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Image fusion is to effectively enhance the accuracy, stability, and comprehensiveness of information. Generally, infrared images lack
enough background details to provide an accurate description of the target scene, while visible images are difficult to detect radiation
under adverse conditions, such as low light. People hoped that the richness of image details can be improved by using effective fusion
algorithms. In this paper, we propose an infrared and visible image fusion algorithm, aiming to overcome some common defects in
the process of image fusion. Firstly, we use fast approximate bilateral filter to decompose the infrared image and visible image to
obtain the small-scale layers, large-scale layer, and base layer. *en, the fused base layer is obtained based on local energy
characteristics, which avoid information loss of traditional fusion rules. *e fused small-scale layers are acquired by selecting the
absolute maximum, and the fused large-scale layer is obtained by summation rule. Finally, the fused small-scale layers, large-scale
layer, and base layer are merged to reconstruct the final fused image. Experimental results show that our method retains more
detailed appearance information of the fused image and achieves good results in both qualitative and quantitative evaluations.

1. Introduction

With the popularity of infrared image applied in military
surveillance [1], remote sensing [2], medical imaging [3],
space exploration [4], and other fields, people pay more
and more attention to the fusion of infrared and visible
images. *ere are some differences in the characteristics
and imaging regulation of infrared and visible images.
Infrared image (IR) that captures thermal radiation has
strong anti-interference capability and can operate all day
without being affected by lighting conditions, but its
contrast is low and its ability to distinguish details is poor.
In contrast, the visible image (VI) that captures reflected
light has high spatial discrimination and legible detail
texture information, whereas visible image is greatly af-
fected by weather and has poor imaging effect in cloudy,
rainy, and night environments. Image fusion technology
can make up for their respective shortcomings, enrich the

information of single source image, obtain sufficient and
accurate target expression, and make the image more
abundant.

*e research of infrared and visible image fusion has
important theoretical significance in many application
scenarios of real life. *e existing fusion methods are ef-
fective, but there are also some common problems, such as
poor contrast, block effect, information distortion, and so
on. To address these issues and get better fusion perfor-
mance, a novel fusion algorithm based on fast approximate
bilateral filter and local energy characteristics is developed.
Our contributions are as follows:

(1) We introduce a fast approximate bilateral filter to
decompose the original infrared or visible image.
Decompose the image into small-scale layers with rich
details, large-scale layer with obvious edge features,
and base layer with low-frequency information.
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(2) We perform fast approximate bilateral filter on the
infrared or visible input image five times to obtain
the image sequence that is increasingly coarsened.
*en, the two images separated by one image in the
sequence are subtracted to obtain multiple, small-
scale layers. *e large-scale layer is obtained by the
difference between the fourth image and itself after
Gaussian filter.

(3) We put forward the fusion of the base layer by using
local energy characteristics, fusion of the small-scale
layers by using the absolute maximum rule, and
fusion of the large-scale layer by using the sum-
mation rule, so as to retain more local structures and
salient features in the fused image. It transmits most
of the information from the source image to the
composite image, and fusion loss is negligible.

For the purpose of verifying the effectiveness of our
fusion algorithm, we compared it with those of 10 other
infrared and visible fusion methods. Experimental results
show that the image quality fused by our method is high and
superior to similar methods on different IR and VI data sets.
*e organizational structure of this paper is as follows:
Section 2 summarizes the related works of image fusion.
Section 3 describes the proposed fusion algorithm in detail.
Section 4 analyzes the experimental results of our algorithm
compared with several classical algorithms. Finally, Section 5
gives the conclusion.

2. Related Works

In recent years, the advantages of image fusion have been
highly valued by many researchers. Image fusion technology
has developed rapidly in theory. From the weighted average
method to color space, and then to multiscale transfor-
mation, image fusion technology has been developing
rapidly. Generally, image fusionmethods can be divided into
spatial domain-based methods and frequency domain-based
methods according to different space of the fusion process.

