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Computer vision is a significant component of human-computer interaction (HCI) processes in interactive control systems. In
general, the interaction between humans and computers relies on the flexibility of the interactive visualization system. Elec-
tromyography (EMG) is a bioelectric signal used in HCI that can be captured noninvasively by placing electrodes on the human
hand. Due to the impact of complex background, accurate recognition and analysis of human motion in real-time multitarget
scenarios are considered challenging in HCI. Further, EMG signals of human hand motions are exceedingly nonlinear, and it is
important to utilize a dynamic approach to address the noise problem in EMG signals. Hence, in this paper, the Optimized
Noninvasive Human-Computer Interaction (ONIHCI) model has been proposed to predict human motion recognition. Average
Intrinsic Mode Function (AIMF) has been used to reduce the noise factor in EMG signals. Furthermore, this paper introduces
spatial thermographic imaging to overcome the conventional sensor problem, such as gesture recognition and human target
identification in multitarget scenarios. )e human motion behavior in spatial thermographic images is examined by target
trajectory, and body movement kinematics is employed to classify human targets and objects. )e experimental findings
demonstrate that the proposed method reduces noise by 7.2% and improves accuracy by 97.2% in humanmotion recognition and
human target identification.

1. Introduction

Nowadays, with the rapid development of information
technology, human beings are trying to communicate with
computers more naturally [1]. )e conventional human-
computer interaction input devices such as the mouse,
keyboards, and remote devices lack flexibility, and there is
no longer a natural way of interacting [2]. In general, voice
commands and body language are natural ways for people to

communicate with computers, including many online
commercial products [3]. )e interaction between humans
and computers is the most important application of com-
puter vision for autonomous structures [4]. It is essential to
acquire precise data like shape, behavior, and motions for
efficient human-computer interaction [5]. An effective
characteristic analysis of these human targets can accurately
recognize and identify the targets [6]. Human target iden-
tification and objects surrounding play a crucial role and
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pose many challenges before interaction between computers
and humans [7]. We rapidly determine the number of
important facts and qualities about each other during hu-
man-to-human interaction, including identification, age,
facial expressions, and gestures. )ese visual cues/features
have an impact on the content and flow of a conversation,
and they provide contextual information such as situation
and speech context. A gesture or a facial expression, for
example, could be intended as a signal of understanding, or
the gaze direction can be used to differentiate between the
object referred to like this and the direction over there in
speech. As a result, other communication channels such as
speech and gestures are both coexpressive and comple-
mentary to the visual channel.

Conversely, conventional sensors do not deliver an ac-
ceptable field of view (FOV) to monitor various targets to
examine human movement and body features [8]. )e
process of human movement identification needs sufficient
space tomap command gestures and different human targets
[9]. It is significant to recognize the human targets and
surrounding objects, and the computer aims to satisfy the
requirements of the human interaction environment [10].
)e user’s gesture would be consistent with the physical
space of the virtual world; i.e., the user’s action should be
matched with the gesture in the virtual field, and it is more
appropriate to estimate the gesture for human-computer
interaction [11]. A rich user experience and more effective
and efficient interaction can be obtained by integrating
visual information with other input modalities (such as
keyboard and mouse). In addition to standard desktop
computing, vision-based interaction could be beneficial in a
variety of scenarios, including mobile, immersive, and
ubiquitous computing.

Presently, sensor technology such as electromyographic
(EMG) and signal processing has been extensively utilized in
the field of human-computer interaction and multifunc-
tional prosthetic hand control [12, 13]. Electromyographic
(EMG) signal collects superficial muscle and nerve trunk
activity bioelectric signals through electrodes on the surface
of the skin and performs muscle processes evaluations and
simulations via the recorded, filtered, amplified, transmitted,
and feeding of the collected bioelectric signals [14, 15]. Since
the EMG signaling of the human leg or hand movements
during object usage easily interferes with noise [16]. )e
main problem to accomplish a difficult understanding of
hand motion is successfully gathering signals, extracting
features, and classifying diverse hand movements for hu-
man-computer interaction [17]. From the object’s charac-
teristics such as weight, size, and shape, it is possible to
identify human targets/emotions [18].

In this paper, the Optimized Noninvasive Human-
Computer Interaction (ONIHCI) model has been proposed
to address gesture recognition and human target identifi-
cation problems. )e electromyographic (EMG) signal can
represent the muscles’ active conditions; the data of the
neural activities can be determined [19]. )e advantage of
electromyographic is noninvasive; thus, it executes well in
studying neurological rehabilitation, motion detection, and
artificial control. Besides, the AIMF algorithm has been

employed to reduce noise in the EMG signal. )e present
models focus on human-computer interaction, emphasizing
a specific target or the behavioral analysis of a set of targets
[20]. )e spatial thermographic images for human motions
are analyzed to explain the trajectory actions and the ki-
nematics motion of the human and objects. Our approach
defines human targets precisely and allows them to improve
their restricted vision and overcome traditional methodo-
logical problems related to gesture recognition and human
target identification [21]. Target trajectory examines human
motion behavior in spatial thermographic images, and body
movement kinematics is used to classify human targets and
objects.

