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To study the influence of different sequences of magnetic resonance imaging (MRI) images on the segmentation of hepatocellular
carcinoma (HCC) lesions, the U-Net was improved. Moreover, deep fusion network (DFN), data enhancement strategy, and
random data (RD) strategy were introduced, and a multisequence MRI image segmentation algorithm based on DFN was
proposed. +e segmentation experiments of single-sequence MRI image and multisequence MRI image were designed, and the
segmentation result of single-sequenceMRI image was compared with those of convolutional neural network (FCN) algorithm. In
addition, RD experiment and single-input experiment were also designed. It was found that the sensitivity (0.595± 0.145) and
DSC (0.587± 0.113) obtained by improved U-Net were significantly higher than the sensitivity (0.405± 0.098) and DSC
(0.468± 0.115, P< 0.05) obtained by U-Net. +e sensitivity of multisequence MRI image segmentation algorithm based on DFN
(0.779± 0.015) was significantly higher than that of FCN algorithm (0.604± 0.056, P< 0.05). +e multisequence MRI image
segmentation algorithm based on the DFN had higher indicators for liver cancer lesions than those of the improved U-Net. When
RD was added, it not only increased the DSC of the single-sequence network enhanced by the hepatocyte-specific magnetic
resonance contrast agent (Gd-EOB-DTPA) by 1% but also increased the DSC of the multisequence MRI image segmentation
algorithm based on DFN by 7.6%. In short, the improved U-Net can significantly improve the recognition rate of small lesions in
liver cancer patients.+e addition of RD strategy improved the segmentation indicators of liver cancer lesions of the DFN and can
fuse image features of multiple sequences, thereby improving the accuracy of lesion segmentation.

1. Introduction

Hepatocellular carcinoma (HCC) is a common malignancy
disease with a high incidence in the global cancer statistics.
So far, the global incidence rate has steadily increased to
more than 672,000 people per year. In China, there are more
than half of the patients, which seriously threatens the health
of Chinese residents [1]. Clinical studies showed that ac-
curate segmentation of HCC lesions from high-quality
magnetic resonance imaging (MRI) is a very important link
in the treatment process [2, 3]. However, traditional medical

image segmentation segmented the lesions according to the
shallow features of the images and relied on the clinical
experience of the doctors. +e addition of different sub-
jective factors leads to different segmentation boundaries of
lesions, resulting in large errors. In addition, the tedious and
repetitive workload imposes a burden on medical staff [4, 5].
+erefore, the automatic and accurate identification and
segmentation of HCC lesions are urgently needed to help
doctors make diagnosis and improve efficiency. At present,
HCC lesions are mostly segmented on CTimages, while MRI
images are rarely segmented [6, 7]. Bonanno et al. [8] firstly
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filtered the image and then used the watershed algorithm to
obtain many small, segmented regions and merge them into
several large tumor candidate regions. +e final segmenta-
tion result was selected manually, but the effect was not
good. Many relevant studies suggested that although HCC
lesion segmentation is realized based on traditional machine
learning algorithm, its high dependence on specified tasks
and nonautomatic disadvantages cannot be ignored [9, 10].

With the development of artificial intelligence and in-
formation, deep convolutional neural network has been used
in the segmentation of medical images, and its performance
is far superior to traditional machine learning algorithms
[11, 12]. Souhami et al. [13] proposed a 3D deep full con-
volutional neural network (FCNN) architecture to segment
the lesions in MRI images of the prostate gland by com-
bining the characteristics of the lesions and the information
of its surrounding tissues. +e results showed that the phase
Dice coefficient was 0.878, which was much higher than the
best result based on nondeep learning algorithm, and its
speed was increased by about 350 times. However, its dis-
advantages cannot be ignored, for various reasons can result
in inaccurate segmentation of lesions. As MRI images of
different sequences reflect the information of the lesions
from different angles, their complementary image infor-
mation can reflect the features of the lesions in a compre-
hensive way [14]. Mitsala et al. [15] segmented brain tumors
based on four MRI images and deep neural network. It was
found that the complementation of multiple MRI image
information can improve the segmentation performance.
However, there are few reports on the focus segmentation of
DCNN combined with multisequence MRI images. In this
study, U-Net was improved. Deep fusion network, data
enhancement strategy, and random data (RD) strategy were
introduced, and a multisequence MRI image segmentation
algorithm based on deep fusion network (DFN) was pro-
posed. +e segmentation experiments of single-sequence
MRI image and multisequence MRI image were designed,
and the segmentation result of single-sequence MRI image
was compared with those of DCNN algorithm. In addition,
RD experiment and single-input experiment were also
designed.+is study aimed to provide a theoretical reference
for automatic segmentation of liver cancer lesions by
multisequence MRI image segmentation algorithm based on
DFN.

