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Stress is a complexmultifaceted concept that is the result of adverse or demanding circumstances.Workers, especially health care workers,
suffer significantly from distress, burnout, and other physical illnesses such as hypertension and diabetes caused by stress. Numerous stress
detection systems are realized but they only help in detecting the stress in early stages, and, for regularizing it, these systems employ other
means. )ese systems lack any inherent feature for regularization of stress. In contributing toward this aim, a novel system “EEG-Based
Aptitude Detection System” is proposed.)is system will help in considering working aptitude of employees working in work places with
an intention to help them in assigning proper job roles based on theirworking aptitude. Selection of right job role forworkers not only helps
in uplifting productivity but also helps in regulating stress level of employees caused by improper job role assignments and reduces fatigue.
Being able to select right job role for workers will help them in providing productive working environment. )is paper presents detail
layered architecture, implementation details, and outcomes of the proposed novel system. Integration of this system inwork placeswill help
supervisors in utilizing the human resource more suitably and will help in regulating stress related issues with improvement in overall
performance of entire office. In this work, different implementation architectures based on KNN, SVM, DT, NB, CNN, and LSTM are
tested, where LSTM has provided better results and achieved accuracy up to 94% in correctly classifying an EEG signal. )e rest of the
details can be seen in Sections 3 and 5.

1. Introduction

)e exponential increase in usage of ubiquitous computing
systems and urban living has led to the development of a
unique class of complex monitoring and control subsystems.
)ese systems are used in diverse areas and their compo-
nents can affect sectors such as transport, health, energy,
home/buildings, and the environment. Such systems are
identified by the general nomenclature of smart city. )eir
functioning involves the usage of a vast number of hardware
sensors and they are typically realized using Wireless Sensor
Networks, IoT devices, and smart phones but are certainly
not restricted to these architectures only. Research in this

field is further classified into areas such as health monitoring
[1–4], traffic management [5], intelligent agriculture [6],
smart power grids [7], environment monitoring [8–10],
human psychology [11–14], smart water grids, smart homes
[15], and smart offices [16]. Each of these applications in-
volves the formulation of architecture that integrates
sensing, storage, communication, processing, and human
computer interfacing. In this context, this manuscript de-
scribes an architecture that incorporates aspects of both
smart offices and human psychology, with the objective that
this architecture can be used to create a conducive and
interconnected office environment, where employee pro-
ductivity can be realized to its full potential.
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)e term smart office generally applies to an environ-
ment that benefits both the employees and the organization
where it is deployed. Employee’s work experience, on the
one hand, and office productivity, on the other hand, are
improved. Major research problems in the field belong to the
domains of communications, human computer interfacing,
efficient information processing, office management, ad-
aptation services, and assistance [17, 18].

More recently, aspects such as stress detection and
emotion detection, have been included into the context of
smart offices [19–27]. Identification of stress levels of em-
ployees allows organizations to regulate them at early stages
before it affects their performance and becomes cause of
deterioration in health. Globally, all workers and especially
health care workers are more prone to risks caused by stress.
Because of their frequent exposure to risk factors such as
high work demands, low work control, and high emotional
involvement [1], high exposure to these risk factors enhances
stress and mental health complaints and is the main cause
behind degrading work performance [2]. )ese complaints
also have other undesirable aspects like quality interaction
with patients and colleagues [3]. It is known that moderate
and high psychological distress increases the odds for
workplace failure and decreases the odds for workplace
success [4].

Similarly, emotion detection systems map employees’
emotion states with routine activities in an office environ-
ment. )is manner of parametrizing aspects of human
psychology allows managers to forecast and assign appro-
priate job roles for employees [28–30]. Role assignment can
be further optimized, eventually improving productivity.
)is research work proposes the usage of an additional
parameter in the form of aptitude for job role assignment.

