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With the development of broadband networks and high-definition displays, people have higher expectations for the quality of
video images, which also brings new requirements and challenges to video coding technology. Compared with H.265/High
Efficiency Video Coding (HEVC), the latest video coding standard, Versatile Video Coding (VVC), can save 50%-bit rate while
maintaining the same subjective quality, but it leads to extremely high encoding complexity. To decrease the complexity, a fast
coding unit (CU) size decision method based on Just Noticeable Distortion (JND) and deep learning is proposed in this paper.
Specifically, the hybrid JND threshold model is first designed to distinguish smooth, normal, or complex region. *en, if CU
belongs to complex area, the Ultra-Spherical SVM (US-SVM) classifiers are trained for forecasting the best splitting mode.
Experimental results illustrate that the proposed method can save about 52.35% coding runtime, which can realize a trade-off
between the reduction of computational burden and coding efficiency compared with the latest methods.

1. Introduction

With the increasing requirements for high quality videos, the
Joint Video Experts Team (JVET) developed a new gener-
ation of video coding standards based on H.265/High Ef-
ficiency Video Coding (HEVC), namely Versatile Video
Coding (VVC). How to reduce the coding complexity and
save coding time on the basis of ensuring the quality of video
coding has become a hot issue in the current video coding
field.

Since the highly dense data brings huge challenges to
bandwidth and storage, and the previous generation video
coding standards are insufficient to fulfill the compression
capacity of the future market, therefore, the VVC has
appeared. *e VVC that has good network adaptability,
parallel processing capability, and compression efficiency is
the latest video coding standard after HEVC. In addition, the
VVC is formulated for 4K/8K video, and a bit-depth is 10-
bit. *e VVC extends the original partition structure, intra/
interprediction, filtering, transformation, quantization/
scaling, and entropy coding of the HEVC. Moreover, con-
sidering the characteristics of VVC, new prediction

techniques are added, such as the quad-tree with nested
multitype tree (QTMT) structure and other coding tools [1].
*e usage of many advanced coding techniques greatly
improves the compression efficiency of VVC but leads to a
significant increase in the coding computational complexity
[2, 3]. For example, the computational complexity of VTM is
19 times that of HM in “all-intra” configuration [4].
*erefore, how to reduce the complexity and efficiently
compress large amounts of data has become an important
issue in the practical application of VVC.

*e partition structure for VVC and HEVC is a sig-
nificant distinction. Since quad-tree (QT) partition structure
is only allowed in HEVC, the width and height of coding unit
(CUs) are equal (width and height� 64, 32, 16, or 8); it
means that CUs shape can only be square [5]. Furthermore,
one of the linchpin characteristics in HEVC is the concept of
multiple partitions, including CU, prediction unit (PU), and
transform unit (TU). *e multitype tree (MTT) architecture
allows the asymmetric partition in VVC, which contains
binary tree (BT) and ternary tree (TT) splitting. *eoreti-
cally, CU size can be any combination of 128, 64, 32, 16, 8, or
4. Additionally, due to the introduction of intra-subpartition
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(ISP) technique, even smaller length (2 or 1) exists in VVC.
*us, the MTT partition structure supports more CU sizes
than the QT partition structure, thereby obtaining more
efficient coding performance. It is worth noting that the
allowed CU sizes may be inconsistent with the theory in
practical applications. *e CU shape has square or rect-
angular shape in the coding tree structure of VVC. *e
coding tree units (CTUs) are first used in the QT partition
structure to generate four QT leaf nodes.*en, the leaf nodes
of QT are further divided by the MTT partition structure.
Figure 1 shows four types of splitting in the MTT structure
including horizontal BT (BT_H), vertical BT (BT_V),
horizontal TT (TT_H), and vertical TT (TT_V). In most
cases, the CU, PU, and TU have the same size in the QTMT
partition structure. *e exception occurs when the maxi-
mum supported transform size is smaller than the width or
height of the color component of the CU.

*e remainder of the paper is organized as follows: the
related works are introduced in Section 2. Section 3 describes
the proposed method. Section 4 provides the experimental
results and analysis. Finally, Section 5 concludes this paper.