2. Methods

2.1. DCNN. +e CNN model is inspired by biology and has
excellent performance in medical image processing. It
contains several basic modules. As the core of the CNN
model, the convolutional layer occupies a crucial position.
Its process is expressed as follows:
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In equation (1), xa,b,c is the input, yi is the bias term on i,
and the convolution kernel is k2D. +e commonly used

activation function F of the activation layer is the Sigmoid
function:

F(x) � 1 +
1
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. (2)

Equation (2) is derived as follows:

F′(x) � F(x)[1 − F(x)]. (3)

In equation (3), when the absolute value of the inde-
pendent variable x becomes larger, the gradient of the
function will tend to be flatter. ReLU function is as follows:

ReLu(x) �
x, x> 0,

0, x≤ 0.
 (4)

Equation (4) not only can greatly reduce the amount of
calculation but also has sparseness. It mainly solves the
problem of network performance degradation [16], so it is
widely used in deep convolutional neural networks.

+e pooling layer is a simple downsampling operation,
which can reduce the amount of calculation and the
amounts of parameters. Among them, average pooling and
maximum pooling are two commonly used pooling layers.
On the contrary, the depooling layer is an upsampling
operation. If it is the maximum pooling during the network
forwarding process, the position of the activation value is
recorded; otherwise, the position of the nonmaximum value
is set to 0. Maximum pooling (2× 2) and depooling are
shown in Figure 1.

+e function of the random inactivation layer is pre-
venting overfitting, which is defined as follows:

R
m
n � Bernoulli (P), (5)

Yn � Rn × Yn. (6)

In equations (5) and (6), P is the probability value, Yn is
the original output, Yn is the output after random inacti-
vation, and n is the number of layers. In this layer, the
number within (0, 1) is set as the probability, and a binary
distribution vector is generated during each training. When
the result is 0, the output is 0; otherwise, it is the original
number. In this way, it can avoid overweighting and prevent
overfitting. In this article, Softmax is defined as follows:

Softmax αi(  �
e
αi


A
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In equation (7), A is the number of target categories and
αi is the input vector, whose cross-entropy loss is defined as
follows:

L(Q, P) � − 
W×H

i�1


A

k�1
pi,k × log qi,a . (8)

In equation (8), it is supposed that Q is the final output
result, P is the coded label of the gold standard, and pi,k and
qi,a represent the label of the gold standard and the category
of the first point on the prediction result, respectively, whose
results are only 0 or 1.
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+eU-Net was improved. As there are five pooling layers
on the original U-Net network structure, the segmentation
target may disappear during the calculation process when it
is too small. +erefore, only two pooling layers are retained,
and a convolution module composed of a convolution layer,
a batch regularization layer [17], and an activation layer is
added in front of each pooling layer, as shown in Figure 2.

+e original image was input into the improved U-Net
network. After two convolution modules, the image was
compressed to a quarter of the original. +en, three con-
volutional layers were used to encode the extracted image
features. Finally, after three deconvolution modules, the
processed image was output. Some of the surface features in
the convolution module were also connected to the
deconvolution module, as shown in Figure 3.

2.2. Deep Integration and Data Enhancement Strategy.
+e algorithm proposed in this paper was added with deep
fusion to integrate and increase the segmentation results of a
single sequence of MRI images. +e schematic diagram of
dual-input deep fusion is shown in Figure 4.

It is supposed that two sequences of MRI images are
input to two improved U-Net networks (U-Net 1 and U-Net
2), and a dual-input convolutional neural network is added
after the two improved U-Net networks, which is expressed
as follows:

H(W, Z) � f 
N

i�1
Wi
′, Zi

⎡⎣ ⎤⎦. (9)

In equation (9), Wi and Wi
′ represent the input and

output of the network i, respectively, and f is the mapping
relationships. +e total loss function is as follows:

L(Q, P, β) � 
N

i�1
lsubnet Q, Pi(  × βi + lDFN Q, Pout( . (10)

In equation (10), βi is the loss weight of the subnetwork,
Pout is the output of the fusion network, and lDFN(Q, Pout) is
the deviation of the final result from the gold standard [18].