Aptitude is a qualitative inborn ability to perform a
particular task more efficiently than an average person and is
also inversely linked to stress [31, 32]. It is usually quantified
by means of testing mechanisms. A number of tests are
standardized and used globally for various types of pro-
fessional aptitude assessment. Examples are the GRE
(Graduate Record Examinations), GMAT (Graduate Man-
agement Admission Test), SAT (Scholastic Aptitude Test),
and other similar tests.

)is research work performs this quantification by means
of Electroencephalography EEG signals and proposes an EEG-
based Aptitude Detection architecture. To the best of our
knowledge, the inclusion of aptitude as a parameter in smart-
office environments is novel. As a proof of concept, analytical
skills as a binary ability are considered in this system. Analytical
skills, along with IQ level, and dexterities are a number of facets
that collectively define aptitude. )ese additional facets will be
addressed in the future. In its current scope, the imple-
mentation pipeline includes convolutional neural network
(CNN), decision tree (DT), K-nearest neighbors (KNN), Näıve
Bayes (NB), support vector machine (SVM), and long-short-
term memory (LSTM). )is research work reports highest
accuracy of 94% using LSTM. For deep networks, it also
proposes different topologies and filters for the EEG signals.
Lastly, an aptitude-based EEG data set is also a novel contri-
bution of this manuscript.

In the remainder of the manuscript, literature review is
given in Section 2, the proposed system and architecture are
given in Section 4, and, finally, the outcomes and results are
discussed in Section 5, followed by conclusion in Section 6.

2. Literature Review

EEG signals are a measure of difference in electrical brain
activity attributed to neurons. )e signals appear as wave
patterns that can be captured using EEG devices [14, 27, 33].
)ewavebands represent brain activity due to different types of
stimulants such as sensory usage, memory recall, focus and
attention, problem solving, relaxation, drowsiness, deep sleep,
and others (see Table 1). Some stimulants may result in dis-
appearance of one waveband but an increase in bandwidth of
another [41]. EEG signals and EEG devices form the core
operations in a number of medical applications, including
detection of dementia and epilepsy, sleep disorders, stress or
workload measurement [39, 41, 42], and emotion recognition
[20–24, 33]. )e latter application of emotions detection and
recognition has formed one of the core components in smart
offices and brain computer interaction (BCI). Different re-
searchers have made contributions in emotion detection and
recognition utilizing physiological signals as input (see Table 2).

)e highest classification accuracy reported is 99.5%, which
is achieved using Electrodermal Activity (EDA) andHeart Rate
(HR) signals by means of a fuzzy logic classifier [39]. Here, a
single emotion trait is captured. For two emotion traits (arousal
and valance), the maximum reported accuracy is 96.6% using
multimodal signals using standard statistical features [22].
Here, an ANN is used as a classifier. With four emotion traits
(joy, anger, sadness, and pleasure), the maximum reported
accuracy is 95% using standard statistical and entropy-based
features [20]. Here, Linear Discriminant Analysis is used as a
classifier using EMG, ECG, and RSP signals. )e highest ac-
curacy using Support Vector Machines is reported in [24] as
92%, followed by 91% in [27]. )e former used multimodal
physiological signals, while the latter used only EEG. In all
cases, a number of factors, including number of modality
signals, feature set, and classification techniques, contribute
toward an increase in accuracy.

)e authors in [32] have proposed aptitude modeling;
they have providedmultimodal system based on signals such
as heart rate, skin temperature, breathing, and Galvanic Skin
Response. )ey have managed to achieve an accuracy up to
96% using a multimodal approach with F1-score of 0.91.)e
proposed system in this paper is based on encephalographic
signal. To the best of the authors’ knowledge, no such work
has been done before. Before going in to the implementation
details of the proposed system, a brief introduction of tools
utilized in implementation is covered in Section 3.

3. Tools and Methods

A collaborative setup is established using Python and data
science/numerical libraries, and the details related to these
libraries are provided below. It is worth mentioning that, in
implementation of complete system famous NumPy package
and respective support has played a very vital role.
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3.1. Tools. Different libraries and packages are given below ,
which are utilized in actual implementation of the proposed
system as well as in its validation and testing.