)e rest of the paper is arranged as follows. Section 1 and
Section 2 discussed the overview of computer vision for
human-computer interaction and related works. In Section
3, the Optimized Noninvasive Human-Computer Interac-
tion (ONIHCI) model has been suggested. In Section 4, the
experimental results have been performed. Finally, Section 5
concludes the research paper.

2. Related Works and Features of This
Research Article

Qi et al. [22] introduced the linear discriminant analysis and
extreme learning machine (LDA-ELM) method for smart
human-computer interaction based on surface EMG gesture
recognition. )e proposed method can minimize the useless
data in Surface Electromyography (SEMG) signals and
enhance identification accuracy and efficiency. )is paper
concentrates on time variances optimization in surface [23].
EMG pattern recognition and the numerical outcomes are
advantageous to decreasing the time variances in gesture
identification based on surface EMG. Chen et al. suggested
the Motor Unit Spike Trains with Blind Source Separation
Algorithm (MUST-BSSA). )at is how well high-density
EMG signals recognize motor unit movements during hand
postures. )ey characterize the precision in recognition of
motor unit actions during hand postures from high-density
EMG signals. )e results demonstrate the possibility of
recognizing motors during the assigned motor operations
and the high precision of hand gestures classification for
human-computer interface perspectives [24].

Song et al. [25] discussed the Guidance framework for
tracking by detection (GFTD) for hand detection based on
the thermal image. )ey introduced an Adaptive Hand
Detection (AHD) based automatic tracking-by-detection
algorithm utilizing the Kernelized correlation filters
tracker to enhance the performance of the proposed
model. )e proposed model detects hands in real time by
decreasing calculation utilizing a single sensor instead of
fusing manifold sensors, enables precise tracking, and
enhances hand tracking precision. Xiao et al. [26] proposed
the variational mode decomposition and composite per-
mutation entropy index (VMD-CPEI) method to classify
hand movements. )e approach suggested in this paper
uses the VMD procedure for decomposing the initial
SEMG signal into multiple VMFs and measuring the re-
lated CPEI of each signal component. )e model proposed
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can enhance the quality of life of amputees, disabled
persons, and others.

Sekhavat et al. [19] introduced Affective User Interface
Design and Evaluation (AFFUIDE) to evaluate the effect of
using facial expressions emotions as a user interface (UI) and
system input in virtual scenarios. )e data suggests that the
traditional usable user interface is the most useful and that
the full affective user interface feels the best fun and user
experience. Choudhary et al. [20] recognized someone even
when they were not in a neutral condition or had any facial
expression. Using a hidden Markov model with singular
value decomposition, they could identify persons whose top
half face is visible (HMM-SVD). Singular value decompo-
sition parameters were used in this article to build a series of
blocks for each picture of a face [21]. To cover the entire face,
a seven-state HMM was employed. In this paper, the Op-
timized Noninvasive Human-Computer Interaction
(ONIHCI) model has been proposed to address gesture
recognition and human target identification [23]. )is paper
proposes a novel approach to determine the human targets
in spatial thermographic images [24, 27] using vision per-
ception. )is system estimates the capacity of the human
targets to view when they have restricted visualization and
supports targets perceiving their surroundings by informing
them about their condition through the visualization system
[28, 29]. Identifying human targets is the main aim and, at
the same time, recognizing the scenario for human targets.
)e signals of human hand motions have been gathered
utilizing an EMG acquisition device [30, 31]. A motor unit
classification-based gesture recognition method was pro-
posed in [32]. MUSTs were first classified into 11 categories,
one per motion. )e averaged discharge timings of MUSTs
in each group are then used to measure the activation level of
the cerebral drive to each motion. By comparing the esti-
mated activation levels of each motion, the output gesture
class was determined. AIMF has been used to denoise the
obtained real signs and feature sets for the hand movement
classification process [22, 25, 33]. )e proposed method is
briefly described in the following section.

3. Optimized Noninvasive Human-Computer
Interaction Model (ONIHCI)

In this paper, the Optimized Noninvasive Human-Com-
puter Interaction (ONIHCI) model has been proposed to
address gesture recognition and human target identification
problems. )e requirement for computer vision-based hu-
man-computer interaction and human movement recog-
nition has been increased in fields like intelligent
monitoring, security, and surveillance system. )e most
significant and common human movement is walking and
running. Many studies aimed to develop a computer model
of motion. )e role of human movement recognition is a
challenge in human-computer interaction. Motion analysis
includes measuring, analyzing, and evaluating the motion
functions associated with walking or running activity to
determine the human target in an HCI system.

Case 1. Human kinematics analysis and trajectory analysis
for human target identification

Solution 1. Analysis of human kinematics is the initial
measure to determine a human in the course of its movement
or static prospect. Human frames are extracted from the
spatial thermographic image, and areas are calculated from
dynamic targets to explore trajectories and kinematics to
calculate the proposed approach. )e key targets know the
instructions and are in an upright position.)is paper utilizes
three human targets for the identification of human targets.