Data enhancement can solve the problem of small
amount of image feature data. Due to the unfixed position of
HCC lesions, random translation and mirroring plus ran-
dom small-angle rotation were used to achieve various
functions. Different patients have different tumor sizes and
great differences, so the scaling ratio of 0.8 to 1.3 was
randomly selected to obtain the multiscale input data [19].

2.3.MultisequenceMRI Image SegmentationAlgorithmBased
onDFN. Based on the previous improvements to the U-Net
network, deep fusion was introduced to deeply fuse the
segmentation results of multisequence MRI images, and
data enhancement strategies were adopted to construct a
multisequence MRI image segmentation algorithm based
on deep convolutional neural networks, as shown in
Figure 5.

2.4. Experiments. In this research, 523 abdominal MRI
images of 58 patients with liver cancer in X hospital were
collected from July 4, 2018, to February 5, 2020. Siemens
3.0Tmagnetic resonance scanner was employed to obtain all
MRI images. During the scanning, the patient maintained a
supine position, and the parameters were set to conventional
parameters. Two MRI images of hepatocyte-specific mag-
netic resonance contrast agent- (Gd-EOB-DTPA-) en-
hanced T1 sequence and portal phase (Portal) sequence were
collected for each patient. +e size of the input image was
256× 256. Corresponding processing for MRI images of
different sizes was made. (I) When it was less than 256, 0 was
used to fill in. (II) When it was larger than 256 and smaller
than 300, the image information was retained to the greatest
extent by cropping the 256× 256 size image. (III) When it
was larger than 300, the image needed to be reduced to
256× 256 size. Experienced radiology medical workers
artificially delineated liver cancer lesions as the gold
standard.

In the experiment, to solve the problem of network
overfitting, the data enhancement strategy was adopted to
increase the data to about 25,000.

For segmentation of single-sequence MRI images, the
platform was Ubuntu 14.04 and the hardware was Processor
E5-2650 v3 CPU and NVIDIA 1080 8G video memory GPU.
A total of 15 Gd-EOB-DTPA-enhanced T1 sequence images
of liver cancer patients were randomly selected for testing,
and the performance of the improved U-Net and U-Net was
compared.

Segmentation of multisequence MRI images was as
follows. (I) For DFN segmentation, the platform was the
same as above, andMRI images of one patient at a time were
used for testing and the rest for training. (II)+e RD strategy
was adopted to compare the results with RD and without
RD. +e experimental framework is shown in Figure 6.

Single-input experiment was implemented to verify how
the two sequences worked, and the experimental framework
is shown in Figure 7.
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Figure 1: Maximum pooling and depooling.
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2.5. Observation Indicators. In this paper, the evaluation
indicators to measure the network model were sensitivity,
precision, and comprehensive evaluation segmentation ef-
fect (DSC). For a prediction graph of N×H, the sensitivity is
expressed as follows:

Sensitivity (Q, P) �


N
i�1 

H
j�1 TPij

TPij + FNij

. (11)

Precision is expressed as follows:

Precision (Q, P) �


N
i�1 

H
j�1 TPij

TPij + FPij

. (12)

DSC is expressed as follows:

DSC(Q, P) �


N
i�1 

H
j�1 2TPij

2TPij + FPij + FNij

. (13)

In equations (11)–(13), TPmeans the detected lesions are
true positive, FPmeans the detected lesions are false positive,
and FN means the detected lesions are false negative.

2.6. Statistical Methods. SPSS 22.0 was employed for data
statistics and analysis. Mean± standard deviation ( x± s)
was how measurement data were expressed. +e difference
was statistically considerable with P< 0.05.

3. Results

3.1. Improved U-Net Performance Test. Figure 8 shows the
comparison of segmentation indicators of the improved
U-Net and U-Net.+e sensitivity (0.786± 0.180) obtained by
improved U-Net was significantly higher than the sensitivity
(0.593± 0.062) obtained by U-Net, and the difference was
significant (P< 0.05). +e precision (0.759± 0.131) and DSC
(0.732± 0.113) obtained by improved U-Net were both
higher than the precision (0.686± 0.156) and DSC
(0.663± 0.185) obtained by U-Net, but the differences were
not significant (P< 0.05).