*e fusion algorithm, which is based on spatial domain,
refers to the calculation and processing of pixel gray value in
the space composed of image pixels. Such methods mainly
include principal component analysis [5], color space
mapping method and pseudocolor image fusion method [6],
gray or contrast modulation [7], and artificial neural net-
work [8]. *e image fusion algorithm, which is based on
frequency domain, is to analyze and process the information
characteristics of the transform coefficients converted to
frequency domain throughmultiscale transform tools. In the
mid-1980s, Burt and Adelson first proposed the Laplacian
pyramid algorithm [9], which can represent more prom-
inent feature information of images, containing Laplacian
pyramid (LAP) [10], gradient pyramid [11], and contrast
pyramid [12]. However, this method will lose image in-
formation and the decomposition process does not have
directionality. In order to overcome this problem, Mallat
proposed a multiresolution algorithm of wavelet transform
[13], which can obtain not only low-frequency information,
but also horizontal, vertical, and diagonal information of

high-frequency part. Compared with the traditional algo-
rithm based on tower decomposition, the overall fusion
performance of wavelet transform is better. However, due to
the limited direction information obtained by wavelet
transform, some texture and contour features of the image
cannot be accurately captured. *en, Candes and Donoho
proposed curvelets transform (CVT) [14], and Cunha et al.
introduced the nonsubsampled contourlet transform [15],
which overcomes the disadvantage of translation invariance.

With the progress of deep learning in target tracking
[16–19], target detection [20], and image restoration [21],
some algorithms that are based on deep learning have also
appeared in the field of image processing [22, 23]. Compared
with traditional methods, deep learning allows computing
models composed of multiple processing layers to learn data
representation with multiple levels of abstraction. Deep
learning uses backpropagation algorithm to direct how the
machine works, so as to find the complex structure in large
data sets and solve the problem of poor consideration of
handcrafted. Applications in the field of image processing
mainly include CNN [24], GAN [25], Siam network [26],
and automatic encoder [27].

3. Proposed Method

3.1. Overview and Notations. We summarize the main
symbols used in this paper in Table 1. Specifically, we use IR
to represent infrared image, VI to represent visible image,
and FU to represent the fused image. On a special note, Bt

represents the base layer with image type t, where
t ∈ IR, VI, FU{ }, Dn

t is the small-scale layer with image type
t, where t ∈ IR, VI, FU{ }, and n is the filtering times,
n� 1,2,3,4. D5

t is the large-scale layer. If the subscript is not
specifically defined, it can be either an infrared image or a
visible image by default.

*e framework of the proposed algorithm is shown in
Figure 1. At the beginning, we decompose the input image
using fast approximate bilateral filter [28]. *e specific
decomposition process is introduced in the next sections.
*en, we use the absolute maximum selecting rule, the
summation rule, and local energy characteristics to fuse
small-scale layers, large-scale layer, and base layer, respec-
tively. Finally, the fused image is merged with the fused
small-scale layers, the fused large-scale layer, and the fused
base layer. Our method can better suppress the noise in
source images, transfer the valuable detail texture infor-
mation to fused image, and solve the problem of insufficient
visual detail fusion in the fusion process.

3.2. Image Decomposition. We divide the image into three
parts: the base layer containing most of the residual low-
frequency information, the small-scale layer containing
image detail texture information, and the large-scale layer
containing image edge structure. Figure 2 shows the specific
decomposition process. Firstly, the small structure infor-
mation of the source infrared and visible image are re-
peatedly removed by the fast approximate bilateral filter. We
perform fast approximate bilateral filter five times on input
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Table 1: Notation usage in the paper.