Figure 1 shows the human body kinematics analysis. )e
human body orientation around the arm region [XBYBZB],
legs [XL,RYL,RZL,R], and head for the upper part of the
targets spot [XVYVZV] is determined for every human.

Human Target 1 (G1). )e human body orientation
around the arm region is denoted as [XB1

YB1
ZB1

], left
leg [XL1

YL1
ZL1

], right leg [XR1
YR1

ZR1
], and head target

sport [XV1
YV1

ZV1
]

Human Target 2 (G2). )e human body orientation
around the arm region is denoted as [XB2

YB2
ZB2

], left
leg [XL2

YL2
ZL2

], right leg [XR2
YR2

ZR2
], and head target

sport [XV2
YV2

ZV2
]

Human Target 3 (G1). )e human body orientation
around the arm region is denoted as [XB3

YB3
ZB3

], left
leg [XL3

YL3
ZL3

], right leg [XR3
YR3

ZR3
], and head target

sport [XV3
YV3

ZV3
]

)e human body provides a few signs of motion or static
state disposition. )e inclination for direction is extracted
from the determination of the direction between these ki-
nematics. If the legs and head position are open at a certain
angle, the motion direction from the slope of the head is
provided by the angle between the legs and head. Figure 1
shows the human body kinematics; here, the human target G1
is being demonstrated with a running direction to the head
and right sloped toward a similar direction. In the instance of
a static condition of the target, body, legs, and head orien-
tation comprising arms might be parallel to human targets G2
and G3. )e interactive system point of view transferred
kinematics is provided with GW and the kinematics from the
initial interactive system, [XG, YG, ZG] are multiplied with
orientation and translation, and the interactive systems and
rotation between the interactive systems are expressed as

GW1
� XG1

YG1
ZG1 

cos θ −sin θ 0

sin θ cos θ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + xt yt zt ,

(1a)

GW2
� XG2

YG2
ZG2 

cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + xt yt zt ,

(1b)
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GW3
� XG3

YG3
ZG3 

cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + xt yt zt .

(1c)

As inferred from equations (1a), (1b), and (1c), the
human body target rotation matrix, kinematics, and
translation vector of the transformation vector can be
computed. )e relationship between two groups of kine-
matics can be utilized to choose the categorized targets from
two interactive systems to connect similar targets in two
various thermographic views.

Figure 2 shows the position data of every computer or
interactive system Tt, andRt is utilized to convert the human
body kinematics of the other view direction. In Figure 2, the
spatial thermographic interactive system coordinate system is
denoted as QST � [XSTYSTZST], the single perspective inter-
active system is denoted as QW � [XWYWZW], and the in-
teractive stereo system denoted is as QST � [XQYQZQ]. )e
rotation and translation between interactive systems are
denoted as RQ, TQ and RW, Tw. )e human target trajectories

are examined in the thermographic scene concerning the
trajectory trend of the respective target’s feature points. )e
height and width of the target area are evaluated for a ratio to
determine the first data about the trajectory target trend. )e
ratio variations are reliant on the target alignment through the
center rotation.)e height and width variations for the target’s
backward and forward motion concern the interactive system.

In Figure 3, the backward and forward motion calculations
and the magnitude and direction vector are provided for every
interactive system denoted as dotted lines. )e variations of
ratios from every interactive systems perspective are presented
in Figure 3. Stereo vision-based identification combines features
extracted from two-dimensional stereo images with reas-
sembled three-dimensional object features to sense humans in
an interactive setting. )e interactive stereo system is already
monitoring the target G1, the computer endowed perspective
sensor; thermographic camera altered its direction to the
absorbed target as a portion of the human-computer interaction
task. )e human target coordinate system is represented by the
direction vector U1, width sw, and the height gw; the ratio
(gq,1/sq, 1) indicates the target G1 moving toward a single

ZV2

XV1

XV2
YV2

YV1

YR2

YL2

Human Target 2

Human Target 1Human Target 3
Computer

Camera

ZV1

XR1

YR1

ZR1

XR3
YR3

ZR3
XL3

YL3

ZL3

XV3

YV3

ZV3

XL1

YL1

ZL1

ZR2

XR2

ZL2

XL2

G3 G1

G2

Figure 1: Human body kinematics analysis.
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perspective interactive system. )e ratio (gw,1/sw, 1) indicates
the target G1 moving toward the interactive stereo system; cs is
the direction. )e rotation and translation between interactive
systems are denoted as RQ, TQ and RW, TW. )ese variations
are noted during themovement of the targetG1 and updated for
a time r by equation (2). To determine the method vector
direction Us, the height gw and width sw are utilized in the
thermographic image.

Us �

sw,r − sw,r−1, if
gw

sw

 
r

−
gw

sw

 
r−1

� 0,

0, if
gw

sw

 
r

−
gw

sw

 
r−1
≠ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

As shown in equation (2), sw denotes rotation width, gw

denotes rotation height, and (gw/sw) denotes the rotation
ratio. If there is no variance between successive proportions,
the direction vector Us is acquired from the variance be-
tween the successive target’s width in successive pictures. If
the proportion is varying, let us think that the target is
creating a rotation around itself.