2. Related Works

At present, the research on the VVC for coding mainly
focuses on the intraprediction, which is manifested in the
early termination of the CU division. To solve this problem,
many works are proposed for fast CU size decision. An early
determination method for VVC is proposed in [6], which
can skip redundant MTTpruning and effectively reduce TT
complexity, where the TT characteristics are defined in the
VVC encoding context. A fast CU splitting approach is
developed in [7], which can implement early termination.
Chen et al. design a novel fast CU splitting method for the
performances, which can balance the performance and
complexity [8]. A deep Convolutional Neural Networks
(CNN) model-based fast QT partition method is developed
in [9] to forecast CU splitting mode, which considerably
enhances performance. A fast MTT decision method is
designed in [10], which can decrease computational com-
plexity and maintain compression performance. Specifically,
the splitting decision mode can be early decided by com-
paring the pixel difference of subblocks (SBPD) in horizontal
and vertical subblocks so as to skip some redundant splitting
modes. A fast method is devised based on spatial features in
[11], where spatial features are used for early termination. In
[12], a novel fast CU partition method is developed based on
Bayesian to encounter huge computational burden. Chen
et al. present a fast intrapartition method based on variance
and gradient for decreasing coding complexity [13]. In [14],
an adaptive CU splitting method based on the pooling-
variable CNN is presented to decrease the coding time. A
lightweight and tunable quad-tree plus binary tree (QTBT)
structure method is developed based on Machine Learning
(ML) in [15] to decrease the coding complexity. To reduce
coding complexity, Dong et al. propose a fast method for
VVC including mode selection and prediction terminating,
which can decrease coding runtime [16]. Yang et al. in-
troduce a fast intramethod including the low-complexity

coding tree units (CTU) structure decision and fast intra-
mode decision with gradient descent search [17]. In our
previous works [18, 19], we proposed fast intramethod based
on random forest classier and Directed Acyclic Graph
Support Vector Machine (DAG-SVM) to reduce the com-
plexity while maintaining the coding efficiency. Although
the above methods can reduce the coding time, these
methods do not consider the impact of human visual
characteristics in the encoding procedure.

*e purpose of visual perception coding is to use human
visual system (HVS) characteristics to eliminate information
that the human eye cannot perceive as much as possible and
to provide better visual perception quality with fewer bit
resources. To this end, researchers have proposed a large
number of visual perception coding methods. A novel
discrete cosine transform-based energy-reduced JND model
(ERJND) is presented in [20] for perceptual video coding.
Reference [21] designs a JND-based perceptual rate control
method for HEVC, which can achieve significantly im-
proved coding performance. In [22], a JND compensation
based perceptual video coding (PVC) method is designed to
compress videos with better perceptual quality. A deep-
learning-based Picture-Wise Just Noticeable Difference
(PW-JND) prediction model is developed in [23] for image
compression. A PVCmethod with visual saliency modulated
JND model is introduced in [24]. Recently, Shen et al. have
introduced a JND guided perceptually lossless coding
framework [25]. Shen et al. devise an effective method to
infer the JND profile based on patch-level structural visi-
bility learning [26].

Traditional methods mainly use techniques such as in-
tra- and interprediction and entropy coding to eliminate
redundant information to improve the rate-distortion (RD)
performance [27]. However, traditional video coding
methods do not fully consider the characteristics of the HVS.
*erefore, how to effectively use the HVS to optimize the
existing coding method has important theoretical signifi-
cance and application value. A fast CU partitioning method
based on visual perception characteristics is designed in this
paper, which comprehensively considers multiple visual
factors, such as visual mode complexity, spatial contrast
masking (CM), luminance adaptation, and the disordered
concealment effect of the free energy principle, and forms a
hybrid JND model based on these visual characteristics.
*en, based on the hybrid JNDmodel, the CUs are separated
into smooth, ordinary, and complex area. If CU is divided
into complex area, the CUs utilize the trained Ultra-
Spherical SVM (US-SVM) US-SVM classifier to decide the
best splitting mode. Only K − 1 US-SVMs need to be trained
for VVC, thereby eliminating regions belonging to multiple
categories in the decision and reducing the total number of
training samples accordingly. Finally, the proposed method
can reduce the coding time and complexity.

