algorithm
must first extract the candidate frame and then classify
according to the features in the classification frame, it needs
to enter two classifiers, and the calculation amount is much
larger than YOLOV3, so its detection speed is also much
slower than YOLOv3. The detection speed of YOLOV3 is
0.03 s.

Use the data enhancement scheme to expand the data,
and train Faster R-CNN with the expanded data. The de-
tection result is illustrated in Table 1; using the enhanced
dataset for training, the accuracy of target detection under
complex light sources has been improved, and mAP of
Faster R-CNN has increased by 4.3%. Especially under
complex light sources, the detection performance of the
model trained with enhanced data has been significantly
improved. But for the golf ball in the distant state, due to the
small size, the detection rate of the target object is still very
low.
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FIGURE 4: Detection performance comparison between FasterR-
CNN and YOLOv3.

TaBLE 1: The impact of data augmentation on the accuracy of model
detection.

Model Data enhancement mAP
Faster R-CNN Yes 73.7
Faster R-CNN No 78.0

This paper uses ResNet-101 instead of VGG-16 in the
source code as the backbone network of the target detection
algorithm and trains the improved Faster R-CNN model
after data enhancement. The detection performance is
verified on the test set as shown in Figure 5.

ResNet-101 can extract higher-dimensional image fea-
ture information, and the improved Faster R-CNN’s mAP is
as high as 85.2%. The CNN model has increased by 7.2%.
Due to the deeper network structure of ResNet-101, the
parameters in the network have also increased exponentially.
However, due to the role of the residual module, the average
of a single image can be seen from the detection results. The
detection speed is only 0.081seconds slower than the
original structure. Because the motion assistance system

FIGURE 3: Swing action recognition network.

Performance

AP-ball

AP-club mAP Speed (x10 ms)

I Fasster R-CNN
Em Improved Faster R-CNN

F1GURE 5: Target detection accuracy of the improved model.

does not require high real-time performance, the use of the
improved Faster R-CNN can significantly improve the
performance.

5.2. Evaluation on Action Recognition. The action recognition
algorithm based on the LSTM is very important for the se-
lection of the input sequence length T'. This paper uses dif-
ferent sequence lengths T for experimental records, and the
experimental result is illustrated in Figure 6. Under the
condition of the other parameters unchanged, check the
impact on the accuracy of the model. Affected by the
hardware performance of the machine, when the sequence
length T'is too large, some comparative experiments need to
reduce the batch size to ensure the GPU memory space. Batch
processing can improve the training speed of the model and
make full use of GPU parallel computing capabilities, relying
on the advantages of weight sharing of convolutional neural
networks; through one calculation, multiple input video
samples are calculated in parallel, which greatly improves the
training efficiency. However, batch processing is only helpful
for the improvement of model training speed, and the size of
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FIGURE 6: The influence of different T and B on accuracy and
detection speed.

batch processing has relatively little effect on the accuracy of
model detection.

In the real-time state and slow-motion state, the de-
tection efficiency of each keyframe of the action recognition
model is tested. Figure 7 provides the detection accuracy of
each keyframe of the model in the GolfDB test set. The PCE
of the keyframe and the average value of the overall PCE are,
respectively, detected for the slow-motion and real-time
video data. In general, the overall performance of the model
recognition is good, and the accuracy of the action recog-
nition is 73.4%. Experiments have found that the detection
rate of Address (A) and Finish (F) keyframes is worse than
other frames. These frames have two common character-
istics. First, the swing speed of the clubhead in and around
the frame is relatively low. Since Address (A) is the be-
ginning of the golf swing, its initial speed is 0, Finish (F) is
the end of the swing, and its final speed is also 0. Secondly,
the frame can only use the feature information in one di-
rection. For the Address (A) frame, the image before the
frame has no annotation information, and for the Finish (F)
frame, there is no annotation information for the subsequent
images. These two factors make it difficult for the model to
accurately locate Address (A) and Finish (F) in time.

Experiments have found that the detection rate of Top
(T) relative to adjacent frames is also relatively low, which
may be due to the change in speed direction when the golf
club is lifted to the highest point. The club speed of the
surrounding frames is also relatively low, but because the
golf club head stays at the top for a relatively short time and
the distance between the Top (T) and the surrounding
keyframes is relatively small, the Top (T) frame is compared
with the Address (A) and Finish (F) which have a relatively
little reduction in detection performance. At the same time,
because the front swing is generally faster than the back-
swing, the frame detection performance of the front swing is
generally better than the backswing. Compared with slow-
motion samples, the detection efficiency of keyframes in
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each stage of real-time video is also more accurate, which
further verifies the assumption that the model is sensitive to
speed.

6. Conclusions

This paper studies the golf detection method and the golf
swing motion recognition method for video sequences.
Faster R-CNN and YOLOv3 models are trained using the
golf dataset. Through comparative experiments, Faster
R-CNN has better detection than the YOLOv3 algorithm.
mAP of Faster R-CNN is 73.7%, and the average speed of a
single image is 0.19s. The detection accuracy of YOLOV3
reaches 62.7%, and the average detection speed is 0.030s.
Aiming at the complex lighting background that may appear
in the golf course, the dataset is enhanced, and the open-air
glare environment of golf is simulated by increasing the
exposure and contrast of the picture by reducing the ex-
posure and contrast while increasing the dark information
method to simulate the insufficient light environment such
as the shade of the stadium. By zooming and rotating the
image, it simulates the scale problem of the target object in
the image taken by the mobile phone or camera at different
distances and different angles. Using ResNet-101 instead of
VGG-16, ResNet-101 has a deeper network structure and
can extract richer information. For action recognition al-
gorithms, this paper proposes an action recognition network
based on LSTM. The spatial information of each frame is
input into the two-layer two-way LSTM, and the temporal
features can be extracted. Finally, temporal and spatial
features are input into the Softmax classifier to classify each
frame of the image. According to different input sequence
lengths, the final accuracy of the model is analyzed exper-
imentally. For the difference in keyframe detection accuracy,
the actual scene of the golf swing is analyzed. The network is
trained on the GolfDB dataset, and the final detection ac-
curacy of the model is 73.6%. With a tolerance of about 3
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frames, the performance of the action recognition algorithm
is as high as 88.5%.
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The datasets used are available from the corresponding
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