)e horizontal target motion is utilized for right and left
directions in its trajectory. Let us assume the overall
extracted feature point for this particular target is F and the
feature extracted point for a particular target is xf. )e
horizontal motion feature point xf is followed after the
evaluation of their mean coordinates until the overall
number of F. )e final horizontal position average at the
time r − 1 is deducted from the present mean. )is variation
supports the determination of the direction and horizontal
vector magnitude cw from the next expression.

Condition 1:

cw �


F
f�1 xf,r 

F
. (3a)

Condition 2:

cw �


F
f�1 xf,r−1 

F
. (3b)

After computing

YST

Camera

Computer

Computer Computer

Camera Camera

XST

ZST

YQ

XQ

ZQ

YW

XW

RQRW

TQ
TW

ZW

Figure 2: )ree interactive systems equipped with a single thermal camera, stereo thermal sensor, and IR sensor. Rotation and translation
between interactive systems are exposed with a corresponding spatial thermographic interactive system.
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cw �


F
f�1 xf,r 

F
−


F
f�1 xf,r−1 

F
, (3c)

Uw �

�������

U
2
s + c

2
w



. (3d)

As discussed in equations (3a), (3b), and (3c) xf denotes
the extracted feature points for a particular target. F denotes
the overall extracted features point for specific targets. )e
final horizontal position average at period r − 1 is deducted
from the present mean r. cw denotes the direction and
horizontal vector magnitude. Uw denotes the final trajectory
vector. A trajectory trend is produced for every target in the
spatial thermographic picture, and it is equated with another
interactive system trajectory assessment. Every interactive
system assessment utilizes a horizontal andmethod vector to
determine the last trajectory vector.

)e target areas identified are labeled with two criteria
for their characteristics. )e human target areas are
identified and bounded by a rectangle frame. )e frame is

split into W � (Ga/mver)(Sa/mhor) number of cells to ex-
amine every segment distinctly. )e number of cells in the
horizontal direction mhor and the vertical direction is
provided with mver. )e human target is chosen utilizing
associated elements and distinct from added substances in
the target frame. )e pixels in each cell are added by
equation (4), and the overall human target field is deter-
mined for the respective cell. Let us consider that w is the
respective cell, Aw is the overall cell pixel value, and Gaand
Sa are the height and width of the target frame, respectively.
Each row and the cell column are added to a bird’s eyesight
and perception target spectrum as an added target indis-
tinguishable signature:

Aw � 

xk

x�Ax



xk

y�Ay

q(x, y). (4)

As shown in equation (4), Aw is the overall cell pixel
value. Each pixel in a cell is provided with the pixel q, and the

Sigle Perspective
interactive system

Stereo interactive
system

Spatial Interaction

Camera

Objects

Y

Camera CameraComputer

Computer
Computer

QST

RQ

TQ

c2
g2

U2

U1

c1

RW

TW

Z

X

G2

G1

s2

g1 s1

gw,1 cw,1sw,1

gq,1

cq,1

sw,1

ST

Figure 3: Interactive system identifying the trajectory vector for every target.

6 Scientific Programming



coordinates of this pixel in the cells are (x, y). )e final pixel
directs from the bottom and left of each cell can be evaluated
from the subsequent expression:

(xy)k � f (xy)k(  �

xk, if mhor(  � Ax + wx

Sa

mhor
 ,

yk, if mver(  � Ay + wy

Ga

mver
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5a)

xk � Ax + wx

Sa

mhor
 yk � Ay + wy. (5b)

Equations (5a) and (5b) show the thermographic image final
pixel coordinates of each cell, where the number of cells in the
horizontal direction mhor and the vertical direction is provided
with mver. Ga and Sa are the target frame height and width,
respectively. )e beginning coordinates of every cell Ax and Ay

are determined from the present directs of the target frame and
frame height and width from the resulting expression:

(A)xy � f (A)xy  �

Ax, if mhor(  �
Sa

mhor
wx − 1( ,

Ay, if mver(  �
Ga

mver
wy − 1 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6a)

Ax �
Sa

mhor
wx − 1( , (6b)

Ay �
Ga

mver
wy − 1 , (6c)

As derived in equations (6a), (6b), and (6c), every cell
index is evaluated from wy � [w − 1/mver] + 1 utilizing floor
function after division and wy � w − wymhor. After deter-
mining the kinematics for arm, leg, and head areas, corr
chooses the relationship of these kinematics for each ther-
mographic image of a similar target. Additional correlation
outcome originates trajectories utilizing the human target
trajectory directions [X Y Z] with corr( ) to choose the last
trajectory direction with the maximum association outcome.
Human motion has been identified based on human body
kinematics and target trajectory analysis; human activity has
been identified accurately for the human-computer inter-
action process. With the collective thermographic images of
pixel and edge variances, human motion detection has been
performed. )e spatial thermographic images have many
noises, low image resolution, and low contrast to resolve
these problems. AIMF algorithm has been proposed.

