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Aiming at the no-wait flow shop scheduling problem with the goal of minimizing the maximum makespan, a discrete wolf pack
algorithm has been proposed. First, the methods for solving the no-wait flow shop scheduling problem and the application
research of the wolf pack algorithm were summarized, and it was pointed out that there was lack of research on the application of
the wolf pack algorithm to solve the no-wait flow shop scheduling problem. According to the analysis of characteristics of the no-
wait flow shop scheduling problem, the individual wolf was coded by a decimal integer; wolf searching behavior was realized
through the exchange of different code bits in the individual wolf, and the continuous code segment of the head wolf was randomly
selected to replace the corresponding code of the fierce wolf, by which the behaviors of wolves raiding and sieging were realized,
and the population was updated according to the rule of “survival of the strong.” In particular, to fully explore the potential
optimal solution in the solution space, loop operations were added to the wandering, summoning, and siege processes. Finally,
based on a comparison with the leapfrog algorithm and the genetic algorithm, the effectiveness of the algorithm was verified.

1. Introduction

Production scheduling is a key link to ensure the efficient
and orderly development of the manufacturing process. It is
an important way to quickly respond to customer needs,
improve corporate economic efficiency, and maintain
market competitiveness. Research on scheduling issues has
important theoretical and practical significance in the
current intelligent manufacturing context. -e no-wait flow
shop scheduling problem (NWFSP) is a very important type
of scheduling problem, which widely exists in food pro-
cessing, chemical, metallurgy, and pharmaceutical indus-
tries, and is also a typical NP-hard problem [1]. Based on the
inspiration of the marvelous group phenomenon in nature,
researchers have now proposed many effective swarm in-
telligence optimization algorithms to solve this problem,
such as genetic algorithm [2], particle swarm algorithm [3],
ant colony algorithm [4], etc. -e development of swarm
intelligence optimization algorithms is in the ascendant,
providing many options for solving complex optimization

problems. -e wolf pack algorithm (WPA) is a group in-
telligence optimization algorithm obtained by simulating the
hunting activities of the wolf pack. It has the advantages of
strong global search ability, good generalization ability, and
easy operation. It has significant effect on processing multi-
peak and high-dimensional complex functions, especially,
WPA is suitable for solving various complex combinatorial
optimization problems, such as TSP and knapsack problem.
[5]. However, currently, there are few research reports on the
application of the wolf pack algorithm to the NWFSP. To this
end, this paper combines the implementation process of the
wolf pack algorithm and the feature analysis of NWFSP and
proposes an improved discrete wolf pack algorithm and
proves its effectiveness through a practical example and
comparison with the leapfrog algorithm (LFA) and the
genetic algorithm (GA).

-e remainder of this paper is organized as follows. In
Section 2, a state-of-the-art about method for solving the no-
wait flow shop scheduling problem and wolf pack algorithm
is provided. In Section 3, the mathematical model of the no-
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wait flow shop scheduling problem is described. In Section 4,
the proposed improved discrete wolf pack algorithm and the
corresponding algorithm process are illustrated in detail. In
Section 5, a case study and comparison with particle swarm
algorithm and genetic algorithm are carried out to verify the
effectiveness of the proposed algorithm. Finally, the con-
clusion and future research directions are pointed out in
Section 6.

2. Research Status

Focusing on the research of discrete wolf pack algorithm for
solving no-wait flow shop scheduling problem, this section
focuses on the literature review from two aspects: the
method for solving the no-wait flow shop scheduling
problem and the application of wolf pack algorithm.

2.1. Research on Methods for Solving No-Wait Flow Shop
Scheduling Problem. -e no-wait flow shop scheduling
model is mainly aimed at the production processes that
cannot be interrupted, such as steel rolling, food production,
and so on.-is model has a wide range of applications and is
difficult to solve. It has attracted the attention and in-depth
research of many experts and scholars, such as Song et al. [6]
proposed a neighborhood iterative search algorithm for
NWFSP, which reduced the time complexity of the solution
process and enhanced the ability to find the global optimal
solution. Zhang and Yu [7] aimed at the NWFSP with
makespan minimization and proposed a discrete fruit fly
optimization algorithm based on the dominant population.
Orhan and Abdullah [8] aimed at the non-wait flow shop
scheduling problem with makespan minimization as the
criterion, and proposed a new hybrid ant colony algorithm
based on crossover and mutation mechanism, and the
performance of the algorithm was compared with adaptive
learning methods and genetic heuristic algorithms; Zhao
et al. [9] used hybrid biogeographic optimization algorithm
and variable neighborhood search algorithm comprehen-
sively to solve NWFSP. Allahverdi [10] carried out a sys-
tematic review of no-wait flow scheduling problems.