3. TheMethodBasedon JNDandDeepLearning

3.1. Hybrid JNDModel. *e JNDmodel is usually utilized to
depict the minimum perceptible distortion threshold of
HVS, and it is an effective measure of visual redundancy of
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video images. Generally, the following three visual factors
are mainly considered when modeling the JND threshold,
including luminance adaptation, that is, the masking of HVS
due to changes in background brightness; CM, that is, the
masking of HVS due to spatial inhomogeneity; and contrast
sensitivity function, that is, the masking of HVS due to
frequency changes. On the basis of related literature,
comprehensive consideration of visual factors such as spatial
masking effect based on visual pattern complexity and CM,
luminance adaptation, and disordered concealment effect
based on the principle of free energy, a hybrid JND threshold
model is designed to better describe the visual distortion
sensitivity of the image area.

It has been pointed out in the literature that the HVS
tends to extract repeated visual content for analysis and
comprehension, and it will also encode corresponding visual
patterns for the content forecast as an important feature of
image scene content [28]. In the regular pattern, the image
scene provides a simple and intuitive element organization
and arrangement mode, and its visual interaction with the
human eye is relatively direct; the visual masking effect is
weak at this time. In the irregular pattern, the corresponding
arrangement mode and the visual interaction of the human
eye are relatively complicated, and a strong visual masking
effect is involved at this time [29]. It can be seen that the
effective measure of the visual masking effect is the com-
plexity of the visual pattern. Figure 2 shows an example of
pattern complexity.

In the primary visual cortex, HVS shows obvious di-
rection selectivity and the extracted direction information
will be used to represent the image structure. *erefore, the
direction information drawn from the image content is
utilized to describe the complexity of the image mode.
Studies have shown that HVS has obvious directional se-
lectivity in the primary visual cortex. *e extracted direction
information will be used to represent the image structure
and can describe the complexity of the image mode. Gen-
erally speaking, the complex mode usually contains a richer
directional distribution, while the simple mode only con-
tains a limited single directional distribution. Accordingly,
the distribution of the gradient direction in the local image
area [30] is used to indicate the corresponding visual pattern
complexity (PC):

PC(x, y) � 
N

k�1
Hk(x, y)

����
����0, (1)

where N refers to the quantized value range, H is the
distribution histogram in the 5×5 neighborhood around

(x, y), and ‖ · ‖0 denotes the L0 norm that is mainly used to
measure the number of nonzero elements in a vector.

According to the above content, the complexity of the
visual pattern of the image area can be used as an effective
measure of the visual masking effect. *erefore, the com-
bined CM effect can be used to better describe the degree of
visual masking in space. Here, the spatial perception factor
based on CM is used as a supplement to the complexity of
the abovementioned visual mode:

CM(x, y) �

�������������������������

Gradh(x, y)



2

+ Gradv(x, y)



2



, (2)

where Gradh(x, y) is the gradient value of the point (x, y) in
the horizontal direction and Gradv(x, y) is the gradient value
of the point (x, y) in the vertical directions. Generally
speaking, the above two kinds ofmasking characteristics show
different masking effects in different image scenes and have
certain complementarity. For example, the contrast masking
may play a major role in relatively regular edge areas; the
pattern masking may become the main factor in irregular
areas. Consequently, the maximum value of the two masking
components in different situations is utilized as the final
measurement result of the spatial visual masking (VM):

VM(x, y) � max PC(x, y), CM(x, y) , (3)

In addition, HVS usually also shows different visual
sensitivity to different background brightness, which is
called Luminance Adaptation (LA). *e visibility thresholds
are different under different brightness backgrounds. Spe-
cifically, when the background brightness is lower than 127,
the visibility threshold changes as a power function with the
increase of the background brightness; when the back-
ground brightness exceeds 127, the visibility threshold
changes linearly with the increase of the background
brightness. *e visibility threshold generated by the lumi-
nance adaptation is modeled as a piecewise function based
on the background brightness:

LA(x, y) �

1 −

������
B(x, y)

127



  × 17, B(x, y)≤ 127

(B(x, y) − 127) ×
3
128

+ 3, B(x, y)> 127

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where B(x, y) refers to the brightness of background area of
the image; it can be calculated by the average brightness of
the pixels in the 5× 5 neighborhood around the point (x, y),
as shown in Figure 3.