Symbol Meaning Symbol Meaning
S Spatial domain R Intensity range domain
A, W... 2D function defined on S a, w... 3D function defined on S × R

p, C... Vectors p ∈ S Pixel position in 2D vector
‖x‖ L2 norm Ap ∈ R Pixel intensity at point p
Gσ 1D Gaussian: x↦ exp(−x2/2σ2) Gσs ,σr

3D Gaussian: (x, ζ)↦ exp(−x · x/2σ2s − ζ2/2σ2r)

Wb Normalization factor σs, σr Standard deviation (space and range)
Bt *e base layer with image type t Dn

t *e small-scale layers with image type t (n� 1, 2, 3, 4)
FU *e fused image D5

t *e large-scale layer with image type t

IR

VI 

Fusion 
rule

Fusion
rule

Fusion 
rule

Fused baselayer BFU

Fused small-scale layers 

Fused large-scale layer D5
FU

Fused image FU

+

BVI

BIR

D5
VI

D5
IR

D1
VI - D4

VI

D1
IR - D4

IR

D1
FU - D4

FU

Figure 1: *e framework of the proposed method.
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image to acquire the gradually coarsened image sequence
I1b, I2b, I3b, I4b, I5b. Experiments show that the effect of five times
filtering is better. *en, the two images separated by one
image in the sequence are subtracted to obtain multiple
small-scale layers D1, D2, D3, D4. Finally, the large-scale
layer D5 is obtained by subtracting I5g from I4b. We can use
this decomposition method to extract fine texture details
from visible image, which is very important for the fusion of
infrared and visible images.

*e initial image I0b is the original visible or infrared
input image. We can think of this process as an iterative
process. *e nth iteration is calculated as follows:

I
n
b � FABF I

n−1
b , I

n−1
b , σs, σr􏼐 􏼑, (n � 1, 2, 3, 4, 5)

D
n

� I
n+1
b − I

n−1
b , (n � 1, 2, 3, 4)

I
n
g � Gaussian I

n−1
b , σs􏼐 􏼑, (n � 5)

D
n

� I
n
g − I

n−1
b , (n � 5),

(1)

where FABF() represents the fast approximate bilateral filter.
In

g is the image obtained after Gaussian filter, σr, σs represent
the standard deviations of the range and spatial Gaussians,
parameter setting as [28]. σs is mainly determined by the
image size, which is set as min(size(size(I0b))/30). σr is
mainly determined by the pixel intensity difference of the
image, which is set as maximum pixel difference of I0b/30. Dn

represents the obtained small-scale layer or large-scale layer,
Guassian(In−1

b , σs) is the Gaussian filter, and scales smaller
than σs structure can be removed by the filter.

Generally, the base layer does not need to retain the
details and edge information of the source image and is the
coarsest layer of the input image. *e base layer is mainly
used to control the appearance and global contrast of image.
When too much detail and edge information is retained in
the base layer, the image will lose some useful information.
In our method, we choose I4b as the base layer.

Figure 3 shows the decomposed layers. (a) and (b) are
infrared and visible images, (c) is the fused base layer, and
(d) is the fused image. *e second row shows the infrared

image, and the third row shows the visible image. (a1)-(d1),
(a2)-(d2) are small-scale layers from infrared and visible
image decomposition. Different small-scale layers contain
different features. It can be seen that the small-scale layer
corresponding to (a1), (a2) mainly contains fine-detail
texture information. From (b1), (b2) to (d1), (d2), the small-
scale layers contain more and more abundant target feature
information, and the hillside, trees, and road information
contained in (d1) and (d2) are the most obvious. (e1), (e2)
are the large-scale layers and (g1), (g2) are the base layers.
We can see that each scale contains a corresponding pro-
portion of content. In short, due to the characteristics of
edge preservation and scale perception, this decomposition
method can reduce the halo and preserve the edge features
well, which is beneficial to the further image fusion.

3.3. Fast Approximate Bilateral Filter. Bilateral filter (BF)
[29] is a filter that can denoise and maintain edges. It is a
nonlinear filter. Because the filter consists of two functions,
one of which determines the filter coefficient through pixel
difference, and the other function determines the filter
coefficient through geometric space distance, the denoising
effect can be achieved. *e advantage of bilateral filter over
ordinary Gaussian low-pass filter [30] is that it considers
both the influence of image position on the center pixel and
the radiation difference in the pixel range. *e filtered
output formula of image A at pixel position p is as follows:

A
bf
p �

1
W

bf
p

􏽘
q∈S

Gσs
(‖p − q‖)Gσr

Ap − Aq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓Aq, (2)

withW
bf
p � 􏽘

q∈S
Gσs

(‖p − q‖)Gσr
Ap − Aq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

(3)

where A
bf
p is the filtered image, W

bf
p represents a normal-

ization factor, σs, σr are the standard deviation of the spatial
Gaussian function and the distance Gaussian function, p, q

–+ –+ –+

–+–+

I5g

I5b

I4bI3bI2bI1bI0b

D2 D4

D1 D3 D5B

Fast approximate
bilateral filtering
Gaussian filtering
Arithmetic operation

Figure 2: Decomposition process of IR and VI.
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represent the pixel coordinates, Ap, Aq represent the pixel
intensity values of pixels p, q, ‖p − q‖ calculates the Eu-
clidean distance of pixels p, q, |Ap − Aq| calculates the ab-
solute value of Ap, Aq, and S is spatial domain.

Bilateral filter (BF) has been widely used in many fields
and proved to be very effective. However, bilateral filter
needs the gray information of each central point neigh-
borhood to determine its coefficients, which leads to its long
running time. In this paper, we suggest decomposing the
original image using fast approximate bilateral filter [28]; we
use a signal processing method, mainly adding the one-
dimensional signal strength to the original domain to form a
high-dimensional space, and downsampling in the high-
dimensional space. *is scheme produces equivalent run-
ning time but significantly improves the accuracy. Next, we
describe the implementation of this method in detail.

Firstly, we rewrite (2) using a two-dimensional vector:

W
bf
p A

bf
p

W
bf
p

⎛⎜⎝ ⎞⎟⎠ � 􏽘
q∈S

Gσs
(‖p − q‖)Gσr

Ap − Aq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
Aq

1
􏼠 􏼡.

(4)

We specify the weight W � 1 to keep the characteristics
of the weighted average value of the bilateral filter:

W
bf
p A

bf
p

W
bf
p

⎛⎜⎝ ⎞⎟⎠ � 􏽘
q∈S

Gσs
(‖p − q‖)Gσr

Ap − Aq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
WqAq

Wq

⎛⎝ ⎞⎠.

(5)

We further promote the interpretation of the above
equation in 3D space. In order to more conveniently define
the sum of the whole three-dimensional space, we added a
new dimension ζ and Kronecker’s symbol σ(ζ) (1 if ζ � 0,0
otherwise), define each point (x, y, ζ) intensity of A, and
rewrite equation (5) using σ(ζ − Aq) � 1; when ζ ≠Aq, the
terms are cancelled:

W
bf
p A

bf
p

W
bf
p

⎛⎜⎝ ⎞⎟⎠ � 􏽘
q∈S

􏽘
ζ∈R

Gσs
(‖p − q‖)Gσr

Ap − ζ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

· σ ζ − Aq􏼐 􏼑
WqAq

Wq

⎛⎝ ⎞⎠.

(6)

Equation (6) is a sum on a product space S × R. *e
product Gσs

Gσr
represents a separable Gaussian kernel gσs

gσr

on S × R:

gσs,σr
: (x ∈ S, ζ ∈ R)↦Gσs

(‖x‖)Gσr
(|ζ|). (7)

*en, we introduce two new functions A and w:

A: (x ∈ S, ζ ∈ R)↦AX, (8)

w: (x ∈ S, ζ ∈ R)↦σ ζ − AX( 􏼁

� σ ζ − AX( 􏼁WX SinceWX � 1.
(9)

We rewrite the right part of (6) according to (8) and (9):

σ ζ − Aq􏼐 􏼑
WqAq

Wq

⎛⎝ ⎞⎠ �
σ ζ − Aq􏼐 􏼑WqAq

σ ζ − Aq􏼐 􏼑Wq

⎛⎝ ⎞⎠

�
w(q, ζ)a(q, ζ)

w(q, ζ)
􏼠 􏼡,

(10)

with definition (10), we get

W
bf
p A

bf
p

W
bf
p

⎛⎜⎝ ⎞⎟⎠ � 􏽘
(q,ζ)∈S×R

gσs,σr
p − q, Ap − ζ􏼐 􏼑

·
w(q, ζ)a(q, ζ)

w(q, ζ)
􏼠 􏼡.