2.2. Research on Wolf Pack Algorithm. Wolves are a highly
social species with a strict hierarchy and strong domain
awareness. Wolves are usually led by the head wolves with
absolute superiority. -ey kill the prey through a clear di-
vision of labor and cooperation among members and dis-
tribute food according to the “survival of the strong” rule.
Liu et al. [11] simulated the intelligent hunting behavior of
wolves, abstracted the three behaviors of searching for prey,
besieging prey, and updating wolves, and proposed the wolf
colony algorithm (WCA) in 2011 to solve the optimization
problem. -e main processes included assigning artificial
wolves from wolves to search prey within the range of prey
activities. Once the prey was found, other artificial wolves
will be notified of the position of the prey by howling, and
other artificial wolves will approach the prey to encircle. -e
WCA mainly included five steps: initialization, selection of
wolves to detect prey, treating the optimal position of some

artificial wolf as the position of the prey, updating the wolf
pack according to the “survival of the strong” rule, and
judging whether the termination condition was met.

Based on the analysis of the characteristics of wolf pack
cooperative hunting and prey distribution, Wu et al. [5]
abstracted 3 kinds of artificial wolves (head wolf, searching
wolf, fierce wolf ), 3 kinds of intelligent behaviors (wan-
dering, summoning, siege), and 2 kinds of intelligent rules
(wolf generation rule “winner is king” and wolf pack update
mechanism “survival of the strong”), and proposed the wolf
pack algorithm (WPA) with different optimization strategy
compared with WCA in 2013. -e convergence of the al-
gorithm was proved based on Markov chain theory, and the
comparison with other algorithms verified that the algo-
rithm had better global convergence and computational
robustness. Based on WPA, Hui et al. [12] proposed an
improved wolf pack algorithm in 2017 by the introduction of
the concept of siege radius and optimization of step length
and design the position update formula of fierce wolves.
Based on the research of grey wolf hunting behavior [13],
Mirjalili et al. [14] proposed a new meta-inspiration algo-
rithm–grey wolf algorithm (GWA) in 2014, which simulated
the leadership hierarchy and the hunting mechanism of grey
wolf groups in nature, abstracted 4 grey wolf levels and 3
main steps of hunting, namely searching, encircling, and
attacking prey, and finally compared with particle swarm
optimization and some meta-heuristic algorithms such as
gravity search, differential evolution, evolution planning and
evolution strategy to verify the effectiveness of the algorithm.

-e wolf pack algorithm has good performance in global
search and local development capabilities. Since its proposal,
it has continuously attracted the attention of scholars and has
been quickly applied to engineering practice. Yi et al. [15]
proposed a hierarchic wolf pack algorithm to solve the
problem of optimal placement of sensors; Wu et al. used the
wolf pack algorithm to solve the binary knapsack problem
[16], the traveling salesman problem [17], and unconstrained
global optimization problem [18]. Fang and Tang [19] used an
improved wolf pack algorithm to solve the three-dimensional
routing optimization problem for AVE/RS composite oper-
ation. Liu et al. [20] used the wolf pack algorithm to plan the
UAV track with a known starting point and endpoint. Wang
and Jiao [21] proposed an improved wolf pack algorithm to
solve the optimal scheduling problem of hydropower stations
and reservoirs. Xie and Zhang [22] proposed a discrete wolf
pack algorithm according to the characteristics of the per-
mutation flow shop scheduling problem.

