
Research Article
Enhancing Point Features with Spatial Information for
Point-Based 3D Object Detection

Huaijin Liu ,1 Jixiang Du ,2,3 Yong Zhang ,1 and Hongbo Zhang 2,3

1College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
2College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
3Fujian Key Laboratory of Big Data Intelligence and Security, Huaqiao University, Xiamen 361021, China

Correspondence should be addressed to Huaijin Liu; lhjhqdx@163.com and Jixiang Du; jxdu@hqu.edu.cn

Received 7 September 2021; Revised 27 October 2021; Accepted 3 December 2021; Published 21 December 2021

Academic Editor: Jianping Gou

Copyright © 2021 Huaijin Liu et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, there are many kinds of voxel-based multisensor 3D object detectors, while point-based multisensor 3D object
detectors have not been fully studied. In this paper, we propose a new 3D two-stage object detection method based on point cloud
and image fusion to improve the detection accuracy. To address the problem of insufficient semantic information of point cloud,
we perform multiscale deep fusion of LiDAR point and camera image in a point-wise manner to enhance point features. Due to
the imbalance of LiDAR points, the object point cloud in the long-distance area is sparse. We design a point cloud completion
module to predict the spatial shape of objects in the candidate boxes and extract the structural information to improve the feature
representation ability to further refine the boxes. -e framework is evaluated on widely used KITTI and SUN-RGBD dataset.
Experimental results show that our method outperforms all state-of-the-art point-based 3D object detection methods and has
comparable performance to voxel-based methods as well.

1. Introduction

3D object detection is particularly useful in autonomous
driving applications, because various types of dynamic
objects must be recognized in the driving environment, such
as surrounding vehicles, pedestrians, and cyclists. In recent
years, various 3D detectors using LiDAR point clouds have
been proposed, including PointRCNN [1], Part- A2 [2], PV-
RCNN++ [3], 3DSSD [4], and CIA-SSD [5]. Although Li-
DAR points can capture the three-dimensional structure of
an object and contain accurate depth information, they do
not have sufficient semantic information and have the
problem of point sparsity. Compared with LiDAR point
clouds, RGB images have more regular and dense data
format and have richer semantic information to distinguish
between vehicles and backgrounds. -erefore, some re-
search works [6, 7] try to estimate the position and size of
objects through monocular or stereo images. However, the
biggest challenge of 3D object detection based on camera
image is that it cannot get accurate depth information, which

is very important for 3D object detection. Considering that
the representation under different sensor views have their
own shortcomings, and for the 3D object detector of au-
tomatic driving, only one view input is not enough. -is
prompts us to design an effective framework to integrate
features from different perspectives to achieve accurate 3D
object detection. Early multisensor feature fusion methods
take RGB image, front view, and bird’s eye view (BEV) as
input and then directly combine and merge the features by
cropping and resizing to generate 3D candidate boxes, such
as MVF [8] and AVOD [9], but they ignore the different
perspectives of image and BEV. In order to reduce the
accuracy loss caused by different viewing angles, ContFuse
[10] uses continuous convolution to improve feature fusion,
and MVAF-Net [11] uses bilinear interpolation to correct
features. Although continuous convolution or bilinear in-
terpolation is used to modify alignment to overcome the
challenges of different perspectives, quantifying point cloud
3D structures into BEV pseudoimages to fusion image
features will inevitably suffer a loss of accuracy. -ere are
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also some research works [12, 13] using 3D frustum pro-
jected by 2D bounding boxes to estimate 3D bounding
boxes, but these methods require additional 2D annotations
and their performance is limited by 2D detectors. -e above
multisensor feature fusion methods all transform point
clouds from sparse formation to compact representation by
projecting them into images or subdividing them into
uniformly distributed voxel. We call these methods voxel-
based multimodal feature fusion methods, which voxelize
the entire point cloud. However, the voxel-based feature
fusion method will inevitably lose some information and is
relatively sensitive to voxel parameters. -ere are also some
methods that directly perform image feature fusion on Li-
DAR point cloud, instead of performing image feature fu-
sion with BEV of the point cloud or voxelized pseudoimage
of the point cloud. -ese methods are called point-based
multimodal feature fusion methods. For example, PI-RCNN
[14] directly fuses image features and point features, and
EPNet [15] and MOT [16] perform deep fusion between
point features and image features. In addition, since object
detection serves the perception system of autonomous ve-
hicle, the farther the object detected is, the more the time left
for the decision planning system is, and the safer the au-
tonomous vehicle will be. However, due to the imbalance of
point clouds, the point clouds of the short-distance object
are denser, and the point clouds of the long-distance object
are sparse, which contains less spatial information, thus
increasing the difficulty of detecting the distant object. In
order to improve the detection accuracy of difficult cases,
SIENet [17] predicts the shape of distant objects through
point completion network to enhance the spatial structure
information. Inspired by some multitask work (EPNet and
SIENet), this paper proposes a point-based multimodal
fusion 3D object detection method with enhanced spatial
structure.