Case 2. EMG based human motion recognition.

Solution 2. A better human-computer interaction can be
accomplished utilizing electromyographic (EMG) based
human motion recognition. )e signals of common human

gestures have been gathered using the EMG acquisition
device. Electrode’s locations have been chosen in line with
the musculoskeletal of these 5 muscles and definite by
contractions of the muscle-specific, which involve physically
repelled finger abduction and extension. EMG signals are
bioelectrical reactions affected by muscle fiber movement
during multiple muscle contractions.

Figure 4 displays the human-computer interaction
procedure based on the EMG signal. Data acquisition,
preprocessing, classification model, and feature extraction
are the significant and main stages in human gesture clas-
sification. )e gesture classification can identify discrete
body gestures and cannot be utilized for control of the
interactive system and, thus, continuous motion regression,
which has assessments for more motion information.
Compared to the EMG signal-based musculoskeletal model
for gesture recognition, the mapping between EMG and
angular acceleration, joint moment, joint angular velocity,
and angle can be recognized. )e commonly utilized feature
can be primarily separated into a time-frequency domain
feature and a frequency domain feature. )e initial EMG
signals gathered include a variety of noise signals, like
electromagnetic noise, electrode noise, and pervasive noise,
caused by an external environment and acquisition system.
)erefore, reducing the noise of the real signal is necessary to
generate actual and efficient information for the extraction
of features.

As shown in Algorithm 1, the proposed AIMF algorithm
with an adaptive time-frequency data analysis can be dis-
tinctly a time series into a finite number of elements, known
as Empirical Mode Decomposition (EMD). For the self-
adaptive decomposition, the data processing method is used
for the nonstationary and nonlinear signals, where t is the
acquisition channel, input E(t) is the EMG signal, and
output DIMF is the intrinsic mode function. To reduce the
noise in EMG signal, let us compute all the extreme points of
E(t); i.e., K(t) � Kmin(j), Kmax(j) . We fit the high points
by interpolation approach: upper envelope represented as
Kmax(j)⟶ Omax(j) and lower envelope represented as
Kmin(j)⟶ Omin(j); subsequently, we compute average
envelope value; i.e., V(t) � (Omin(j) + Omax(j))/2; after
that, we obtain a stationary data sequence;
S(t) � E(t) − V(t). )e algorithm decomposes the actual
signal divides noise from the efficient signal with high time-
frequency resolution and better adaptability in various in-
trinsic mode functions. )erefore, the collecting the features
of the EMG signal, the AIMF algorithm is a perfect method
for decreasing the EMG signal noise.

As shown in Algorithm 1, Empirical Mode Decompo-
sition is executed on every EMG signal channel; a set of
AIMF can be determined as

D(t) � 
m

i

DIMF(i) + cm. (7)

As inferred from equation (7), cm denotes the residual of
the actual EMG signal after extracting m AIMFs D. )e data
signal determined after noise reduction using Algorithm 1
guarantees the feature extraction of original motion signals.
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Figure 5 shows the communication between interactive
systems.Without loss of generalization, it is preassumed that
the l th HCI system records data of K heterogeneous variable
to be evaluated and I heterogeneous variable to interact,
which produce a computation vector cl

′ � [cl,1, . . . , cw,I
′]T

and communication vector dl
′ � [dl,1′, . . . , dl,I

′]T, where cl
′ and

dl
′ are calculated values of the k th computation variable and

i th communication variable at l th HCI system, respectively.
As a reminder for computation, the interactive system en-
gages itself in computing k th targeted function through the
following equation:

pk � fk 

L

l�1
hl,k cl,k ⎛⎝ ⎞⎠, k � 1, . . . , K. (8)

As discussed in equation (8), pk is the ideal computation
output, and hl,k(·) and fk(·) denote the preprocessing
function at the l th interaction system. Let us consider dl �

[hl,k(cl,k), . . . , hl,K(cl,K)]T indicating the preprocessed
computation signal at the l th interaction system. For sim-
plicity of exploration and without loss of generalization, let
us preassume that the communication signals and com-
putation signals are distributed with the unit norm; that is,
E dld

H
l  � J and E dl

′d′Hl  � 1.)erefore, the l th interactive
system builds the coded transmit EMG signal yl as

yl � Sldl + 
I

i�1
ul,idl,i
′. (9)

As inferred from equation (9), Sl ∈ EN×K and ul,i ∈ EN×1

indicate the transmit beams for the communication and
computation signal, respectively.

Sl

����
����
2
F

+ 
I

i�1
ul,i

����
����
2 ≤

Zl

T/2
, ∀l, i. (10)

)us, the received signal at the interactive system is
expressed as

x � 
L

l�1
Hlyl + m � 

L

l�1
HlSldl

√√√√√√√√
computation signal

+ 
L

l�1


I

i�1
Hlul,idl,i
′

√√√√√√√√√√√√
communication signal

+m.