It was found from the research review that compared
with some other algorithms such as particle swarm algo-
rithm, dynamic programming algorithm, et al., the wolf pack
algorithm had shown stronger optimization ability and
faster convergence speed in the process of solving a com-
binatorial optimization problem. However, aiming at the
typical combinatorial optimization problem, the no-wait
flow shop scheduling problem, the application research of
the wolf pack algorithm was relatively lacking. To this end,
an improved discrete wolf pack algorithm was proposed in
this paper to solve the no-wait flow shop scheduling
problem.
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3. Mathematical Model of NWFSP

-e no-wait flow shop scheduling problem can be described
as follows [3].

Given: (1) m machines and n workpieces. (2) -e
processing sequence of the workpieces on the machines
is the same. (3) -e processing time of each workpiece
on each machine. (4) All workpieces can be processed
at zero time.
Constraints: (1) A workpiece can only be processed on
one machine at a certain time. (2) A machine can only
process one workpiece at a certain time. (3) -e
transportation time of the workpiece and the start-up
time of the machine is included in processing time. (4)
All processes of the same workpiece must be processed
continuously, that is, once each workpiece starts to be
processed, each process must be performed continu-
ously, and there is no waiting time between two ad-
jacent processes.
Goal: To determine a scheduling plan that minimizes
the maximum makespan.
Based on the literature [23], assuming that the pro-
cessing time of the workpiece i on the machine k is pi,k,
according to the continuous production requirement,
the difference between the start time of two adjacent
workpieces i− 1 and i (start processing time interval) di-
1,i shall meet the following requirement, as shown in(1):

di−1,i � max max
2≤k≤m
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-e maximum makespan is calculated as:

Tmax � 
n

j�2
dj−1,j + 

m

k�1
pn,k. (2)

According to the analysis, the calculation complexity of
the maximum makespan is O(mn2).

4. Improved Discrete Wolf Pack Algorithm

-e wolf pack algorithm realized the whole process
simulation of the searching of prey and environmental
information detection by individual wolves, the sharing
and interaction of information between artificial wolves,
and the whole process of artificial wolf capturing prey
based on individual behavior decisions of their own re-
sponsibilities. Wolf pack algorithm [5] consists of three
intelligent behaviors of wandering, summoning, and
besieging, and the “winner is king” rule of wolf compe-
tition, and the “survival of the strong” wolf pack update
mechanism. Based on the discrete wolf pack algorithm for
solving the TSP problem proposed by Wu et al. [17], in
view of the characteristics of NWFSP, this section in-
troduces the population initialization, intelligent behav-
iors, and rule description of the improved discrete wolf
pack algorithm in detail.

4.1. Coding Rules and Population Initialization. NWFSP is a
typical discrete combinatorial optimization problem.
According to the characteristics of the problem, the decimal
encoding method is adopted, that is, each workpiece is
represented by a decimal integer, and all the workpieces are
processed on the machine according to the predetermined
process. -e processing sequence of all the workpieces
constitutes a decimal sequence Xi � (xi1, xi2, . . ., xij, . . ., xin),
which is used to represent the position of the ith artificial wolf
in the wolf pack algorithm, where n represents the total
number of workpieces to be processed, and xij represents
the coding number of the jth processed workpiece in the
sequence Xi. Taking the scheduling problem of 7 work-
pieces (coded from 1 to 7) as an example, the decimal
sequence Xi � {4, 6, 3, 2, 5, 1, 7} indicates that the processing
order of the 7 workpieces is workpiece 4⟶workpiece
6⟶workpiece 3⟶workpiece 2⟶workpiece 5⟶
workpiece 1⟶workpiece 7.

Determining the population size to be N, and using
the random generation method to get the initial population
X� {X1, X2, . . ., Xi, . . ., XN}, where 1≦ i≦N.

4.2. Intelligent Behavior and Rules. Based on the analysis of
the characteristics of wolf pack cooperative hunting activ-
ities, the wolf pack algorithm abstracts the 3 intelligent
behaviors of wolf pack wandering, summoning, and be-
sieging, combined with the solution goal of NWFSP (that is,
minimizing the maximum makespan), and elaborates the
corresponding behavior rules in detail.