Figure 9 shows the comparison of segmentation indi-
cators for small lesions of improved U-Net and U-Net. +e
sensitivity (0.595± 0.145) and DSC (0.587± 0.113) obtained
by improved U-Net were significantly higher than the
sensitivity (0.405± 0.098) and DSC (0.468± 0.115) obtained
by U-Net, and the differences were significant (P< 0.05).+e
precision (0.601± 0.160) obtained by improved U-Net was
slightly improved compared to the precision (0.520± 0.110)
obtained by U-Net, but the difference was not significant
(P> 0.05). It showed that the improved U-Net can signifi-
cantly improve the recognition rate of small lesions in pa-
tients with liver cancer.

3.2.ComparisonofSegmentationEffect of ImprovedU-Netand
U-Net. Figure 10 shows the comparison of segmentation
effects for large lesions of improved U-Net and U-Net. For
obvious large lesions, the segmentation results of the im-
proved U-Net and U-Net were close to the gold standard

outlined by the medical staff, indicating that the segmen-
tation effect of large lesions by the improved U-Net was not
reduced but had a little improvement.

Figure 11 shows the comparison of segmentation effects
for small lesions of improved U-Net and U-Net. While
U-Net was recognizing and segmenting the small lesions,
some nonlesion areas next to themweremistakenly regarded
as lesions and were segmented.+e reasons were that the fact
that the target was too small and the characteristics of the
lesion and surrounding tissues were regarded as a charac-
teristic value, and there was no selection of characteristics in
the middle, resulting in the current result. On the contrary,
the improved U-Net was made up for this defect, but both
the improved U-Net and U-Net lacked the ability to rec-
ognize extremely small lesions.

3.3. SegmentationResultsBasedonDFN. Figure 12 shows the
indicators based on the DFN segmentation algorithm. +e
average sensitivity was 0.779± 0.136, the average precision
was 0.832± 0.141, the average DSC was 0.783± 0.075, and
the median value of DSC was 0.869, which was relatively
high.

Figure 13 shows the typical effect of segmentation based
on DFN. Taking the gold standard as a reference, there was a
dark tissue suspected of a lesion on the right side in
Figure 13(a), which was only segmented from the Gd-EOB-
DTPA-enhanced T1 sequence. In Figure 13(b), a part of the
tissue was obviously missing, and the segmentation result of
the portal vein sequence (portal) sequence in Figure 13(c)
was even more missing. However, when the two sequences
were fused, the segmentation result became obviously closer
to the gold standard.

3.4.:eResult afterAddition of RDStrategy. Figure 14 shows
the comparison of DSC based on DFN segmentation with
and without RD. When RD was not added, the DSC
(0.724± 0.103) of the Gd-EOB-DTPA sequence segmenta-
tion was very close to the DSC (0.726± 0.079) of the double
sequence segmentation. +e addition of the portal sequence
had almost no effect on the segmentation results based on
the DFN algorithm. When RD was added, it not only in-
creased the DSC of the Gd-EOB-DTPA single-sequence
network by 1% but also increased the DSC of the seg-
mentation based on the DFN algorithm by 7.6%. It showed
that the RD strategy can significantly improve the seg-
mentation performance of liver cancer lesions based on the
DFN algorithm.

Figure 15 shows the segmentation results based on the
DFN with and without RD. When RD was not added, the
segmentation results in Figures 15(C1) and 15(E1) were
almost the same. Although the portal sequence segmentation
result in Figure 15(D1) was significantly different from the
Gd-EOB-DTPA-enhanced T1 sequence segmentation result
in Figure 15(C1), it did not have any impact on the seg-
mentation result in Figure 15(E1) based on the DFN al-
gorithm, and it was far from the gold standard in
Figure 15(B1). When RD was added, the segmentation re-
sults in Figures 15(C2) and 15(E2) were obviously different.

6 Scientific Programming



+e addition of portal sequence had a significant impact on
the segmentation result in Figure 15(E2) based on the DFN
algorithm, and it was close to the gold standard in
Figure 15(B2).

3.5. Single-Input Experiment Results. Figure 16 shows the
segmentation result of single input plus RD based on DFN.
When only Gd-EOB-DTPA-enhanced T1 sequence images
were input, the segmentation results in Figures 16(E1) and
16(C1) based on the DFN algorithm were almost the same,
indicating that the segmentation did not rely on the portal
sequence.When only the portal sequence images were input,
the lesion area of Figure 16(C2) was not very obvious and
was slightly larger than the gold standard. In Figure 16(D2),
during segmentation of the lesion, there was a phenomenon
that the blood vessel was mistakenly divided into the lesion,
but the lesion area was similar to the gold standard. In
Figure 16(E2), the response to the lesion and blood vessel
was decreased, and it had an inhibitory effect on the seg-
mented lesion area. It showed that the segmentation result of

portal sequence was also suppressed by EOB sequence. +e
features of the two sequence MRI images inhibited each
other, and the two were not responding at the same time.
Only when two sequences were input at the same time, the
algorithm based on DFN can get better results.