-e main contributions of this paper are as follows: (1)
we design a new backbone network for multimodal feature
fusion, which combines LiDAR points and camera images in
a point-wise manner to enhance point features without point
cloud voxelization and image annotation. (2) A spatial
structure enhancement module is proposed to predict the
shape of object in the candidate box and learn structural
information to further refine box. (3) We propose a new
two-stage 3D object detection framework based on point
cloud and image fusion. -e test results on the KITTI
benchmark show that the accuracy of our method is higher
than all the current multisensor-based 3D object detection
methods.

2. Related Work

3D object detection based on LiDAR: due to the sparsity and
irregularity of LIDAR point cloud, traditional convolutional
neural networks (CNN) cannot be directly applied to LIDAR
point cloud. Many algorithms have tried various point cloud
representation methods to solve this problem. Currently,
there are three types of point cloud representation for the
input of the 3D detector. (1) Based on the voxel represen-
tation, this method converts point clouds into regular grids

through voxel transformation, so that 3D CNN can directly
apply this representation. SECOND [18] divides the point
cloud into voxel representations and uses sparse convolution
to learn voxel features to generate 3D bounding boxes.
PointPillars [19] converts point clouds into pseudoimages,
eliminating the time-consuming 3D convolution operations.
Fast-PointRCNN [20] introduces the attention mechanism
to enhance the positioning ability of the network. -e ROI-
aware pooling proposed by Part- A2 [2] refines the candidate
box and improves the 3D detection accuracy. -e voxel-
based method has high perceptual ability, but it will cause
information loss during the voxelization process of point
cloud. And the storage and computing efficiency of 3D CNN
are very low. (2) Based on the point representation, this
method does not need to transform the original point cloud
and directly uses PointNet++ [21] to process the original
point cloud to obtain global features, thus retaining the
original geometric information as much as possible.
F-PointNet [12] proposes the application of PointNet++ [21]
to 3D detection based on the cropped point cloud of 2D
image bounding box. Point-RCNN [1] is the first point-
based 3D object detection method that only uses point cloud
as network input. 3DSSD [4] proposed a lightweight and
efficient point-based single-stage 3D object detection
framework, which has a good balance between accuracy and
speed. (3) Point-voxel joint representation method takes
points and voxels as inputs and fuses the features of points
and voxels at different stages of the network for 3D object
detection, such as Part- A2 [2] and PV-RCNN++ [3]. -ese
methods can use voxel-based perception capabilities (i.e., 3D
sparse convolution) and point-based geometric structure
capabilities (i.e., set abstraction) to achieve high computa-
tional efficiency and flexible receiving field, thereby im-
proving 3D detection performance.

3D object detection based on multiple sensors: in recent
years, great progress has been made in the research of
multisensors such as camera image and LiDAR. AVOD [9]
uses RGB image and BEV as input, proposes a feature
pyramid skeleton to extract features in BEV, and combines
features from BEV feature map and RGB feature map
through cropping and resizing operations. ContFuse [10]
applies continuous convolution to overcome the problem of
different viewing angles between image and BEV. MVAF-
Net [11] proposes a multiview adaptive fusion module to
enhance feature fusion among image, front view, and BEV.
-e above methods all try to fuse the features of image and
BEV, but quantifying the point cloud 3D structure into BEV
pseudoimage to fuse image features will inevitably suffer
accuracy loss. F-PointNet [12] uses 3D frustum projected
from 2D bounding boxes to estimate 3D bounding boxes,
but this method requires additional 2D annotations, and
their performance is limited by 2D detectors. -ere are also
some methods that directly perform image feature fusion on
the LiDAR point cloud rather than the LiDAR BEV or the
voxelized pseudoimage of the point cloud. PI-RCNN [14]
directly attaches the image semantic segmentation infor-
mation to the LiDAR point cloud through the transfor-
mation matrix and then uses the LiDAR detector for 3D
object detection. EPNet [15] and MOT [16] establish a deep
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fusion between the point cloud feature extractor and the
image feature extractor to enhance the point cloud features.
Although various sensor fusion networks have been pro-
posed, they are not easily superior to LiDAR detectors be-
cause the fusion of multiview features will bring interference
and noise.

3. Our Framework

In this section, we introduce a new two-stage 3D object
detection framework based on point cloud and image fusion.
Firstly, we describe our proposed multiscale deep fusion
strategy and proposal generation layers. Next, we propose a
spatial structure prediction network, including point cloud
region pooling, spatial structure enhancement, and refined
regression head. Finally, the loss function is discussed. Our
overall framework is shown in Figure 1.

3.1. Multiscale Feature Fusion RPN. As shown in Figure 2,
our multiscale feature fusion RPN consists of a point branch
and an image branch. Specifically, we first use a four-layer
four-scale PointNet++ to extract point features from the
point cloud. Meanwhile, the image branch extracts semantic
features from the image through a four-layer four-scale Unet
[22] segmentation network. Finally, the proposed adaptive
attention fusion (AAF) module is used to fuse the point
features at different scales with corresponding image se-
mantic features to enhance the point features.