(11)

As shown in equation (11), m is the noise vector with
variances σ2m. Initially, the processing of the computation
signals has been discussed. Because of the one-to-one
mapping between c � 

L
l�1 cl and p � [p1, p2, . . . , pK]T in

equation (8), let us take a precise c at the interactive system
as the targeted function signal. It is anticipated to execute a
receive beam at the interactive approach to reduce the
distortion of the targeted function signal affected by channel
noise, fading, and interference.)erefore, the received signal
for computation at the interactive system is expressed as

c � V
L



L

l�1
HlSldl + V

L


L

l�1
Hl 

I

i�1
ul,idl,i
′ + m⎛⎝ ⎞⎠. (12)

As derived in equation (12), V ∈ EM×K is a receive beam
for computation outcomes at the interactive system. As a
rule, the distortion of computation at the interactive system
is calculated by the Root Mean Square Error (RMSE) be-
tween c and c which is stated as

RMSE(d, d) � Z tr (d − d)(d − d)
H

  . (13)

Replacing (12) into (13), the computation distortion can
be calculated as the resulting RMSE function of transmitting
and receiving beam:

RMSE V, Sl, ul,i  � 
L

l�1
V

H
HlSl − J

����
����
2
F

+ σ2m‖V‖
2
F

+ 
L

l�1


I

i�1
V

H
Hlul,i

����
����
2
.

(14)

Input: the actual data sequence of the EMG signal, E(t), (t � 1, . . . , m)

Output: intrinsic mode function, DIMF(i);
Repeat
While j< L do
for all j such as 1≤ j≤ l do
Compute E(t) i.e., K(t) � Kmin(j), Kmax(j) ;

Obtain upper envelope: Kmax(j)⟶ Omax(j),
Obtain lower envelop: Kmin(j)⟶ Omin(j);
Compute average envelope value V(t) � (Omin(j) + Omax(j))/2 ;
Obtain a stationary data sequence, S(t) � E(t) − V(t);

Update t � t + 1;
Until convergence

ALGORITHM 1: Average intrinsic mode function algorithm for electromyographic signal noise reduction.
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Subsequently, communication signal processing has
been discussed. )e received EMG signal for communica-
tion at the interactive system can be evaluated as

xl,i
′ � q

H
l,iHlul,idl,i

′ + q
H
l,i 

L

j�1, j≠ l

Hj 

I

n�1, n≠ i

qj,ndj,n
′

+ q
H
l,i 

L

j�1
HjSjdj + q

H
l,im.

(15)

As inferred from equation (15), ql,i ∈ EM×1 indicates the
receive beam vector for communication signal cl,i

′ at the
interactive system. As a result, the received EMG signal to
inference and noise proportion at the communication re-
ceiver system can be calculated using

ζ l,i �
q

H
l,iHlul,i




2


L
j�1, j≠ l 

I
n�1,m≠ i q

H
l,iHjuj,n




2

+ 
L
j�1 q

H
l,iHjSj

�����

�����
2

+ σ2m ql.i

����
����
2
.

(16)

Besides, the transmit signal of EMG relies on the energy
beam sent by the human-computer interaction system.

EMG signal-based human motion recognition, Lyapu-
nov exponent, is utilized to detect the numerical features in a
complex system and denoted the system sensitivity to the
first value as the parameter progress with a period t. )eM-
dimensional systems have M Lyapunov exponents, creating
an exponential spectrum. )us, it is broadly utilized in
system fault diagnosis along with muscle activity and muscle
contraction identification. It is stated as

λmax �
1
Δt



N

p�1

L tp 

L tp−1 
. (17)

As discussed in equation (17), L(tp) denotes the distance
between two adjacent 0 points at the time tp, Δt is the
sampling time, and N indicates the overall step length. )e
distance between end-to-end paths is generally reproduced
by the forecast fault on the log function to attain the Lya-
punov exponent of the complete set of IMF. It is stated as

k(p) �
1

Mt


M

m�1
1a
Γm(p)

Δm
. (18)

As shown in equation (18), Δm denotes the distance
between phase points,Em+1 is the adjacent point to Em, and
Γm(p) is the distance between Em and Em+1 after p convo-
lution step length time. M indicates the aggregate number of
phase points. )e two typical EMG signal features embedded
in dimension and delay time are two essential variables for
evaluating the Lyapunov exponent. )e motion characteris-
tics of the EMG signal have been chosen and represented
using these two parameters. )e delay time was calculated
using the mutual information technique as follows:

B(τ) � k Ym, Ym+τ( ln
k Ym, Ym+τ( 

k Ym( k Ym+τ( 
. (19)

As shown in Figure 6 and equation (19) representing the
delay time calculation,B(τ) denotes the EMG signal delay time
and k(Ym), k(Ym+τ), and k(Ym, Ym+τ) are likelihood values.

By Algorithm 1, the embedded dimension has been
evaluated, which is stated as

O1(n) �
O(n + 1)

O(n)
. (20)

As discussed in equation (20), O(n + 1) and O(n) are the
mean thresholds of the distance between every two adjacent
neighbors in the recreated n + 1 dimensional space and
n-dimensional space, respectively.