(11)

(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a) (b) (c) (d)

Figure 3: Decomposition of IR andVI. (a) IR. (b) VI. (c) Fused base layer. (d) Fused image: small-scale layers, large-scale layers, and base layers.
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*e value of the above formula at point (wa, w) is as
follows:

W
bf
p A

bf
p

W
bf
p

⎛⎜⎝ ⎞⎟⎠ � gσs,σr
⊗

wa

w
􏼠 􏼡􏼢 􏼣 p, Ap􏼐 􏼑, (12)

where ⊗ represents convolution operation. On the basis of
the above formula, we introduce the functions abf and wbf:

w
bf

a
bf

, w
bf

􏼐 􏼑 � gσs,σr
⊗ (wa, w)􏽨 􏽩. (13)

*erefore, the bilateral filter is represented as convo-
lution operation, and then we perform nonlinear operation:

w
bf

a
bf

, w
bf

􏼐 􏼑 � gσs,σr
⊗ (wa, w), (14)

A
bf
p �

w
bf

p, Ap􏼐 􏼑a
bf

p, Ap􏼐 􏼑

w
bf

p, Ap􏼐 􏼑
. (15)

In fact, the nonlinear part consists of two operations.*e
first operation is slicing, that is, evaluating the function of
wbfabf and wbf at point (p, Ap). *e second is division. In
our case, the slice and segmentation results are independent
of their corresponding position order.

3.4. Image Reconstruction

3.4.1. Base Layer Fusion. *e traditional average fusion rules
cannot effectively fuse the information of base layer of source
images, which leads to the loss of some low-frequency infor-
mation. We preserve more image information by fusing local
energy characteristics to obtain better visual effect. *e gray
value of the image is what we call energy. In this paper, we

define energy as the weighted average gray value of a region.
*e greater the gray value, the higher the energy of the image.
For image fusion, each image has good parts and bad parts,
what we need to do is to extract the good parts of each image.
As can be seen in Figure 3 (f1), the human information is more
prominent, so the energy is greater. In Figure 3 (f2), there is
strong-detail texture information in the left corner of the
image, and the energy in this area is greater. When fusing, we
choose the part with large energy in the local region for fusion,
the fused image contains most of the useful information of the
original image.*e fused base layerBFU is calculated as follows:

BFU(p, q) � max
t∈ IR,VI{ }

􏽘

m

k�1
􏽘

n

l�1
W(k, l)∗ Bt(p + k, q + l)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭,

(16)

where k and l define the size of the region, Bt is the base layer
of IR or VI. (p, q) is the central point of the neighborhood. In
this paper, we set m� n� 3, and W is the weight template,
expressed as follows:

W �
1
16

1 2 1

2 4 2

1 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

3.4.2. Small-Scale Layers Fusion. At the small-scale level, we
select all decomposition levels from n� 1 to n� 4. *e ab-
solute maximum selection rule is used to integrate all im-
portant texture features and edge intensity into the fused
small-scale layers. *e formula is given by

D
n
FU(p, q) �

D
n
IR(p, q), D

n
IR(p, q)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> D

n
VI(p, q)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

D
n
VI(p, q), otherwise

(n � 1, 2, 3, 4),
⎧⎨

⎩ (18)

where Dn
FU is the fused small-scale layer image, (p, q)

represents the corresponding position of Dn
IR, Dn

VI, and Dn
FU,

and n denotes the number of decomposition levels.