3.1.1. Point Branch. -e point branch takes LiDAR point
cloud as input and generates 3D candidate boxes. -e point
branch is composed of four paired set abstraction (SA) and
feature propagation (FP) layers for extracting point cloud
features. SA consists of farthest point sampling (FPS) layer,
multiscale grouping (MSG) layer, and PointNet layer, which
are used for downsampling points to improve efficiency and
expand the receptive field. FP consists of bilinear interpo-
lation and multilayer perception (MLP), which is applied to
broadcast feature for dropped points during the down-
sampling process to recover all points. Due to insufficient
semantic information of LiDAR point cloud, we use LI-
Fusion module [18] to fuse rich image semantic features and
point features. In addition, multiscale deep fusion of point
clouds and images can further enrich the point semantic
features and obtain compact and discriminative feature
representations. -e multiscale feature fusion method is
shown in Figure 2.

3.1.2. Image Branch. In order to perform multiscale se-
mantic feature fusion, we choose the lightweight semantic
segmentation network Unet that also has an encoder and
decoder for image semantic feature extraction. Unet consists
of four convolution blocks and four upsampling layers. Each
convolution block has two repeated 3 × 3 convolution layers
and a 2 × 2 maximum pooling layer. In order to obtain
strong semantic features and balance GPUmemory, we fine-
tuned the convolution block of Unet. Our convolution block

consists of two repeated 3 × 3 convolution layers (stride 1,
padding 1) and one 3 × 3 convolution layer (stride 2, pad-
ding 1). Each of the first two convolution layers is followed
by a batch normalization layer and a ReLU activation
function, as shown in Figure 3.

3.1.3. Adaptive Attention Fusion Module. In order to fuse
data from two different views, we first use the projection
method to establish the relationship between LiDAR points
and image pixels.-en, we obtain the semantic features of each
point through grid sampling. Finally, the proposed adaptive
attention fusion (AAF) module is used to perform feature
fusion. Specifically, we take each point coordinate p(x, y, z)

through the projection matrix M to generate the corre-
sponding image coordinate p′(x′, y′), which can be written as

p′ � M · p, (1)

where M is the internal parameters of the camera and the
size is 3 × 4. Note that we convert p and p′ into four-di-
mensional and three-dimensional vectors in homogeneous
coordinates in projection formula (1). After establishing the
corresponding relationship, we use the grid sample function
of Pytorch framework to obtain the semantic features of each
point on the image. Because the projection point may fall
between adjacent pixels, the bilinear interpolation method
needs to be used to obtain the image feature at the con-
tinuous coordinates, which can be written as

F
(p)

� B F
N p′( )( ) , (2)

where F(p) is the corresponding image feature for point p,B
is the bilinear interpolation function, and F(N(p′)) is the
image feature of the adjacent pixels of the projection point
p′. Finally, in order to better integrate point cloud features
and image features, we design an adaptive attention fusion
module to suppress the interference of noninterested areas
and extract effective information for fusion, as shown in
Figure 4. -e adaptive attention fusion module can be
expressed as follows:

FE � τ FC1 FP( ⊕FC2 FI( ( ,

FPA � FP ⊗ σ FC3 FE( ( ,

FIA � FI ⊗ σ FC4 FE( ( ,

FPI � Concat FPA, FIA( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where FP and FI represent point cloud features and point-
wise image semantic features, FE represents extended fea-
tures, FPA and FIA represent two-branch attention features,
FPI represents fusion features, FC represents fully connected
layer, ⊕ represents element-wise addition, ⊗ represents
element-wise multiplication, σ represents the Sigmoid ac-
tivation function, τ represents the Tanh activation function,
and Concat represents the concatenation operation.

3.2. Spatial Structure Enhancement Module. For each can-
didate box generated in RPN stage, the denser the fore-
ground point set is, the more spatial the information
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retained is. -erefore, the central idea of our spatial in-
formation enhancement module is to predict the complete
shapes of candidate objects and extract structural infor-
mation to enhance feature representation. To this end, we
need to solve two subtasks, namely, how to predict the
spatial shape, and how to extract the spatial structural in-
formation and integrate it into the model to further refine
the candidate box.