3.6. Overall Evaluation of Automatic Segmentation Methods.
Figure 17 shows the comparison of the segmentation in-
dicators of the four segmentation methods for liver cancer
lesions. When improved U-Net segmentation was adopted,
portal sequence’s recognition of liver cancer lesions was far
worse than Gd-EOB-DTPA-enhanced T1 sequence, and the
data of the former was lower than the data of the latter. +e
sensitivity of the DFN algorithm (0.779± 0.015) was sig-
nificantly higher than that of the FCN+EOB algorithm
(0.604± 0.056) (P< 0.05). +e indicators of DFN for liver
cancer lesions were higher than those of the improved
U-Net, suggesting that the multisequence MRI image seg-
mentation algorithm based on DFN had the best perfor-
mance in the automatic segmentation of liver cancer lesions.
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Figure 8: Comparison of segmentation indicators of improved U-Net and U-Net. ∗ indicates that the difference was significant compared
to the U-Net algorithm (P< 0.05).
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Figure 9: Comparison of segmentation indicators for small lesions of improved U-Net and U-Net. ∗ indicates that the difference was
significant compared to the U-Net algorithm (P< 0.05).
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4. Discussion

+e incidence of liver cancer has gradually increased in
recent years, and the incidence of many areas with under-
developed medical conditions in Africa and parts of Asia
remains high [20]. MultisequenceMRI plays a pivotal role in
the treatment of liver cancer, and the features of different
sequence images can be complementary. Since traditional
manual segmentation of lesions has many shortcomings,

there is an urgent need for methods to automatically and
accurately identify and segment HCC lesions to help doctors
diagnose and improve efficiency [21, 22]. +erefore, U-Net
was improved and DFN and data enhancement strategies
were introduced. +e features of different sequences of MRI
images were combined and RD strategy was adopted. A
multisequence MRI image segmentation algorithm based on
DFN was proposed. First, the performance of the network
before and after the improvement was compared through a

(a) (b)

(c) (d)

Figure 10: Comparison of segmentation effects for large lesions of improved U-Net and U-Net. (a) +e original MRI image; (b) the gold
standard; (c) U-Net segmentation result; (d) the improved U-Net segmentation result.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 11: Comparison of segmentation effect for small lesions of improved U-Net and U-Net. (a) +e original MRI image; (b, e) the gold
standards; (c, f ) U-Net segmentation results; (d, g) the improved U-Net segmentation results.

8 Scientific Programming



single-sequenceMRI image segmentation experiment. It was
found that the sensitivity obtained by improved U-Net
(0.786± 0.180) was significantly higher than that obtained by
U-Net (0.593± 0.062) (P< 0.05). For small lesions, the
sensitivity (0.595± 0.145) and DSC (0.587± 0.113) obtained
by improved U-Net were significantly higher than those
obtained by U-Net (0.405± 0.098) and DSC (0.468± 0.115)
(P< 0.05). It showed that the improved U-Net can signifi-
cantly improve the recognition rate of small lesions in pa-
tients with liver cancer, and its precision for small lesions

increased by about 0.8. However, both the improved U-Net
and U-Net lacked the ability to recognize extremely small
lesions, which was consistent with the results of O’Sullivan
et al. [23]. +en, the residual unit was added to improve the
structure of U-Net. As a result, the ability to recognize large
lesions was significantly improved, while the ability to
recognize very small lesions was still lacking.

+e segmentation experiment of multisequence MRI
image was implemented, and the results were compared with
the segmentation results of single-sequence MRI image and

Sensitivity Precision DSC DSC median
0

0.2

0.4

0.6

0.8

1

va
lu

e

Figure 12: Segmentation algorithm indicators based on DFN.