3.4.3. Large-Scale Layer Fusion. At the large-scale level, we
only select the bottom layer of decomposition (n� 5). Most
of the feature information contained in them does not
overlap due to the different imaging principles of infrared
and visible images. It can be seen from Figure 3 (e1), (e2)
that the two layers have a large amount of supplementary
information. Obviously, using the weighted average method
will lose large amounts of important information.*erefore,
we use the summation rule to fuse the large-scale layers to
prevent information loss. *e formula is as follows:

D
n
FU(p, q) � w1D

n
IR(p, q) + w2D

n
VI(p, q) (n � 5), (19)

where w1, w2 are the weight values of Dn
IR and Dn

VI, re-
spectively. We choose w1 � 1 and w2 � 1 to save more image

information. In order to show the superiority of using
summation rule to fuse large-scale layer, we compare it
with absolute maximum selection rule and weighted av-
erage rule and use API [31], SD [32], AG [32], and EN [33]
to measure the quality of these three methods. It can be
easily seen from Table 2 that except that the API is slightly
lower than the absolute maximum selection rule, the fusion
result obtained by the summation rule is better in per-
formance indicators.

3.4.4. Image Composition. Finally, the decomposition in-
formation at all levels is fused to obtain the fused image FU
and is given by

FU � BFU + 􏽘
N

n�1
D

n
FU (n � 5). (20)

*is process is briefly introduced in Algorithm 1.
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4. Results and Discussion

4.1. Experimental Setup. For the purpose of verifying the
effectiveness of our fusion algorithm, we compared it with
those of 10 other latest infrared and visible fusion methods,
containing lp [9], CVT [14], NSCT [34], DTCWT [35], MSVD
[36], TIF [37], VSM-WLS [38], FPDE [39], MGFF [40], and
GTF [41] methods. All the experimental parameters of these
ten algorithms are set on the basis of the original paper.

In our experiments, the test images are obtained from
the TNO_Image_Fusion_Dataset. Five pairs of infrared and
visible images of different scenes are used. All the experi-
ments in this paper are implemented in MATLAB (2017b),
using an Intel® Core™ I5–10210U CPU.

4.2. Qualitative Evaluation. *e visual perception quality
comparison of Camp, Road, Keptein, Meting, and Steamboat
data sets are shown from Figures 4 to 8. Among them, (a) is
infrared image, (b) is visible image, (c)-(l) are the results of
compared methods, and (m) is the proposed method. To see
the difference more distinctly, we mark a rectangle in the fused
image; what we can see is that our method transfers most of the
important background and details to the fused image, the
important infrared structure information is properly retained,
and the image noise is also reduced. Figure 4 is a fusion ex-
ample on the “Camp” image. In the red rectangle, we can
observe that the fence information presented byMSVD, FPDE,
and GTF methods are fuzzy and difficult to identify. In

contrast, our method has clearer fence texture details and
reduces the interference of noise to a certain extent.

In Figure 5, we can find that our method has more ad-
vantages when we obtain some detail features from the source
image under weak light conditions because we improve the
overall brightness of the image, while other methods obviously
do not achieve good visual results. Among them, FPDE and
NSCT have fusion artifacts, and the characters of NSCT,
MSVD, and TIF are not clearly displayed.

In Figure 6, our method makes the edge structure of tree
branches vivid and the ground texture information clear. In
contrast, DTCWT, CVT, and TIF have distorted artifacts
due to the influence of incorrect introduction of visible light
information; the overall images of lp, MSVD, and GTF are
dark and spectral features are not rich enough.

In Figure 7, our method can accurately fuse the obvious
person information of the infrared image and the brick hole
structure detail on both sides of the visible image. It can be
seen from the figure that MSVD, VSM-WLS, FPDE, and GTF
tend to produce some unnatural artifact information. Because
the brightness difference between source images is large, and
these methods cannot effectively suppress noise, they are
difficult to show a clear hole structure. Overall, our method
can produce better fusion results. Similarly, as shown in
Figure 8, for the “steamboat” image, our method has better
contour and contrast and improves the clarity of the image.

4.3. Quantitative Evaluation. It is difficult for human vision
to distinguish small differences in images. *us, it is un-
reliable to evaluate the effect of fused image only from the
qualitative evaluation.*e quality of image fusion also needs
quantitative analysis. For quantitative evaluation, we use
four indicators to evaluate the fusion accuracy. *e formula
of these indicators is defined as follows:

(1) Average pixel intensity (API) or mean u is the
arithmetic mean of the gray values of all pixels in
the image and is calculated by u � 􏽐

M
i�1 􏽐

N
j�1 H(i, j)/

M × N, where M × Nis the size of the image and
H(i, j) is pixel intensity.