BT_H BT_V TT_H TT_V

Figure 1: *e partition modes of MTT structure.
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After obtaining the VM and LA and other visual
characteristic components, the nonlinear additivity model
for masking (NAMM) is utilized to combine these visual
characteristic components to form a perceptual JND
threshold model:

JNDp(x, y) � LA(x, y) + VM(x, y)

− α · min LA(x, y), VM(x, y) ,
(5)

where α represents the gain loss parameter caused by overlap
between these visual characteristic components, which is 0.3.

HVS can accurately forecast ordered visual stimuli rel-
atively easily based on the free energy principle and will do
further analysis and understanding. However, it is difficult to
accurately predict disordered information that is complex,
chaotic, and uncertain. HVS usually ignores the detailed
information and only extracts its main outline structure. For
example, straight lines or stripes in a uniform background
generally have strong certainty, so HVS can easily detect any
changes on the straight line. However, there is greater
uncertainty in the changes of image elements in disorderly
grass and other similar scenes. At this time, HVS usually
automatically ignores the details in the disordered image, so
the human eye will not easily perceive the detailed grass.
*erefore, another important factor that decides the JND
threshold is the disordered concealment effect.

It can be seen from the above analysis that the content
changes of ordered images are regular and predictable, while
it is sudden and unpredictable in disordered images. *us,
the disordered image denotes the uncertainty part of the
original image. If sample value of the disordered image is
large, it means that the corresponding original information

has a high degree of uncertainty and can hide more noise
and distortion. *e existing pixel domain-based JND
threshold estimation model performs well and estimates
more accurately in ordered areas, such as flat, edge, and
ordered texture areas, but underestimates JND threshold of
disordered areas, such as disordered texture area. *erefore,
in response to this shortcoming, the JND threshold based on
the disordered concealment effect is calculated which is
similar to [31]

JNDd(x, y) � μ × f(x, y) − f′(x, y)


 � μ · D(x, y),

f′(x, y) � 
k

ck · f xk, yk(  + ε, (6)

where f(x, y) denotes the original image of video, f′(x, y)

represents order information in the input image, ck denotes
the k-th normalized autoregressive coefficient in the 11× 11
neighborhood around the point (x, y), and ε is white noise.
D(x, y) refers to unordered image, and μ represents the
disorder adjustment factor, with a value of 1.125.

After obtaining the JND threshold component obtained
from the disordered concealment effect, the NAMM is used
to combine JNDp and JNDd to form the final hybrid JND
threshold model:

JND(x, y) � JNDp(x, y) + JNDd(x, y)

− α · min JNDp(x, y), JNDd(x, y) ,
(7)

where JNDp and JNDd denote JND threshold for unordered
image and ordered image. *e hybrid JND threshold model
further considers the complexity of the visual pattern and the
disordered concealment effect on the basis of CA and LA. It
makes up for the shortcomings of traditional models that
cannot effectively estimate the ordered texture and random
texture of the image. *erefore, the JND threshold of the
image region is utilized as an effective measure of visual
distortion sensitivity.

3.2. .e Proposed Method. *is paper proposes a fast CU
decision method based on JND and deep learning to reduce
the coding complexity introduced by the MTT splitting
structure. First, the hybrid JND threshold models are
designed by a perceptual JND threshold model and a JND
threshold based on the disordered concealment effect, which

(a) (b)

Figure 2: Example of pattern complexity (left: regular pattern, right: irregular pattern). (a) Input image. (b) Pattern complexity map.
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Figure 3: Low-pass filter.
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can divide the CUs into smooth, normal, and complex area.
*en, the US-SVM classifiers are utilized to decide the best
splitting mode for CUs in the complex area.