(1) NumPy and Pandas. In Python for array processing,
mathematical computation, and data sciences, spe-
cial packages NumPy and Pandas are utilized.

(2) h5py. )is library uses traditional batch processing
andmakes Python compatible with a huge amount of
numerical data in HDF5 format. )is library takes
burden of the system in training our models, espe-
cially in case of physiological signals.

(3) Matplotlib. )is library is utilized for generating and
plotting different graphs and charts for the visualiza-
tion of results generated by employing the proposed
system.

(4) Sklearn. )is tool serves as a main constituting
part behind generation of confusion matrix and
other related metrics. )ese metrics actually help
us in figuring out the actual results generated by
our models. )ese metrics also help in verifying

the authenticity and validation of generated
results.

(5) 0ink Gear. It is a library provided by Neurosky to
connect and communicate data between Bluetooth-
enabled system and MindWave Mobile EEG device.
)is library employs COMM port for establishing
connection and communication.

(6) Neurosky MindWave Mobile EEG Headset. )is
headset is used to capture electroencephalogram
signal produced by brain as a result of brain activity.
It is a single-channel device and it is able to provide
12-bit raw EEG signals with sampling rate Fs of
512Hz and band range of 3–100Hz.

Section 4 covers the details more comprehensively.

3.2. Data Set. )e proposed system is a novel indigenous
system; therefore, no data set is present. So, the first task that
needs to be accomplished is to collect and organize the data
set with proper labels for the proposed system. Collected
data set contains data related to two classes: “with analytical

Table 2: Literature review.

Ref Modality signal Features Classification Emotions Accuracy
(%)

[11] EEG Energy, entropy SVM, KNN Arousal, valence 86
[13] EEG Min, Max peak, power LSTM Arousal, valence, and liking 87
[14] EEG Min, Max peak, power ANN Stress, normal 60
[20] EMG, ECG, RSP Statistical, energy, entropy LDA Joy, anger, sadness, and pleasure 95

[24] BVP, EMG, EDA,
RSP Statistical features SVM, Fisher

LDA
Amusement, contentment, disgust,

fear, sadness, and neutral 92

[26] EMG, EDA, ECG No specific feature No specific
classifier Arousal, valence NA

[27] EEG Statistical features SVM, ANN Positive, negative, and neutral 91

[33] EEG, EMG, Temp,
GSR, RSP Different features MESAE Arousal, valence 77

[34] EEG No specific features LDA Arousal, valence 87
[35] EEG DE, PSD SVM Negative, positive, and neutral 91.5
[36] EEG Spatial, spectral, temporal CNN Depression 86
[37] EDA, HR, EMG No specific features HMM Arousal, valence 81

[38] EEG Average PSD, mean, variance,
Shannon’s entropy, zero crossing LSSVM Joy, peace, anger, and depression 65

[39] EDA, HR No specific features Fuzzy logic Stress 99.5

[40] EEG No specific features Correlation
analysis

Neutral, anger, sadness, anxiety,
disgust, and surprise 90

Nomenclature for signal modalities: RSP denotes relative spectral power, EEG denotes electroencephalogram, ECG denotes electrocardiogram, GSR denotes
galvanic skin response, EDA denotes electrodermal activity, BVP denotes blood volume pulse, HR/HP denotes heart rate/pulse, and Temp denotes
temperature. Nomenclature for classifiers: LDA denotes latent discriminant analysis, KNN denotes K-nearest neighbors, ANN denotes artificial neural
network, SVM denotes support vector machine, HMM denotes hidden Markov model, LSTM denotes long-short-term memory, DFA denotes deterministic
finite automata, MESAE denotes multiple fusion layer based-ensemble classifier of stacked autoencoder, and MEMD denotes multiencoder to multidecoder.

Table 1: Frequency wavebands of EEG signals considered in this study.