(a) (b)

(c) (d)

Figure 13: +e typical effect of image segmentation based on DFN. (a) +e original MRI image; (b) the Gd-EOB-DTPA-enhanced T1
sequence segmentation result; (c) portal sequence segmentation result; (d) the segmentation result based on the DFN algorithm; green was
the gold standard; yellow was the segmentation result.
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DCCN algorithm. It was found that when the improved
U-Net segmentation was performed, portal sequence was far
less recognizable to liver cancer lesions than Gd-EOB-
DTPA-enhanced T1 sequence, and the data of the former
was lower than the data of the latter. +e sensitivity of the
DFN algorithm (0.779± 0.015) was significantly higher than
that of the DCCN algorithm (0.604± 0.056) (P< 0.05). +e
indicators of DFN for liver cancer lesions were higher than
those of the improved U-Net, indicating that the multi-
sequence MRI image segmentation algorithm based on DFN
had the best performance in the automatic segmentation of
liver cancer lesions. In addition, a RD experiment was also
designed. It was found that when RD was not added, the
DSC (0.724± 0.103) of the Gd-EOB-DTPA sequence seg-
mentation was very close to the DSC (0.726± 0.079) of the
double sequence segmentation. When RD was added, it not
only increased the DSC of the Gd-EOB-DTPA single-

sequence network by 1% but also increased the DSC of
segmentation based on the DFN algorithm by 7.6%. It meant
that the RD strategy can significantly improve the seg-
mentation performance of the algorithm proposed in this
paper for liver cancer lesions. +e single-input experiment
revealed that when there was only one sequence of MRI
images input, the subnetwork of the background image was
input, and the output was the background image. In ad-
dition, the segmentation results of the portal sequence and
the segmentation results of the EOB sequence inhibited each
other. +e features of the two sequence MRI images
inhibited each other, and the two were not responding at the
same time. Only when two sequences were input at the same
time, the algorithm based on DFN can get better results.+is
coincided with the result of Rasouli et al. [24]. +en, head
and neck organ segmentation on T1-weighted, T2-weighted,
and T1-weighted fat-saturated images was performed, and

DFN DFN+RD
0.724 0.731Gd-EOB-DTPA

Gd-EOB-DTPA+Portal 0.726 0.781
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Figure 14: Comparison of DSC based on DFN segmentation with and without RD. ∗ indicates that the difference was significant compared
with no RD (P< 0.05).

(A1) (B1) (C1) (D1) (E1)

(A2) (B2) (C2) (D2) (E2)

Figure 15: Segmentation results based on DFNwith and without RD. A1–E1: the segmentation result without RD; A2–E2: the segmentation
result with RD; A1 and A2: original MRI images; B1 and B2: the gold standards; C1 and C2: Gd-EOB-DTPA-enhanced T1 sequence
segmentation results; D1 and D2: the segmentation results of Portal sequence; E1 and E2: the segmentation results based on the DFN
algorithm.
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(D1) (D2)

(C1) (C2)

(B1) (B2)
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Figure 16: Segmentation results of single input plus RD based on DFN. A1–E1: the segmentation results of the input Gd-EOB-DTPA-
enhanced T1 sequence image and portal sequence background image; A2–E2: the segmentation result of input Gd-EOB-DTPA-enhanced T1
sequence background image and portal sequence image; A1 and A2: original MRI image; B1 and B2: the gold standards; C1 and C2: Gd-
EOB-DTPA-enhanced T1 sequence segmentation results; D1 and D2: the segmentation results of Portal sequence; E1 and E2: the seg-
mentation results based on the DFN algorithm.
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then their features were merged. It was found that the
segmentation result of a single image was conducive to
improving the segmentation performance of the image.

5. Conclusion

U-Net was improved and DFN and data enhancement
strategies were introduced. +e features of different se-
quences of MRI images were combined and RD strategy was
adopted. A multisequence MRI image segmentation algo-
rithm based on DFNwas proposed. First, the performance of
the network before and after the improvement was com-
pared through a single-sequence MRI image segmentation
experiment. Secondly, a segmentation experiment of mul-
tisequence MRI images was performed and compared with
the segmentation results of single-sequence MRI images and
the DCCN algorithm. In addition, RD experiments and
single-input experiments were also designed. +e results
showed that the improved U-Net can significantly improve
the recognition rate of small lesions in patients with liver
cancer. +e addition of RD strategy improved the seg-
mentation indicators of liver cancer lesions of the DFN and
can fuse image features of multiple sequences, thereby
improving the accuracy of lesion segmentation. +e dis-
advantage of this paper is that the proposed algorithm is
used for images with tumors and is used to train complete
MRI images, and the algorithm is suitable for two-dimen-
sional images. Later, the three-dimensional segmentation
method will be explored to improve the segmentation
performance.
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