Specifically, the CU splitting in VVC is regarded as a six-
class classification problem (class 1: nonsplit, class 2: QT,
class 3: BT_H, class 4: BT_V, class 5: TT_H, class 6: TT_V),
and the number of the training US-SVM classifiers is five. To
train first US-SVM classifier SVM1, class 1 is utilized as
positive training samples, and classes 2, 3, 4, 5, and 6 of
training samples are used as negative training samples. By
analogy, the fourth US-SVM takes class 4 as the positive
sample, and classes 5 and 6 are used as the negative training
samples. In order to train the fifth US-SVM classifier SVM5,
class 5 and class 6 are used as the positive samples and the
negative samples, respectively. *erefore, only K − 1 US-
SVMs need to be trained, thereby eliminating regions be-
longing to multiple categories in the decision and reducing
the total number of training samples accordingly. Finally,
the proposed method can reduce the coding time. Figure 4
illustrates the overall flowchart of the proposed method.

3.2.1..e Region Classification-Based JND. According to the
above analysis, the larger JND value is, the richer the re-
gional texture information is; that is, it has higher com-
plexity and stronger spatial masking effect. Consequently,
HVS is not sensitive to noise and distortion in these areas.
On the contrary, if JND value is smaller, it demonstrates that
these areas are relatively flat and regular, and the organi-
zation of image elements tends to be orderly. At this time,
HVS is more sensitive to noise and distortion in these areas
because of the weaker visual masking effect. *us, the JND
threshold of image is used as an effective measure of visual
distortion sensitivity.

It is noticed from Figure 5(b) that the higher grayscale
values appear in areas with higher complexity, such as grass and
other areas with more complex textures. *ese areas generally
have higher JND threshold, the visual masking effect is more
significant, and the encoding distortionwill not be easily noticed
by the human eye. *erefore, a smaller bitrate is allocated to
obtain the same visual quality as the original one in the coding
process. On the contrary, these areas with low gray values
generally have a lower JND threshold, such as flat and smooth
background areas. Since HVS is more sensitive to coding
distortions in these areas, more bitrates need to be allocated in
the encoding process to ensure that the visual quality will not be
significantly affected. Figure 5 shows the original image and
corresponding JND threshold distribution map.

*is paper designs fast CU splitting method based on
JND and deep learning to reduce the coding time, which can
reduce complexity. Specifically, the JND threshold mode is
utilized to divide each CU into smooth, ordinary, or complex
area,

JND≤ S, smooth region

S< JND<C, ordinary region

JND>C, complex region

,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where S and C denote content weight factor, which are set to
0.15 and 0.30 based on extensive experiments, respectively.

3.2.2. .e Proposed US-SVM Classifier. Many multiclass
related methods have been proposed, which have some
shortcomings. Recently, it is noted that the US-SVM clas-
sifier shows good characteristics in practical applications.

For K-class (K> 2) classification problem, the number of
the US-SVMs classifiers is K − 1. To train the first US-SVM
SVM1, class 1 sample is used as the positive training sample,
and class 2, 3, . . . , K training samples are used as negative
training samples. To train SVMi, class i samples are used as
the positive training samples in the i − th US-SVM, and class
i + 1, i + 2, . . . , K training samples are used as the negative
training sample. Until class K − 1 is taken as a positive
sample in K − 1 US-SVM, and class K sample is used as a
negative sample to train SVMK− 1. Finally, these US-SVM
classifiers are utilized to decide CU partition mode. Spe-
cifically, the proposed method for VVC needs five US-SVM
classifiers. To train first US-SVM classifier SVM1, class 1 is
used as positive training samples, and classes 2, 3, 4, 5, and 6
of training samples are used as negative training samples. By
analogy, the fifth US-SVM SVM5 utilizes class 5 as the
positive samples, and class 6 is utilized as the negative
samples. *erefore, the proposed method can eliminate
regions belonging to multiple categories in the decision and
reduce the total number of training samples accordingly.

Specifically, the SVM1 is used as the root node of the
binary tree, and the test samples belonging to the first class
are determined. *e samples that do not belong to the first
class are classified by SVM2, and SVM5 determines the fifth
class sample. Figure 6 shows the classification based on the
binary tree. Specifically, since the MTT structure is intro-
duced in VVC, the CU splitting problem is considered a six-
class classification problem. *erefore, five US-SVM clas-
sifiers are trained in this paper.