4.2.1. Selection of Head Wolf. -e artificial wolf with the
optimal objective function value (that is, the shortest
makespan) in the initial population is selected as the head
wolf; in the iteration process, after each iteration, the ob-
jective function value of the current head wolf is compared
with the objective function values of other artificial wolves, If
there is an artificial wolf whose objective function value is
better than that of the head wolf, that artificial wolf is used to
replace the head wolf; if the optimal objective function value
corresponds to multiple artificial wolves, one of them is
randomly selected as the head wolf.

4.2.2. Wandering Behavior. All artificial wolves in the wolf
pack except the head wolf are regarded as detecting wolves to
search for prey in the solution space. Assume that Y0

i and
Ylead respectively represent the prey odour concentration
perceived by the wolf i and the head wolf in the initial
population. -e maximum number of wanderings are set as
K. During the first wandering process, let the wolf i take one
step forward in h directions respectively (the step length at
this time is called the wandering step length stepa), and
record the position in the pth direction and the perceived
prey odour concentration Y

p
i (1≤p≤ h), then return to the

original position; if Y
p
i ≥Ylead, the detecting wolf i will re-

place the head wolf; if Y0
i <Y

p
i <Ylead, use the coordinates of

one step forward in the pth direction to replace the coor-
dinates of the detecting wolf i before wandering;
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if Y
p
i <Y0

i <Ylead, the coordinates of detecting wolf i remain
unchanged. Specifically, the detecting wolf i takes one step
forward in the p-th direction (p� 1, 2, . . ., h), that is, ran-
domly interchange two selected workpieces xij and xik in the
code Xi� {xi1, xi2, . . ., xim} of the detecting wolf i. Or ran-
domly select a workpiece from the codeXi� {xi1, xi2, . . ., xim}
of the detecting wolf i, and then insert the workpiece after
other workpieces from left to right. Repeat the above-
mentioned wandering behavior until the maximum number
of wanderings is reached, and then proceed to the sum-
moning phase of the head wolf.

4.2.3. Summoning Behavior. All artificial wolves in the pack
except the head wolf are regarded as fierce wolves. When the
head wolf howls to summon the fierce wolves, the fierce
wolves quickly rush towards the current position of the head
wolf with a large step length. Referring to related literature
[11], the summoning behavior is designed as follows.

Randomly select a piece of continuous code
xls, xl(s+1), . . . , xle with the starting point xls and the ending
point xle in the head wolf, respectively, where the number of
code digits is the raiding step length stepb, replace a segment
of continuous code xis, xi(s+1), . . . , xie in the corresponding
position of the fierce wolf i. -is operation reflects the
leadership of the head wolf (the optimal individual) to the
wolf pack. If the elements of these two continuous codes are
the same, the codes in other positions in the fierce wolf i will
not be changed, which reflects the differentiation of the wolf
pack individual. -e element in xis, xi(s+1), . . . , xie that does
not belong to xls, xl(s+1), . . . , xle are randomly placed in the
rest of the fierce wolf i. -e specific operation is as follows:
Suppose the code of head wolf is Xlead � {5, 3, 4, 2, 8, 1, 7, 6},
and the code of the fierce wolf i is Xi � {4, 6, 3, 2, 8, 5, 7, 1},
randomly select a piece of continuous code from the head
wolf as {4, 2, 8, 1}, and the corresponding code in the fierce
wolf i is {3, 2, 8, 5}; use the code segment {4, 2, 8, 1 }to replace
the code segment {3, 2, 8, 5}, then the code {4, 6, 4, 2, 8, 1, 7,
1} is obtained. In this code, the elements 4 and 1 appear
repeatedly, and the elements 3 and 5 are missing. -e ele-
ments 6 and 7 in the fierce wolf i does not belong to {4, 2, 8,
1}, so keep the position unchanged; randomly arrange 3 and
5 and replace the repeated elements 4 and 1, and finally get
the updated code {3, 6, 4, 2, 8, 1, 7, 5} or {5, 6, 4, 2, 8, 1, 7, 3} of
the fierce wolf i.

After updating the code of the fierce wolf i, recalculate its
fitness value. If Yi >Ylead, the fierce wolf i will replace the
head wolf. After reaching the set number of raids, the
process enters the siege behavior.