)e proposed AIMF algorithm reduces the EMG signal
noise and obtains active human motion features for the hu-
man-computer interaction. Finally, the proposed Optimized
Noninvasive Human-Computer Interaction (ONIHCI) model
addresses the problems such as accurate gesture recognition
and human target identification and reduces the noise in EMG
signal for an effective HCI process. )e following section
briefly describes the experimental results.

4. Experimental Results and Discussion

)e proposed Optimized Noninvasive Human-Computer
Interaction (ONIHCI) model experimental results have been
performed in a computer vision-based human-computer
interaction environment. Different situations have been
used analyzed using the training and testing dataset [21].
From the large dataset, a 70 : 30 ratio of training and testing
data has been formed. A different dataset was randomly
chosen among the testing data and observed various per-
formance metric values. )e following figure 7 and table 1
give the results observed from this analysis. Human targets
are running, walking, and slow waving; the data is divided
into multiperson and single-person behavior.)e analysis of
human trajectory and human kinematics has been discussed
in this section. )e human targets are detected in multiple
thermographic images.

Furthermore, EMG-driven musculoskeletal model-
based motion recognition has been utilized, to the map
between EMG and joint angular velocity, angle, joint mo-
ment, or angular acceleration.)e experimental results show
that the HCI suggested method achieves lesser noise and
enhances the accuracy in human motion recognition and
identifying human targets with high performance. Simula-
tion parameter has been used for the human motion rec-
ognition based on EMG signal acquisition with a simulation
time of 4 seconds, and sampling frequency utilized is 25 kHz,
muscle length is 200mm, the number of electrodes used is
64, muscle radius is 20mm, muscle fiber length is 45mm,
muscle fiber diameter is 35.77, and fiber length is 150mm.

4.1. Root Mean Square Error (RMSE) Ratio Analysis. )e
Root Mean Square Error is often used in continuous motion
prediction. It compares the actual values to the projected
values. )e conflict is squared to prevent canceling negative
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and positive values. )e distortion of the computation at the
interactive system is evaluated by the mean square error d

and d which is stated as

RMSE(d, d) � Z tr (d − d)(d − d)
H

  . (21)

Replacing (12) into (13), the computation distortion can
be calculated as the following RMSE function of receive and
transmit beam:

RMSE V, Sl, ul,i  � 
L

l�1
V

H
HlSl − J

����
����
2
F

+ σ2m‖V‖
2
F

+ 
L

l�1


I

i�1
V

H
Hlul,i

����
����
2
.

(22)

)erefore, the computation outcome should have a low
RMSE. Figure 7 demonstrates the RMSE using the suggested
system.

)e performance ratio evaluation of the recommended
ONIHCI system is shown in Table 1. To detect the move-
ment of a human, it is necessary to track the body’s motion
throughout physical activity. Data processing to better
portray such movement aids in the operation’s detection,
which helps this study effectively. Compared to other
technologies, the human-computer interface performance
based on human motion recognition findings is quite suc-
cessful. Table 1 shows that the highest performance ratio of
95.4% by the proposed model outperforms the existing
models in the literature survey. For all sets of data inputs, the
ONIHCI gives the highest performance ratio.

4.2. Recognition Accuracy Ratio Analysis. )e human ther-
mographic view is examined for comprehending the tra-
jectory behaviors and the motion kinematics during the
target’s movement. Humans are initialized using the kine-
matics system by features like the number of limbs, degrees
of freedom, limb length, etc. Humans are represented as
images, and personality traits like form or region are
extracted and stored in the image model. )e acknowl-
edgment, as well as the complexity of the motion, can be

determined effectively. )e accuracy from every sensor is
provided in Table 2 concerning every sensor’s kinematics
and trajectory analysis utilizing thermographic images. )e
simulation outcomes demonstrated that the suggested ap-
proach could assess the human target angle with high ac-
curacy compared to other existing approaches. Figure 8
demonstrates the recognition accuracy ratio using pro-
posed ONIHCI methods.

4.3. Delay Time Determination and Noise Reduction Ratio
Analysis. In reflection of the nonlinear dynamic EMG
signal, the actual EMG signal has been decomposed into a set
of IMF when noise reduction, as demonstrated in
Figure 9(b). )e actual EMG signal X(t) has been
decomposed into DIMF(i), (i � 1, 2, . . . , 6) and deviation
cm. DIMF(i) is an oscillation function with various fre-
quencies and amplitudes. cm is a monotonic signal, denoting
the drift element determined by deducting every DIMF(i)

from the actual signal, and X(t) no longer meets the de-
composition states. Embedded dimension and delay time are
two significant constraints for the manipulative Lyapunov
exponent. Moreover, the chosen delay time is too short and
not advantageous to EMG signal optimization.

)e two typical EMG signal features embedded in di-
mension and delay time are essential for evaluating the
Lyapunov exponent. )ese two parameters are appropriate
for depicting EMG gesture time sequence data; the motion
features of the EMG signal have been selected and
represented.