3.2.3. .e US-SVM Classifier Training. *e US-SVM clas-
sifier model is tested utilizing the UHD test sequence. Table 1
shows the training and testing sequences. To decrease the
complexity, the offline mode is utilized in the US-SVM
classifier. *e F-score features selecting method chooses the
features of video sequences, where these features have high
correlation with CU splitting. *e F-score value is expressed
as

Fi �
x

(+)
i − xi 

2
+ x

(− )
i − xi 

2

1/n+ − 1
n+

l�1 x
(+)
l,i − x

(+)
i 

2
+ 1/n− − 1

n
l�1 x

(− )
l,i − x

(− )
i 

2, (9)
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where xi is the average value of the i − th feature in the entire
sample set, n+ is the quantity of samples in the positive class,
n− is the quantity of samples in the negative class, x

(+)
i is the

average value of the i − th feature in the positive sample set,
x

(− )
i is the average value of the i − th feature in the negative

sample set, x
(+)
l,i is the eigenvalues of the i − th feature of the

l − th positive sample point, and x
(− )
l,i is the eigenvalues of the

i − th feature of the l − th negative sample point. In order to
balance the accuracy and the complexity in training US-
SVM, three effective features are selected to train US-SVM
through the F-score feature selection method in this paper.

*e US-SVM classifiers use offline training mode. *en,
the trained US-SVM classifiers are embedded in VTM10.0 to
classify CU. And the classification accuracy of the US-SVM
classifier is about 95.6%. *erefore, the proposed method
can early predict the best CU partition mode to reduce the
coding complexity with negligible BD loss.

4. Experimental Results and Analysis

*e experimental test is implemented on VTM 10.0 under
“all-intra” configuration to evaluate the performance of the
proposed method. *e test set consists of the common test
conditions (CTC) [32] sequence specified by JVET, which

contains a wide range of resolutions, textures, bit depths, and
motion. *e Bjontegaard Delta Bitrate (BDBR) is utilized to
measure the results of the proposedmethod [33] and average
coding time saving (ACTS), where BDBR reflects the overall
encoding quality and TS is used to measure the coding time
saving, which is defined as

ACTS �
TVTM10.0 − Tproposed

TVTM10.0
× 100%, (10)

where TVTM10.0 represents the coding runtime saving of
anchor method that is VTM 10.0 in the proposed method
and Tproposed is the ACTS of the proposed method. Since the
different platforms are different in performance, this time
does not count the time spent by the neural network.

Table 2 shows the results of the proposed method, where
the sequences in Table 1 can be used since the training and
testing video sequences are different for the training model.
We can see that the coding runtime saving of the proposed
method is about 52.35%, and the BDBR is increased by 0.99%.

Figure 7 illustrates the RD of VTM10.0 and the proposed
method for two typical test videos including “FourPeople”
and “Kimono”. Compared with VTM 10.0, the proposed
method has almost consistent RD performance with VTM
10.0.

Start coding

JND>C ?

Extracting features

Calculating JND

Normal coding

S<JND<C ?

Depth>3 ?

US-SVM model

End

N

N

N

Y

Y

Y

Classification results

non_split

Figure 4: *e overall flowchart of the proposed method.
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To evaluate the performance of the proposed method,
the proposed method is compared with the existing fast
methods, comprising CTDM [6], FBDA [7], FIVG [13], and
ACSD [14]. Tables 3 and 4 show the results of the proposed
method and the existing fast methods in VVC. Table 3
demonstrates that the average BDBR of CTMD, FBDA,
FIVG, and ACSD method increased to 1.06%, 1.38%, 1.38%,
and 0.99%, respectively, while the average BDBR of the
proposed method is only 0.99%. From Table 4, we can see
that the proposed method can save more encoding time
compared with CTMD, FBDA, FIVG, and ACSD methods.
From Table 4, the encoding runtime savings of the CTMD,
FBDA, FIVG, and ACSD are 34.32%, 29.49%, 52.16%, and
33.21%, which are less than that of the proposed method.