3.2.1. Point Cloud Region Pooling. After obtaining 3D
bounding box proposals, we use RoI Pooling [1] to optimize the
box locations and orientations. Specifically, 512 candidate re-
gions of RPN are sampled through NMS to obtain 64 candidate
regions of RCNN. For each 3D box bi � (xi, yi, zi, hi, wi, li, θi),
we slightly enlarge it to create a new 3D box
bi
′ � (xi, yi, zi, hi + μ, wi + μ, li + μ, θi), so as to obtain addi-
tional context information, where (xi, yi, zi) is the center
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Figure 3: Details of the image backbone network. Conv2d (cin, cout, k, s, p) represents 2D convolution, and DeConv2d (cin, cout, k, s)
represents 2D deconvolution, where cin, cout, k, s, and p represent the number of input channels, the number of output channels, kernel size,
stride, and padding, respectively. Each convolution block consists of Convolution, BatchNorm, and ReLU.
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Figure 1: Description of the 3D object detection framework based on point cloud and image fusion. -e whole framework consists of two
stages. Stage 1 uses two-stream deep fusion RPN to extract backbone features and generate proposal boxes. Stage 2 generates high-quality 3D
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location of object bi, (hi, wi, li) is the size of object bi, θi is the
object orientation of the bird’s view, and μ is a constant used to
expand the box size. For each point, through the segmentation
mask we perform an internal/external testing, to determine
whether the point is within the expanded bounding box pro-
posal bi
′. If it is an internal point, the point and its features would

be retained to refine the box bi. Finally, wewill get 512 points for
each candidate box and encode them to get the pooling feature
Fp ∈ R512×C1 , where C1 represents the number of channels.

3.2.2. Spatial Shape Prediction. -e foreground points of the
candidate box constitute a shape describing semantic clues;
however, this shape is usually incomplete. -erefore, based on
the point completion framework PCN [23], we design a spatial
structure prediction network to complete the missing part of
the object in the candidate box. As shown in Figure 5, the
network takes incomplete points as input and predicts the
corresponding dense shape through the encoder-decoder. -e
encoder consists of two simple PointNet units (Share-
dMLP+Maxpool), each SharedMLP consisting of a 1 × 1
convolution layer, a BN layer, a ReLU layer, and a 1 × 1
convolution layer.-e number of convolution output channels
for the first SharedMLP is (128, 256), and the number of
convolution output channels for the second SharedMLP is
(512, 1024). -e decoder consists of two stacked fully con-
nected layers (Linear+BN+ReLU) and one fully connected
layer (Linear), and the output is a 1024 × 3 matrix.-e number
of output channels for the three fully connected layers is (1024,
1024, 3∗ 1023). Unlike the coarse-to-fine pipeline in PCN, we
believe that the coarse output is effective for subsequent
processing, so we remove the fine output branch, thus saving
GPU memory. In order to reduce the burden of training, we
download the KITTI [23] car data set and trained our spatial
shape prediction network in advance.

Figure 6 shows part of the visualization results of our
spatial structure prediction model. It can be seen from the

figure that our spatial structure prediction model performs
well on automobiles and has a good generalization prospect.

3.2.3. Structure Information Extraction and Fusion. To ob-
tain the local and global context from the predicted spatial
shapes, we use a PointNet++ [21] module to extract the
structural information. First, we use the FPS algorithm to select
512 points from the predicted shape.-en for each point, we use
the Ball Query algorithm to generate a local area. Finally, the
PointNet units are applied to capture the local area featureC2 of
each point, thereby obtaining the enhanced features
Fs ∈ R512×C2 . In the refinement subnetwork part, we use a
similar 3D box refinement network of PointRCNN [1] to
further refine the box and confidence. -e input of refining
subnetwork consists of the canonical transformation coordi-
nates of each pooling point, the pooling features, and the
extracted spatial structure features. Since the pooling features
and the spatial structure features come from different patterns,
connecting them without any additional processing may cause
interference. In order to better fusion spatial structure features
and pooling features, we adopt the perspective-channel atten-
tion fusion [24] to obtain merged feature Fm ∈ R512×(C1+C2).

3.3. Loss Function. -e proposed network is trained in an
end-to-endmanner. Our overall losses Ltotal include the two-
stream RPN loss Lrpn in stage 1 and the box refining network
loss Lrcnn in stage 2 as follows:

Ltotal � ωrpnLrpn + ωrcnnLrcnn, (4)

where ωrpn and ωrcnn are the coefficients that control the
balance weight; we set the parameters ωrpn � 1.0 and
ωrcnn � 1.0. Lrpn and Lrcnn adopt similar optimization ob-
jectives, including classification loss, regression loss, and
consistency enhancement loss. For classification loss at the
RPN stage, we use focal loss similar to [25] to balance
positive and negative samples:

L
rpn
cls �

−1
N



N

i�1

α 1 − yi( 
clog yi, if yi � 1,

αyi +(1 − α) 1 − yi( (  yi( 
clog 1 − yi( , otherwise,

⎧⎨

⎩ (5)
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Figure 4: Illustration of the AAF module. FC represents fully connected layer, ⊕ represents element-wise addition, and ⊗ represents
element-wise multiplication.
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where yi is the target classification label, yi is the positive
sample prediction probability, N represents the number of
targets, and α and c are focal loss hyperparameters. For the

regression loss in the RPN stage, we adopt a bin-based
regression loss similar to [1] to regress the center point
(x, y, z), size (l, h, w), and orientation θ:

L
rpn
res �

−1
N



N

i�1


u∈ x,z,θ{ }

Fcls
binu, binu  + 

u∈ x,y,z,h,w,l,θ{ }

Freg resu, resu( ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (6)

where Fcls denotes the cross-entropy classification loss, Freg
denotes the smooth 1 loss, binu and resu denote the bins and
residuals of the ground truth, and binu and resu denote the
predicted bins and residuals of the ground truth. In addition,
in order to improve the consistency of localization confi-
dence and classification confidence, we add a consistency
enhancement loss:

L
rpn
ce �

−1
N



N

i�1
log ci ×

Bi ∩B
gt
i

Bi ∪B
gt
i

  , (7)

where Bi represents the predicted bounding box, B
gt
i rep-

resents the ground truth, and ci represents the classification

confidence of the predicted box. In summary, Lrpn is a
weighted sum of the three loss functions:

Lrpn � ωclsL
rpn
cls + ωregL

rpn
reg + ωceL

rpn
ce , (8)

where ωcls, ωreg, and ωce are used to control the balance
coefficient of the importance degree of loss. We set the
parameters ωcls � 1.0, ωreg � 1.0, and ωce � 5.0. Similarly,
RCNN loss also includes classification loss, regression loss,
and consistency enhancement loss. For RCNN classification
loss, we adopt binary cross entropy loss:

L
rcnn
cls � −

1
N



N

i�1
yilog yi + 1 − yi( log 1 − yi( ( , (9)

Figure 6: Visualization of spatial shape prediction of candidate objects. -e original LiDAR point cloud (top) and the corresponding
prediction results (bottom) for each object.
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where yi is the target classification label, yi is the target pre-
diction probability, and N is the number of targets. RCNN
regression loss Lrcnn

reg and consistency enhancement loss Lrcnn
ce are

defined in the same way as RPN.-eweighted sum of the three
loss functions of rcnn:

Lrcnn � ωclsL
rcnn
cls + ωregL

rcnn
reg + ωceL

rcnn
ce . (10)

4. Experiments

In this section, we evaluate our method on two common 3D
object detection datasets, including the outdoor dataset
KITTI [26] and the indoor dataset SUN-RGBD [27]. In
Section 4.1, we introduce these datasets and evaluation
metrics. In Section 4.2, we provide the implementation
details of the experiment. In Section 4.3 and Section 4.4, we,
respectively, show the comparison results of indoor and
outdoor datasets. Finally, we conducted an extensive abla-
tion study to analyze our proposed 3D target detection
model in Section 4.5.

4.1. Datasets and Evaluation Metric. KITTI is the most
popular standard benchmark dataset for autonomous
driving, consisting of 7,481 samples for training and 7,518
samples for testing. As a common practice, the training
samples are divided into a train set with 3,712 samples and a
val set with 3,769 samples. -e KITTI 3D object detection
benchmark uses an average accuracy (AP) with a bounding
box overlap of 0.7 as the evaluation indicator for cars, where
three difficulty levels (easy, moderate, and hard) are taken
into consideration. SUN-RGBD is a benchmark dataset for
indoor 3D target detection. -e dataset consists of 10,335
images and directional 3D bounding boxes with 37 target
categories, including 5,285 images for training and 5,050
images for testing. We follow the same settings in VoteNet
[28] and report the performance of 10 classes on SUN-
RGBD. We use the average accuracy (AP) with a 3D overlap
of 0.25 as the evaluation index of SUN-RGBD. We compare
our method with the state-of-the-art methods in the KITTI
and SUN-RGBD test set.

4.2. Implementation Details. Two-stream RPN takes LiDAR
point clouds and camera images as input. We select 1,6384
points from the raw LiDAR point cloud as the input of the
point stream and take the image with a resolution of
1280× 384 as the input of the image stream, which is the
same as EPNet [15]. We use four SA layers (4096, 1024, 256,
and 64) to subsample the input LiDAR point cloud and use
four FP layers to recover the size of the point cloud for
foreground segmentation and candidate box generation.
Similarly, we use four convolutional blocks to downsample
the input image and four transposed convolutional layers to
restore the size of the image. In the NMS process, we select
8000 proposals generated by the two-stream RPN based on
the classification confidence and then filter the redundant
proposals with the NMS threshold of 0.8 to obtain 64
proposals for the refinement network. In the process of

refining candidate boxes, we train a spatial structure pre-
dictionmodel in advance and then initialize the spatial shape
prediction network with the weights. In the ablation ex-
periment, we refer to the two-stage image classification
strategy [29] to analyze the speed of our method. We train
the model in an end-to-end manner on GeForce RTX 3090,
the optimizer is ADAM [30], the initial learning rate is 0.002,
and the weight attenuation is 0.001. -e minibatch size is set
to 2 and the model is trained for 40 epochs.