)e mutual information approach has been utilized for
calculating delay time which is stated as

B(τ) � k Ym, Ym+τ( ln
k Ym, Ym+τ( 

k Ym( k Ym+τ( 
. (23)

As shown in the above equation, k(Ym), k(Ym+τ), and
k(Ym, Ym+τ) are likelihood values.

Based on Algorithm 1, the embedded dimension has
been evaluated, which is stated as

O1(n) �
O(n + 1)

O(n)
. (24)

As discussed in the above equation, O(n + 1) and O(n)

are the mean thresholds of the distance between every two
adjacent neighbors in the recreated n + 1-dimensional space
and n-dimensional space, respectively. Figure 9(a) shows the
delay time using the proposed ONIHCI method.

)e quality of the EMG signal measurement is dem-
onstrated by the ratio of the EMG signal calculated to
unwanted environmental noise inputs. A high-quality signal
offers more information to predict the intention so that it
increases prediction accuracy. Nevertheless, noises from
various sources are possible, and the analysis of EMG signals
may be contaminated. To maximize the signal-to-noise
relation in this respect, amplifiers are designed and used to
reject or eliminate noises. )e accuracy of EMG signals is
affected by noise and artifacts from various causes (including
electric devices, power lines, and physiological factors),
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which may contribute to the inaccurate analysis of data or a
misunderstanding of motion parameters. In the proposed
ONIHCI method, the AIMF algorithm reduces the noise
level seen in the raw EMG signal. Figure 9(b) shows the noise
reduction ratio using the proposed method.

Table 2 shows the precision ratio using the proposed
ONIHCI method. )e present system implemented in this
study is user-friendly compared to a command-based system
or standard device and robust in detection and recognition.
)e proposed AIMF algorithm is extensively utilized in the
classification and regression of HCI because of its simple
execution, high precision, and antinoise capability.

4.4. Normalized Computation Error Evaluation.
Normalized computation error is a statistical assessment
utilized to compare proficiency testing outcomes where the
uncertainty in the measurement outcomes is included. )e
cause for error with the spatial thermographic sensor has
the minimal image size of the targets and unexpected
changes. Single perspective and stereo sensors provided a
benefit to decreasing the computation error with surplus
views. )e distance between the human target and inter-
active system positions at every degree of target force di-
rection is averaged over a tracking cycle known as
normalized tracking error. )e proposed method has lesser

Table 1: Performance ratio evaluation.

No. of datasets LDA-ELM [22] MUST-BSSA [32] GFTD [25] HMM-SVD [26] ONIHCI (proposed approach)
5 54.2 56.1 67.1 77.7 80.1
10 51.3 53.3 60.4 67.8 63.5
15 63.9 56.5 78.4 87.9 52.4
20 76.2 77.6 78.5 73.7 72.3
25 83.1 54.7 56.9 76.5 77.1
30 54.7 50.8 53.8 57.4 81.2
35 43.9 44.4 46.7 47.3 82.2
40 51.8 54.3 56.7 60.2 89.2
45 65.3 65.2 76.6 77.1 90.3
50 67.2 66.1 77.5 87.2 95.4

Table 2: Precision ratio analysis.

No. of datasets LDA-ELM MUST-BSSA GFTD HMM-SVD ONIHCI
5 32.1 34.1 35.7 37.7 70.1
10 53.3 54.3 69.4 67.8 61.5
15 64.9 54.5 79.4 87.9 42.4
20 77.2 72.6 72.5 73.7 72.3
25 82.1 44.7 53.9 76.5 77.1
30 53.7 42.8 54.8 57.4 79.2
35 42.9 49.4 45.7 47.3 82.2
40 51.8 59.3 56.7 60.2 77.2
45 64.3 67.2 76.6 77.1 92.3
50 68.2 62.1 77.5 87.2 96.4
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computation error compared to other existing methods.
Figure 10 shows the normalized computation error using
the proposed ONIHCI method. )e proposed Optimized
Noninvasive Human-Computer Interaction (ONIHCI)
model achieves high recognition accuracy and lesser delay
time and noise when compared to other existing linear
discriminant analysis and extreme learning machine (LDA-
ELM) method, Motor Unit Spike Trains with Blind Source
Separation Algorithm (MUST-BSSA), Guidance frame-
work for tracking by detection (GFTD), and Hidden
Markov Model and Singular Value Decomposition (HMM-
SVD) methods.

5. Conclusion

)is paper presents the Optimized Noninvasive Human-
Computer Interaction model (ONIHCI) to address gesture
recognition and human target identification problems.
Human trajectory analysis and human kinematics analysis
have been introduced, and the human targets are detected in
the multitarget scenarios based on spatial thermographic
images and using different sensors. Furthermore, EMG-
driven musculoskeletal model-based human motion rec-
ognition has been utilized to map EMG and joint angular
velocity, angle, joint moment, or angular acceleration for
HCI. To reduce the noise in EMG signals, the AIMF al-
gorithm has been introduced. )e experimental findings
demonstrate a lower noise ratio of the proposed system of
7.2% and enhance the accuracy ratio of 97.2% in human
motion recognition, identifying human targets with high
performance.
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