To see the performance advantages of the proposed
method compared with the latest methods more intuitively,
Figures 8 and 9 show the ACTS and BDBR increase of the

proposed method and the existing fast methods in VVC.
Figure 8 shows that the encoding runtime of the proposed
method can reduce about 0.16–23.83% compared with
CTMD, FBDA, FIVG, and ACSD method. Moreover,
compared with CTMD, FBDA, and FIVG method, the
proposed method can reduce BDBR about 0.07–0.39%. It is
noticed that the proposed method increases the coding
runtime saving and outperforms the coding performance of
the existing fast methods.

(a)

(b)

Figure 5: *e original image JND threshold map (left: RaceHorses, right: Johnny). (a) Input image. (b) JND threshold map.

SVM 1

SVM 2Class 1

Class 2

Class 5 Class 6

SVM 5

Figure 6: Classification based on binary tree.

Table 1: *e training and testing video sequences.

Sequences fps

A Traffic 50

Training

PeopleOnStreet 50

B BQTerrace 50
Cactus 30

C BQMall 50
BasketballDrill 60

D BlowingBubbles 50
RaceHorses 30

4K Bosphorus 120

Testing

RushHour 30

A PeopleOnStreet 30
Nebuta 50

B BQTerrace 60
ParkScene 60

C RaceHorsesC 30
PartyScene 60

D BasketballPass 60
BQSquare 50

E Johnny 60
FourPeople 60
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Figure 7: *e RD for the proposed method and VTM 10.0. (a) *e RD of “FourPeople”. (b) *e RD of “Kimono”.

Table 3: *e BDBR of the proposed method and the latest methods.

Sequences Proposed CTDM [6] FBDA [7] FIVG [13] ACSD [14]
BDBR (%) BDBR (%) BDBR (%) BDBR (%) BDBR (%)

Class B
1920×1080

Kimono 1.34 1.05 1.98 1.72 0.87
ParkScene 0.95 1.11 1.38 1.28 0.83
BQTerrace 1.22 1.00 1.19 1.16 0.95

Class C
832× 480

PartyScene 0.95 0.76 1.05 0.28 0.55
RaceHorsesC 0.96 0.82 2.96 0.84 0.37
BasketballDrill 0.89 1.67 1.36 1.91 1.30

Class D
416× 240

BlowingBubbles 0.95 0.74 0.73 0.49 0.95
RaceHorses 0.86 0.95 1.59 0.54 0.71
BQSquare 0.87 0.61 − 0.11 0.17 0.68

Class E
1280× 720

Johnny 0.88 1.44 1.51 3.07 1.72
FourPeople 0.78 1.38 1.37 2.55 1.35

KristenAndSara 1.21 1.19 1.53 2.56 1.61
Average 0.99 1.06 1.38 1.38 0.99

Table 2: *e results of the proposed method.

Sequences Proposed method
(%) BDBR ACTS

Class A
2560×1600

PeopleOnStreet 0.96 52.13
Traffic 0.97 50.04
Nebuta 0.99 55.27

Class B
1920×1080

Kimono 1.34 51.34
ParkScene 0.95 54.31
BQTerrace 1.22 51.51

Class C
832× 480

PartyScene 0.95 52.43
RaceHorsesC 0.96 50.25
BasketballDrill 0.89 52.42

Class D
416× 240

BlowingBubbles 0.95 51.31
RaceHorses 0.86 47.25
BQSquare 0.87 53.15

Class E
1280× 720

Johnny 0.88 55.33
FourPeople 0.78 58.45

KristenAndSara 1.21 50.12
Average 0.99 52.35
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5. Conclusion

A fast CU decision method is introduced based on JND and
the US-SVM classifiers in this paper to settle the huge
complexity caused by the asymmetric splitting problem.*e
hybrid JND model is used to determine which region the
CUs belong to. *en, the US-SVM classifiers are utilized to
split CU in advance to reduce coding time. Experimental
results demonstrate that the proposed method can signifi-
cantly save about 52.35% coding runtime, with only 0.99%
BDBR. *e results may fluctuate for different videos with
different resolutions, because the resolutions of the videos
may have a little impact on the experimental results, where
the ACTS is particularly high for the sequence such as

“FourPeople” (58.45%). Moreover, the proposed method
exceeds the existing fast methods and can keep the coding
efficiency. We will continue searching for fast methods to
reduce encoding time while maintaining encoding quality.
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