4.3. Experimental Results in KITTI. We compare the pro-
posed two-stage detector with other state-of-the-art
methods and submitted the results to the KITTI server for
evaluation. As shown in Table 1, we evaluate our method on
the BEV detection benchmark and 3D object detection
benchmark of the KITTI test data set. It can be seen that our
method is significantly ahead of the advanced single-stage
multisensor methods ContFuse [10], MAFF [31], MVX-Net
[32], and MVAF-Net [11] in terms of 3D mAP by 10.32%,
5.64%, 4.18%, and 1.01%, respectively. It should be pointed
out that our method is a point-based two-stage multisensor
method, so we focus on the performance comparison with
the point-based multisensor methods. It can be seen that our
method outperforms all advanced point-based multisensor
methods F-PointNet [12], IDMOD [33], PI-RCNN [14], and
EPNet [15] by 10.84%, 5.45%, 5.29%, and 0.47%, respec-
tively. At the same time, our method is also superior to most
voxel-based methods.

-e visualization results of our method on KITTI are
shown in Figure 7. For better visualization, we project the 3D
bounding box of LiDAR coordinates to the RGB image. -e
upper part is the image 3D detection result, and the lower
part is the point cloud scene detection result. It can be seen
that our method performs well in capturing distant cars,
although these objects are difficult to identify in RGB images
and are susceptible to sparse point clouds.

4.4. Experimental Results in SUN-RGBD. We further per-
form experiments on SUN-RGBD data sets to verify the
effectiveness of our method in indoor scenarios. Table 2
shows the results compared with the most advanced
methods. Our method achieves excellent detection perfor-
mance, outperforming PointFusion [35], F-PointNet [12],
VoteNet [28], MBDF-NET [36], and EPNet [15] by 16.1%,
6.2%, 2.5%, 0.7%, and 0.4%, respectively. Specifically,
F-Pointnet and VoteNet both estimate 3D boundary boxes
of point clouds based on 2D boundary box projections of
images. PointFusion combines point cloud features and
image features in a concatenation fashion. Different from
them, our method establishes a correspondence between
image features and point features, thus providing a clearer
representation. In addition, comparing with multisensor-
based methods, EPNet and MBDF-NET are particularly
valuable. Because they also establish the mapping rela-
tionship between image features and point features, EPNet
and MBDF-NET do not consider the point cloud sparse
problem, and MBDF-NET is a three-branch detector.

Scientific Programming 7



Figure 7: Qualitative results of our method on the KITTI dataset. -e detection results are shown in the image (upper) and the cor-
responding point cloud (lower).

Table 1: Comparison with state-of-the-art methods on the KITTI test server.

Type Method Modality
3D detection (car) Bev detection (car)

Easy Mod. Hard 3D mAP Easy Mod. Hard Bev mAP

Stage 1

SECOND [18] LiDAR 84.65 75.96 68.71 76.44 91.81 86.37 81.04 86.41
3DSSD [4] LiDAR 88.36 79.57 74.55 80.83 92.66 89.02 85.86 89.18
MAFF [31] LiDAR & img. 85.52 75.04 67.61 76.06 90.79 87.34 77.66 85.26

MVX-Net [32] LiDAR & img. 85.99 75.86 70.70 77.52 91.86 86.53 81.41 86.60
MVAF-Net [11] LiDAR & img. 87.87 78.71 75.48 80.69 91.95 87.73 85.00 88.23

Stage 2

PointRCNN [1] LiDAR 86.96 75.64 70.70 77.77 92.13 87.36 82.72 87.41
Fast PointRCNN [20] LiDAR 85.29 77.40 70.24 77.64 90.87 87.84 80.52 86.41

Part-A2 [2] LiDAR 87.81 78.49 73.51 79.94 91.70 87.79 84.61 88.03
F-PointNet [12] LiDAR & img. 82.19 69.79 60.59 70.86 91.17 84.67 74.77 84.54
PI-RCNN [14] LiDAR & img. 84.37 74.82 70.03 76.41 91.44 85.81 81.00 86.08
EPNet [15] LiDAR & img. 89.81 79.28 74.59 81.23 94.22 88.47 83.69 88.79
IDMOD [33] LiDAR & img. 84.50 75.41 68.83 76.25 89.43 86.46 78.93 84.94

F-PointPillars [34] LiDAR & img. 88.90 79.28 78.07 82.08 90.20 89.43 88.77 89.47
Our LiDAR & img. 89.94 79.89 75.24 81.70 94.39 88.84 84.39 89.21

-e bold value indicates the highest performance.

Table 2: Quantitative comparison with advanced methods on the SUN-RGBD test set.

Method Modality Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet 3D mAP
PointFusion [35] L & I 37.3 68.6 37.7 55.1 17.2 24.0 32.3 53.8 31.0 83.8 44.1
F-PointNet [12] L & I 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0
VoteNet [28] L 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
EPNet [15] L & I 75.4 85.2 35.4 75.0 26.1 31.3 62.0 67.2 52.1 88.2 59.8
MBDF-Net [36] L & I 81.5 84.7 33.0 77.3 31.2 29.0 57.7 65.6 49.9 85.5 59.5
Our L & I 75.6 85.4 35.5 75.6 26.4 31.6 62.5 67.7 52.8 88.6 60.2
L and I represent the LiDAR point cloud and camera image.
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-e visualization results of our method on SUN-RGBD
are shown in Figure 8. Unlike the KITTI dataset, the SUN-
RGBD dataset contains objects of multiple categories and
different scales. It can be seen from Figure 8 that our method
can better detect a variety of objects with obvious scale
changes, including small objects (such as chair and dressing
table) and large objects (such as sofa and bed).