(2) Standard deviation (SD) is the dispersion of image
gray relative to the mean, which is used to evaluate
the size of image contrast and is calculated by SD ���������������������������

􏽐
M
i�1 􏽐

N
j�1 [H(i, j) − u]2/M × N

􏽱
.

(3) Average gradient (AG) can sensitively reflect the
expression level of image contrast to small details
and is calculated by

AG �
1

(M − 1)(N − 1)
􏽘

M−1

i�1
􏽘

N−1

j�1

·

����������������������������������������

(H(i + 1, j) − H(i, j))
2

+(H(i, j + 1) − H(i, j))
2

2

􏽳

.

(21)

(4) Entropy (EN) is mainly an objective evaluation index to
measure the amount of information contained in image

Table 2: *e qualitative evaluation results of different fusion
methods in large-scale layer.

Method API SD AG EN
Absolute maximum selection rule 112.10 35.79 14.13 7.06
Weighted average rule 112.09 34.48 13.10 7.03
Summation rule 112.09 35.95 14.19 7.07

Input: IIR, IVI
Output: FU
1) I0b � IIRor IVI
2) Image decomposition

for n� 1,2,3,4,5 do
In

b � FABF(In−1
b , In−1

b , σs, σr)

end for
I5g � Gaussian(I4b, σs)

for n� 1,2,3,4 do
Dn � In+1

b − In−1
b

end for
D5 � I5g − I4b

3) Image fusion
*e fused base layer is obtained by (16)
for n� 1,2,3,4 do
*e fused small-scale layers are obtained by (18)
end for
*e fused large-scale layer is obtained by (19)

4) *e fused image is obtained by (20)

ALGORITHM 1: Image decomposition and reconstruction.
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m)

Figure 4: Experiment on “Camp” images. (a) Infrared image. (b) Visible image. (c) NSCT. (d) lp. (e) DTCWT. (f) CVT. (g) MSVD. (h) TIF.
(i) VSM-WLS. (j) FPDE. (k) MGFF. (l) GTF. (m) Proposed.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m)

Figure 5: Experiment on “Road” images. (a) Infrared image. (b) Visible image. (c) NSCT. (d) lp. (e) DTCWT. (f) CVT. (g) MSVD. (h) TIF.
(i) VSM-WLS. (j) FPDE. (k) MGFF. (l) GTF. (m) Proposed.

(a) (b) (c) (d) (e)

Figure 6: Continued.
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(f ) (g) (h) (i) (j)

(k) (l) (m)

Figure 6: Experiment on “Keptein_1123” images. (a) Infrared image. (b) Visible image. (c) NSCT. (d) lp. (e) DTCWT. (f) CVT. (g) MSVD.
(h) TIF. (i) VSM-WLS. (j) FPDE. (k) MGFF. (l) GTF. (m) Proposed.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 7: Experiment on “Meting055” images. (a) Infrared image. (b) Visible image. (c) NSCT. (d) lp. (e) DTCWT. (f) CVT. (g) MSVD. (h)
TIF. (i) VSM-WLS. (j) FPDE. (k) MGFF. (l) GTF. (m) Proposed.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 8: Continued.
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(k) (l) (m)

Figure 8: Experiment on “Steamboat” images. (a) Infrared image. (b) Visible image. (c) NSCT. (d) lp. (e) DTCWT. (f) CVT. (g) MSVD. (h)
TIF. (i) VSM-WLS. (j) FPDE. (k) MGFF. (l) GTF. (m) Proposed.

Table 3: *e qualitative evaluation results of different fusion methods.