Type Freq. range (Hz) Stimulants
Delta 0.5–4.0 Deep sleep and unconsciousness
)eta 4.0–8.0 Drowsiness, fatigue, and day dreaming
Alpha 8.0–13.0 Relaxation and meditation
Beta 13.0–30.0 Focus, attention, and problem solving
Gamma 30–50 Memory and senses
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skills” and “without analytical skills.” For collecting this data,
proper experimental setup is created where participants have
given analytical reasoning test to solve. While they are
solving the test, our system collected the data; this data is
then assigned proper labels, which is then utilized in training
and validation of our models. See Figure 1 for depicting
overall structure of the data flow used in collecting data set,
while the rest of the details are provided briefly in Section 4.
For availability of data, see Section 7.

4. Proposed System

)e proposed architecture is comprised of four different
layers illustrated in Figure 2. )e first layer is the sensor and
communication layer which is responsible for capturing
various EEG power spectrums. Traditional head gear
comprised of multiple electrodes and channels is unfeasible
in real-world scenarios due to its preparation and posi-
tioning time. Additionally, it is uncomfortable to wear for
long periods of time and requires supervised use from
trained personnel. Comfortable and cheaper commodity
hardware has started to be popular in the last decade. Ex-
amples are the Neurosky MindWave Mobile EEG headset,
which is popularly used in the entertainment and gaming
sector, as well as development of motor development skills in
children. )is headset is a single-channel device and is able
to provide 12-bit raw EEG signals with sampling rate Fs of
512Hz and band range of 3–100Hz. In this case, this device
is a server system configured to use the )ink-Gear library
configured to work with Python. )e received raw signals
using EEG headset constitute input to this layer and are
stored in CSV format.

)e second preprocessing layer is responsible for cleaning
the acquired signal using a number of DSP filters before
acquisition of the relevant features. )is is essential because
when the EEG device captures neuron activity, it also
captures crossover noise and other electrical activities within
proximity of the electrode point (which may include muscle
activity). Since the EEG is a composite signal, its constituent
alpha, beta, gamma, delta, and theta wave patterns can be
acquired by application of the fast Fourier transform, fol-
lowed by a bandpass filter of relevant frequency range. An
illustration of the complex EEG signal after Fourier trans-
form is given in Figure 3, where imaginary and real parts of
signal are superposed on its own amplitude for comparison
purpose. Figure 3 also shows the different frequency bands
given in Table 1. Here, the amplitude of frequency bands
decreases exponentially as their frequency range decreases.
)is makes lower frequency ranges prone to noise. Effect of
crossover noise is mitigated by application of a mean filter.
Small and local noise sources (attributed to eye blinking,
heart pumping, etc.) are removed using an Independent
Component Analysis (ICA) filter, resulting in same am-
plitude scales for all frequency bands (see Figure 4). It takes
raw signal stored in CSV file (generated by sensor and
communication layer) as input and after performing nec-
essary processing it stores the output in another CSV file.
)is newly generated CSV file is then fed as input to the
decision layer. )e decision layer bears three sublayers: data

set, modality transform, and decision sublayers. First is the
data set sublayer. Here, a data set is prepared, comprising the
preprocessed signal and its associated labels. )is data set is
used for training and as input for various machine learning
models. )e ground truth for the data set is determined
experimentally using an alternate work flow and makes use
of a MindWave Mobile EEG device (see Figure 1). Exper-
iments are designed, where the state of neuron activity is
measured, while the subject is performing analytical tasks.
Some example analytical tasks are discussed in [42]. For the
work at hand, the authors prepared a test comprising
questions of analytical portion of the International GRE.
)ese questions were then given to subject participants to
solve in a fixed time interval while being attached to the EEG
device. Tests are scored afterwards, and a threshold value is
used to determine whether the acquired data belongs to a
subject participant with or without analytical skills. )e data
set also includes factors such as humidity, mean of ambient
noise levels, and room temperature at the time acquisition
was being made. )e ground truth is collected from male
and female candidates aged between 22 and 45 years. )e
candidates had normal vision and hearing and are free from
any kind of neurological disorder. In the learning sublayer,
the trained model is then used formally for classification
using a number of schemes such as DT, KNN, SVM, NB,
CNN, and LSTM. For KNN, SVM, and DT, hand-crafted
features of frequency domain are used to prepare a feature
vector. )ese include the minimum, maximum, and mean
frequencies, as well as their standard deviation. Given that
the EEG contains five subbands, this gives a total of 20 hand-
crafted features. )e authors have built CNN model using
Convolutional (ReLU activation), max-pooling, dropout,
dense, flattened, and fully connected layers with ReLU and
Softmax as activation functions (see Figure 5). )e LSTM
model includes the average pooling, dense, flattened,
dropout, and fully connected layers with sigmoid and hy-
perbolic tangent (tanh) as activation functions (see Figure 6).
)ese models are implemented using Keras and TensorFlow.