4.5.AblationStudies. We conduct a series of ablation studies
on the KITTI dataset to analyze multiscale fusion RPN and
spatial structure enhancement modules. All models are
trained on the training set and evaluated on the validation
set of the KITTI dataset for car detection. All evaluations on
the validation set are conducted through 40 recall positions.

4.5.1. Effect of Multiscale Fusion RPN. In Table 3, we in-
vestigate the effectiveness of different structures in multiscale
fusion RPN.We analyze the effect of each structure on stage 1
by removing one structure while leaving the others un-
changed. To be fair for comparison, all the experiments shared
the same fixed state 2. In the first row, we remove the image
semantic branch, and the performance decreases significantly,

which demonstrates the advantage of semantic segmentation.
-en we compare two different fusion schemes. One is the
single-scale feature propagation layer (SFP) fusion, which is
similar to the multisensor feature fusion backbone network of
EPNet [15], and the image semantic features are fused with
the last feature propagation layer. -e other is multiscale
feature propagation layer (MFP) fusion, where image se-
mantic features are fused with each feature propagation layer
(see Figure 2).-e results show thatMFP is better than SFP by
0.25% in 3DmAP.-is shows that the application of semantic
features onmultiscale feature propagation layer is effective. At
the same time, we also give the inference time in Table 3. It can
be seen that the inference time of SFP is similar to the baseline,
and the time consumption of MFP does not increase much.

Figure 8: Qualitative results of our method on the SUN-RGND dataset. For each pair, the camera image is shown above and the
corresponding point cloud detection result is shown below.-e ground truth and detected boxes are highlighted with green and blue boxes,
respectively.

Table 3: Effect of multiscale fusion module.

Method Easy Moderate Hard 3D mAP Time (ms)
RPN baseline 85.66 76.48 76.05 79.40 80
SFP 91.59 82.32 79.89 84.6 93
MFP 92.2 82.49 79.87 84.85 105
SFP: single-scale feature propagation layer fusion; MFP: multiscale feature
propagation layer fusion.
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4.5.2. Effect of Convolution Layer. Table 4 shows the effects
of different convolution layers on the performance of image
semantic segmentation. We take the convolution layer
number of Unet convolution block as the baseline.When the
number of convolutional layers of the convolution block is
increased appropriately, the AP is slightly increased, but
excessively increasing the number of convolution layers of
convolution blocks will reduce AP. -is is because a rea-
sonable depth of convolutional neural network can extract
more image semantic features, but too deep network will
lead to overfitting, which is not good for convergence. At the
same time, it can be seen from Table 4 that the inference time
increases slightly with the increase of the number of con-
volutional layers.

4.5.3. Effect of Point Cloud Region Pooling. Table 5 shows the
effects of different pool context widths on performance.
When no context information is pooled, the accuracy of 3D
object detection, especially for those difficult instances,
decreases significantly. Because the object might be obscured
or far away from the sensor, difficult cases often have fewer
points in the candidate box, which requires more contextual
information to classify and refine the candidate box. As
shown in Table 5, too large pooling context width can also
result in performance drops because the pooled region of the
current candidate box may include noisy foreground points
for other objects.

4.5.4. Effect of Spatial Structure Enhancement. We explore
the effects of the spatial information enhancement module in
Table 6. In the first row, we do not use the spatial infor-
mation enhancement module. In the second row, we add the
spatial information enhancement module and only use the
simplest connection fusion, which reduces AP. -is is be-
cause the pooling features and the spatial structure features
come from different patterns, and connecting them without
any additional processing produces interference. In the third
row, we use perspective-channel attention fusion to fuse the
spatial information enhancement module, and the gain of
mAP is 0.42%. -is is because the spatial information en-
hancement module promotes the model to better obtain
spatial information. In addition, the inference time of our

spatial information enhancement module is only increased
by 11ms compared with the RCNN baseline.

5. Conclusion

In this paper, we introduce a multiscale fusion RPN for
features extraction and proposals generation. Besides, we
also propose a novel spatial information enhancement
module for detecting 3D objects from point clouds with the
imbalanced density. Specifically, we design a spatial struc-
ture enhancement module to generate the complete shape of
the candidate box and learn the structural information to
enhance the features for box refinement. A large number of
experiments verify the effectiveness of our proposed
framework.
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Ü. Özgüner, “Faraway-frustum: Dealing with Lidar Sparsity
for 3d Object Detection Using Fusion,” 2020, https://arxiv.
org/abs/2011.01404.