4.2.4. Siege Behavior. After the raid process, the distance
between the wolves and the prey is relatively close, and the
head wolf will command the fierce wolves to besiege the
prey. -e design of the siege behavior is similar to the
summoning behavior. In order to ensure that the wolves
perform a fine search near the prey, the siege step length stepc
should not be greater than the raiding step length stepb at this
time, and the siege behavior ends when the set number of
siege is reached.

4.2.5. Population Update. In order to prevent the population
from entering the local optimum, the population is updated
after each iteration. -e specific operation is as follows:
arrange the population from large to small according to the
fitness value, remove the last R artificial wolves in the
population, and then randomly generate R artificial wolves
to join the population for the next iteration.

4.3. Algorithm Flow. -e specific process of the improved
discrete wolf pack algorithm is shown in Figure 1 and de-
scribed in detail as follows.

Step 1: Parameter initialization. Set the population size
of the wolf packN, the maximum number of wandering
times Tmax, the maximum number of iterations of the
algorithm kmax, the range of the search direction h, and
the number of updates of the wolf pack R.
Step 2: Initialize the spatial position of the wolf pack,
calculate its objective function value, and select the
artificial wolf with the optimal fitness value as the head
wolf Xlead.
Step 3: Wolf pack detecting. If the function value of the
detecting wolf is greater than the head wolf, it will
replace the head wolf and initiate a summoning be-
havior. Otherwise, the detecting wolves will continue to
wander until the maximum number of wanderings is
reached, the head wolf will summon the other wolves.
Step 4: Wolf pack raiding. -e fierce wolves rush to-
wards the prey. If the prey odour concentration of some
fierce wolf is greater than that of the head wolf, this
fierce wolf will replace the head wolf, and the fierce
wolves will rush to the range close to the prey, and
proceed to the next step.
Step 5: Wolf pack siege. If the prey odour concentration
of some fierce wolf is greater than that of the head wolf,
this fierce wolf will replace the head wolf.
Step 6: Population renewal. Update the position of
the head wolf according to the “winner is king” rule,
update the wolf pack according to the “survival of the
strong” mechanism, and then enter the next iteration
process.
Step 7: Determine whether the accuracy requirement is
met or the maximum number of iterations is reached. If
the algorithm termination condition is met, the optimal
solution is output, that is, the position of the head wolf
or the position of the prey; otherwise, go to Step 3 to
continue.

5. Performance Verification

In order to verify the feasibility of the improved discrete wolf
pack algorithm (IDWPA) designed in this paper in solving
the NWFSP problem, this paper uses 5 sets of calculation
examples to compare the algorithm with LFA and GA [24].
-e termination condition of the algorithm is reaching the
number of iterations. -e initialization parameters of
IDWPA are set as follows: the population size of the wolf
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pack N� 20, the maximum number of wandering times
Tmax � 10, the maximum number of iterations of the algo-
rithm kmax � 100, the range of the search direction h� 5, and
the number of updates of the wolf pack R� 4.

Table 1 shows the optimal solution and the average
solution with three different algorithms. Compared with
LFA and GA, IDWPA designed in this paper reduces the
makespan of the NWFSP problem and improves the average
equipment utilization rate.

It can be seen from the population evolution iterative
process that the improved discrete wolf pack algorithm is
easier to jump out of the local optimum and has a faster
convergence rate when solving the NWFSP problem. Fur-
thermore, the scheduling result is more accurate, and the
utilization rate of the machine is improved to a certain

extent, so the production efficiency of the enterprise can be
improved to a certain extent.

6. Conclusions

Aiming at the no-wait flow shop scheduling problem, an
improved discrete wolf pack algorithm was proposed. First
of all, this paper summarized the method of solving the
problem of no-waiting flow shop scheduling and the re-
search on the application of the wolf pack algorithm and
points out the research gap of using the wolf pack algorithm
to solve NWFSP. -en, the decimal integer coding method
was adopted; the wandering behavior of wolf detecting was
realized through the exchange of single code bits, the raiding
and siege behaviors were realized by replacing the contin-
uous code segment. -e population was updated according
to the rule of “survival of the strong,” and the summoning
and siege links were added with cyclic operations. Finally, a
comparison with the leapfrog algorithm and genetic algo-
rithm was performed to verify the effectiveness of the
proposed algorithm.
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