Source images Index NSCT lp CVT DTCWT MSVD TIF FPDE VSM-WLS MGFF GTF Proposed

Camp

API 91.09 90.82 91.09 91.08 91.09 90.92 91.59 91.07 91.04 98.06 112.09
SD 27.11 29.13 26.96 26.28 22.87 29.25 23.13 24.10 32.01 26.86 35.95
AG 7.80 8.08 7.79 7.47 6.59 7.61 6.15 7.14 8.89 6.08 14.19
EN 6.55 6.66 6.53 6.48 6.26 6.64 6.29 6.35 6.80 6.67 7.07

Road

API 51.90 52.48 51.90 51.90 51.90 52.34 52.39 51.88 51.86 80.19 84.28
SD 26.49 31.89 25.40 25.49 21.50 30.35 22.20 22.91 32.49 29.78 41.20
AG 6.12 6.36 6.10 6.05 5.23 5.82 7.89 5.54 6.45 4.12 10.26
EN 6.19 6.47 6.17 6.16 5.95 6.41 6.07 6.01 4.94 6.62 7.00

Kaptein_1123

API 82.18 82.18 82.18 82.18 82.10 82.15 82.61 82.10 82.23 84.30 111.02
SD 36.28 36.28 36.28 36.28 31.62 36.61 31.73 32.24 36.72 38.17 53.51
AG 6.95 6.95 6.95 6.95 5.83 6.33 5.86 6.51 7.86 4.58 12.04
EN 6.78 6.78 6.78 6.78 6.55 6.84 6.61 6.63 6.87 6.96 7.34

Meting055

API 127.80 127.64 127.80 127.80 127.80 127.81 128.28 127.82 127.74 130.90 147.91
SD 24.48 26.39 24.28 24.29 20.30 25.84 21.07 22.53 25.74 20.94 33.53
AG 10.83 10.90 10.83 10.84 6.88 9.15 9.90 10.49 10.29 10.30 17.66
EN 6.49 6.57 6.49 6.48 6.32 6.57 6.39 6.42 6.63 6.14 6.92

Steamboat

API 110.92 110.92 110.92 110.91 110.92 110.94 111.42 110.91 110.96 91.73 140.22
SD 12.65 14.07 12.47 12.32 10.69 13.17 10.78 11.27 14.17 33.95 22.10
AG 3.85 3.90 3.88 3.78 3.19 3.53 3.10 3.49 4.18 1.89 6.73
EN 5.16 5.31 5.21 5.14 4.93 5.23 4.97 5.01 5.33 6.44 6.27
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Figure 9: Bar comparison of average API, SD, AG, and EN values of five IR and VI image datasets of various fusion methods.
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and is calculated by EN � −􏽐
255
i�0pilog2(pi), where i is

the gray value andpi is the gray probability distribution.

For all the four metrics, the higher the objective indexes
API, SD, AG, and EN are, the better the fusion effect will be.

*e quantitative comparisons of the experimental results
are presented in Table 3, and we show the maximum value in
bold among different algorithms. It can be seen from the
table that our method has higher fusion quality indicators
than other methods in terms of fusion quality indexes API,
SD, AG, and EN and has good correlation with the results of
visual comparison.

In order to more intuitively show the advantages of the
proposed method, we obtained the average value of each index
of five groups of pictures (Camp, Road, Keptein, Meting, and
Steamboat) and obtained the bar statistical chart of four in-
dexes. As shown in Figure 9, it can be seen that the perfor-
mance of the proposed method is the best among all indexes.
We also record the run time of different fusion methods for
each group of images. As shown in Table 4, our method is
slightly slower, which is where we will further improve.

5. Conclusions

In this paper, an infrared and visible image fusion algorithm
based on fast approximate bilateral filtering and local energy
characteristics is proposed. *e image decomposed by fast
bilateral filter is smoother and contains less noise. According to
the characteristics of each decomposition layer, we use different
fusion regulation to fuse the decomposed image, which not
only avoids the information loss of the traditional fusion rules,
but also enriches the visual information of the fused image. On
most occasions, the image looks more natural and contains less
artificial information. Experimental results fully illustrate the
superiority of the proposed algorithm. *e comparison with
other 10 fusion methods shows that our algorithm can better
describe the most significant information in the image, im-
prove the overall contrast of the image, and maintain the
information of the source image to the greatest extent.
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