[14] L. Xie, C. Xiang, Z. Yu et al., “PI-RCNN: an efficient multi-
sensor 3D object detector with point-based attentive cont-
conv fusion module,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 7, Article ID 12460, NY,
USA, February 2020.

[15] T. Huang, Z. Liu, X. Chen, and X. Bai, “Epnet: enhancing
point features with image semantics for 3d object detection,”
in Proceedings of the 2020 European Conference on Computer
Vision, pp. 35–52, Springer, Glasgow, UK, August 2020.

[16] K. Huang and Q. Hao, “Joint Multi-Object Detection and
Tracking with Camera-Lidar Fusion for Autonomous Driv-
ing,” 2021, https://arxiv.org/abs/2108.04602.

[17] Z. Li, Y. Yao, Z. Quan, W. Yang, and J. Xie, “Sienet: Spatial
Information Enhancement Network for 3d Object Detection
from point Cloud,” 2021, https://arxiv.org/abs/2103.15396.

[18] Y. Yan, Y. Mao, and B. Li, “Second: sparsely embedded
convolutional detection,” Sensors, vol. 18, no. 10, 2018.

[19] J. Stanisz, K. Lis, T. Kryjak, and M. Gorgon, “Optimisation of
the pointpillars network for 3d object detection in point
clouds,” in Proceedings of the 2020 Signal Processing: Algo-
rithms, Architectures, Arrangements, and Applications (SPA),
pp. 122–127, IEEE, Poznan, Poland, September 2020.

[20] Y. Chen, S. Liu, X. Shen, and J. Jia, “Fast point r-cnn,” in
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9775–9784, Seoul, Republic of Korea,
August 2019.

[21] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
Hierarchical Feature Learning on point Sets in a Metric
Space,” 2017, https://arxiv.org/abs/1706.02413.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234–241,
Springer, Munich, Germany, October 2015.

[23] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn:
point completion network,” in Proceedings of the 2018 In-
ternational Conference on 3D Vision (3DV), pp. 728–737,
IEEE, Verona, Italy, September 2018.

[24] B. Yang, J. Wang, R. Clark et al., “Learning Object Bounding
Boxes for 3d Instance Segmentation on point Clouds,” 2019,
https://arxiv.org/abs/1906.01140.

[25] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 2980–2988,
Venice, Italy, October 2017.

[26] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: the kitti dataset,” Fe International Journal of Ro-
botics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[27] K. Chen, Y. K. Lai, and S. M. Hu, “3d indoor scene modeling
from rgb-d data: a survey,” Computational Visual Media,
vol. 1, no. 4, pp. 267–278, 2015.

[28] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough
voting for 3d object detection in point clouds,” in Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pp. 9277–9286, Seoul, Republic of Korea, November
2019.

[29] J. Zhou, S. Zeng, and B. Zhang, “Two-stage knowledge
transfer framework for image classification,” Pattern Recog-
nition, vol. 107, Article ID 107529, 2020.

[30] D. P. Kingma and J. Ba, “A Method for Stochastic Optimi-
zation,” 2014, https://arxiv.org/abs/1412.6980.

[31] Z. Zhang, M. Zhang, Z. Liang et al., “Maff-net: Filter False
Positive for 3d Vehicle Detection with Multi-Modal Adaptive
Feature Fusion,” 2020, https://arxiv.org/abs/2009.10945.

[32] V. A. Sindagi, Y. Zhou, and O. Tuzel, “Mvx-net: multimodal
voxelnet for 3d object detection,” in Proceedings of the 2019
International Conference on Robotics and Automation (ICRA),
pp. 7276–7282, IEEE, Montreal, QC, Canada, May 2019.

[33] R. Khamsehashari and K. Schill, “Improving deep multi-
modal 3d object detection for autonomous driving,” in
Proceedings of the 2021 Seventh International Conference on
Automation, Robotics and Applications (ICARA), pp. 263–267,
IEEE, Prague, Czech Republic, February 2021.

[34] A. Paigwar, D. S. Gonzalez, O. Erkent, and C. Laugier,
“Frustum-pointpillars: a multi-stage approach for 3d object
detection using rgb camera and lidar,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 2926–2933, Montreal, BC, Canada, October 2021.

[35] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor
fusion for 3d bounding box estimation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 244–253, Salt Lake City, UT, USA, June 2018.

[36] X. Tan, X. Chen, G. Zhang, J. Ding, and X. Lan, “Mbdf-net:
Multi-branch deep fusion network for 3d object detection,”
2021, https://arxiv.org/abs/2108.12863.

Scientific Programming 11

https://arxiv.org/abs/2012.03015
https://arxiv.org/abs/2011.00652
https://arxiv.org/abs/2011.01404
https://arxiv.org/abs/2011.01404
https://arxiv.org/abs/2108.04602
https://arxiv.org/abs/2103.15396
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1906.01140
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2009.10945
https://arxiv.org/abs/2108.12863