)e final layer in the architecture is Output Layer, where
the decision of the classifier is validated. Interfaces of the
architecture support exchanges, transformations, process-
ing, and classification in real time.

5. Results and Discussion

For brevity, the labels with and without analytical skills are
treated as positive and negative labels, respectively. Using
this nomenclature, evaluation can be based on measures of
True Positive (TP), i.e., correctly identified positive labels,
and True Negative (TN), i.e. correctly identified negative
labels. In contrast, we also have False Positive (FP), i.e.,
positive labels identified as negative labels, and False Neg-
ative (FN), i.e., negative labels identified as positive labels. In
addition, other metrics such as specificity, recall, precision,
and F1-scores can also be formulated. )e exact calculation
of these measures is given in Table 3. Apart from these
metrics, for better understanding of classification proba-
bility, receiver operating characteristic (ROC) curve is also
being computed. It is a plot of true positive rate (TPR)
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against false positive rate (FPR). )e area under ROC curve
shows the classification probability of the models. )e
greater area means better true positive rate and better
classification ability of a model. As can be seen in Figure 7,
for validation, a tenfold cross-validation technique is uti-
lized. All signals irrespective of class labels are randomly
assigned to ten equal-sized chunks. Of these, training is
performed using 9 chunks, while the remainder is used for
validation. )e process is repeated for 250 epochs for each

model. At the end of each epoch, parameters such as ac-
curacy, validation loss, and confusion matrices are extracted.
)e four labels TP, FP, TN, and FN are then obtained from
this confusion matrix. Subsequently, the scores are given in
Table 3.

A number of machine learning models were used to
perform the classification as depicted in [43, 44], and the
maximum,minimum, and average accuracy after 250 epochs
are reported in Table 4.

Neurosky EEG headset

EEG controller

Composite signal

Bluetooth module (BT)

Sensed data
Bluetooth

communication
unit (RS 232 unit)

Think gear lib.

.csv

Dataset

Figure 1: Ground truth acquisition work flow.
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Filtering sublayer Feature extraction  Normaization

(Hardware layer)

Wearables/input

Classification

Features’ layer

Classification layer

Decision layer
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com. channel

CNN
DT, KNN

NB
SVM

Real-time reading LSTM

Dataset

Aptitude

(i) Ground truth (ii) Signal (iii) Features

Discrimination layer

Figure 2: Proposed system architecture.
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For each of the four labels outlined earlier, the confusion
matrix and scores of Table 3 are given in Tables 5 and 6,
respectively.

)e best results reported are those for LSTM with
maximum and average validation accuracy of 100% and
75%, respectively, and with a consistent F1-score,

precision, and specificity of 0.91, 0.99, and 0.99, respec-
tively. SVM provided maximum accuracy of 97%, while its
average accuracy was 92%. Its F1-score, precision, and
specificity were quite close at 0.93, 0.93, and 0.92, re-
spectively. KNN and DT provide a maximum accuracy of
95%. )eir average accuracy is at 89% and 90% (see
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Figure 3: (a) Real and (b) imaginary components of transformed EEG signal superposed on magnitude of itself. (c) Illustration of di-
minishing amplitude for lower-frequency wavebands of the EEG signal.
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Figure 8). However, their F1-score, precision, and spec-
ificity are quite less than those of LSTM and SVM (see
Figure 9). )e architecture of CNN used in this

manuscript gave a maximum accuracy of 99% but a poor
average accuracy of 54%. )e other scores of CNN were
also not consistent. NB scores were not compared to other
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it = sigmoid (xtWxi + ht–1Whi + bi)
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Figure 6: LSTM architecture.
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Dropout
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Pooling
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Figure 5: CNN layer architecture.

Table 3: Scoring measures.

Evaluation metric Evaluation formula
Specificity (S) False Positive/(True Negative + False Positive)
Recall (R) True Positive/(True Positive + False Negative)
Precision (P) True Positive/(True Positive + False Positive)
F1-score 2∗Precision∗Recall/(Precision +Recall)
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Table 4: Accuracy for various models.

Model Maximum Minimum Average
Convolutional neural network (training) 81.9 75.2 77.9
Convolutional neural network (validation) 99.2 0 54.2
Decision tree 95.0 86.0 90.5
K-nearest neighbors 95.4 82.6 88.8
Long-short-term memory (training) 94.4 90.4 94.4
Long-short-term memory (validation) 100 0 75.0
Naı̈ve Bayes 76.4 69.2 72.8
Support vector machine 97.6 86.2 92.0

Table 5: Confusion matrix.

Model True Positive False Negative False Positive True Negative
Convolutional neural network 642 144 129 443
Decision tree 706 64 65 525
K-nearest neighbors 696 77 75 512
Long-short-term memory 767 132 5 456
Naive Bayes 513 114 256 477
Support vector machine 723 54 54 529

Table 6: Averaged F1-score, precision, recall, and specificity scores for 250 epochs.

Model F1-score Precision Recall Specificity
Convolutional neural network 0.82 0.83 0.81 0.77
Decision tree 0.91 0.91 0.92 0.89
K-nearest neighbors 0.90 0.90 0.90 0.87
Long-short-term memory 0.91 0.99 0.85 0.99
Naı̈ve Bayes 0.72 0.64 0.80 0.65
Support vector machine 0.93 0.93 0.93 0.92

1

TPR

0 1
FPR

NB
CNN
KNN

DT
SVM
LSTM

Figure 7: Receiver operating characteristic curves for all six models.
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models due to high invariance in data. In this study, the
implementation pipeline that has been finalized is pro-
vided (see Figure 10).

6. Conclusion

Aptitude is an innate skill to perform a particular task with ease
and perfection. It not only plays a vital in enhancing pro-
ductivity but also regulates the stress level of employees in work
environments. )is research work addresses the utilization of
aptitude to regulate the stress in aworking environment. It is an
established fact that if an employee is assigned job roles
according to his working aptitude, it helps in reducing stress
and fatigue caused by improper job role assignments and
overburdening. Keeping this fact in view, an implementation
pipeline that makes use of an EEG signal for the detection of
aptitude is proposed with detailed implementation. )e pro-
posed pipeline is testedwith different types ofmachine learning
models. Our findings show good results with LSTM- and SVM-
based classifiers, giving achieved accuracy of 94% and 97%,
with F1-scores of 0.91 and 0.93, respectively. In this research
work, our main focus was on analytical skills of workers. For
future work, the binary system can be expanded to include
poor, fair, good, better, and outstanding analytical capabilities.
Other aptitude facets such as IQ, dexterity, and reasoning can
also be work for the future.

Data Availability

)e data set used in this work is propriety data that belongs
to institution. Soon after completion of this research work,
these data will be made publicly available using GitHub or
any other available resource. However, in the meantime,
data will be provided upon sending a request to tehseen.-
khan@nu.edu.pk. Data will only be provided for enhancing
the research in this domain only and the requester will
clearly mention the purpose of making the request for data.
)e request should be submitted using an institutional e--
mail only.
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