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To explore the impact of different image registration algorithms on the diagnosis of visual path damage in patients with
primary open angle glaucoma (POAG), 60 cases of suspected POAG patients were selected as the research objects. Shape-
preserving scale invariant feature transform (SP-SIFT) algorithm, scale invariant feature transform (SIFT) algorithm, and
Kanade-Lucas-Tomasi (KLT) algorithm were compared and applied to MRI images of 60 POAG patients. It was found that
the SP-SIFTalgorithm converged after 33 iterations, which had a higher registration speed than the SIFTalgorithm and the
KLT algorithm. (e mean errors of the SP-SIFT algorithm in the rotation angle, X-direction translation, and Y-direction
translation were 2.11%, 4.56%, and 4.31%, respectively. (ose of the SIFT algorithm were 5.55%, 9.98%, and 7.01%,
respectively. (ose of the KLT algorithm were 7.45%, 11.31%, and 8.56%, respectively, and the difference among al-
gorithms was significant (P< 0.05). (e diagnostic sensitivity and accuracy of the SP-SIFT algorithm for POAG were
96.15% and 94.34%, respectively. (ose of the SIFT algorithm were 94.68% and 90.74%, respectively. (ose of the KLT
algorithm were 94.21% and 90.57%, respectively, and the three algorithms had significant differences (P< 0.05). (e results
of MRI images based on the SP-SIFT algorithm showed that the average thickness of the cortex of the patient’s left talar
sulcus, right talar sulcus, left middle temporal gyrus, and left fusiform gyrus were 2.49 ± 0.15 mm, 2.62 ± 0.13 mm,
3.00 ± 0.10 mm, and 2.99 ± 0.17 mm, respectively. (ose of the SIFT algorithm were 2.51 ± 0.17 mm, 2.69 ± 0.12 mm,
3.11 ± 0.13 mm, and 3.09 ± 0.14 mm, respectively. (ose of the KLT algorithm were 2.35 ± 0.12 mm, 2.52 ± 0.16 mm,
2.77 ± 0.11 mm, and 2.87 ± 0.17 mm, respectively, and the three algorithms had significant differences (P< 0.05). In
summary, the SP-SIFT algorithm was ideal for POAG visual pathway diagnosis and was of great adoption potential in
clinical diagnosis.

1. Introduction

Glaucoma is a disease characterized by visual field defects
and sunken optic nerve atrophy, which can cause serious
damage to the patient’s visual function. Among blinding eye
diseases, the incidence of glaucoma ranks second, second
only to cataracts [1]. Among glaucoma patients in China,
primary glaucoma accounts for about 87% of the total
number of patients, and it mostly occurs in the adult
population. At present, glaucoma has caused a great threat to
people’s vision health.

According to the shape of the patient’s chamber angle,
primary glaucoma is classified into primary angle closure
glaucoma (PACG) and POAG [2]. (e onset of POAG is
relatively slow. In the early stage, the patient has no clinical
symptoms, the fundus is normal, and the vision is not
significantly decreased. However, the patient’s retinal nerve
fiber layer and optic nerve have already been damaged.
(erefore, it is very easy to cause misdiagnosis or missed
diagnosis to the patient clinically, and it has even developed
to a more serious degree when the diagnosis is confirmed. At
this time, the damage to the patient’s visual function has
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been irreversible [3]. At present, the academic community
has no clear definite theory on the pathogenesis of POAG.
However, it is generally speculated that the increase in the
intraocular pressure of the patient at the early stage of the
disease causes the pressure of the lamina of the eye to be-
come higher, which compresses the fundus nerve and causes
damage, and in turn leads to the loss of the patient’s vision
[4]. However, such speculation is not fully applicable, and
the specific pathogenesis remains to be further explored.

(e loss of retinal ganglion cells (RGCs) is the main
feature of POAG [5]. In addition, it has been found that
POAG may cause damage to the entire visual pathway,
including the lateral geniculate nucleus (LGN) and the
primary visual cortex (V1) [6], as there are more and more
in-depth studies of imaging and histology in recent years. At
present, the main diagnostic methods for POAG include
optical coherence tomography (OCT), magnetic resonance
imaging (MRI), and diffusion tensor imaging (DTI). OCT is
currently the main method for glaucoma diagnosis; it can
clearly detect the changes in the ganglion cell complex
(GCC) and the thickness of the retinal nerve fiber layer
(RNFL) in patients, which provides useful information for
the diagnosis of glaucoma [7]. In clinical testing, the thin-
ning of RNFL usually determines whether glaucoma nerve
damage has occurred. Studies suggested that with the same
average visual field defect in patients, glaucoma has more
diffuse and severe RNFL loss than nonglaucoma. However,
the thinning of RNFL is not unique to glaucoma. Some
diseases such as diabetes and hypertension can cause RNFL
defects. (erefore, relying solely on OCT can easily lead to
misdiagnosis [8]. MRI has a good imaging function for soft
tissues, and its multiangle, omnidirectional, noninvasive
imaging function is gradually utilized in the diagnosis of eye
diseases. One of the main clinical features of glaucoma
patients is optic nerve damage, andMRI imaging technology
is an effective method to detect optic nerve damage [9]. (e
image registration algorithm based on traditional mutual
information ignores the spatial and directional information
of the image and is prone to mismatches. In this research, an
optimized image registration algorithm was proposed,
namely, the shape-preserving scale invariant feature trans-
form (SP-SIFT) algorithm. (is algorithm regards the main
phase consistency of the image to be registered as a fuzzy set
and introduces the theory of closeness in fuzzy mathematics.
Even under the interference of noise, it can achieve high
accuracy and strong robustness, which can be applied to
MRI image registration [10].

When fundus images are taken, a single image cannot
accurately reflect the characteristics of the fundus image due
to the limited shooting field of view. (erefore, in clinical
diagnosis, it is necessary to take images frommultiple angles
and then combine the images from various angles as a
complete fundus image. After which, the clinician analyzes
and compares the images. (e progress of some of the
images that may cause glaucoma optic nerve damage is
tracked, based on which judgments are made. To accomplish
these goals, it is necessary to register and combine the pa-
tient’s fundus images in advance. (erefore, POAG patients
were seemed as the research subjects in this work, and the

registration accuracy of different registration algorithms and
their influence on the diagnosis of POAG visual path damage
was analyzed, aiming to provide a reference for the clinical
diagnosis of POAG.

2. Materials and Methods

2.1. Research Subjects. In this investigation, 60 patients with
suspected POAG who were treated in the hospital fromMay
2017 to December 2019 were selected as the research sub-
jects. (ere were 39 males and 21 females, aged 18–70 years,
with an average age of 49.6± 9.32 years. (e control group
was set, composed of 60 healthy volunteers. (ere were 30
males and 30 females, aged 18–65 years old, with an average
age of 46± 6.85 years old. (is study had been approved by
the medical ethics committee of the hospital. All subjects
were informed of the research objective before the study, and
possible injuries were explained during the experiment. (e
subjects and their families were aware of the research sit-
uation and signed the informed consent forms.

Inclusion criteria for the experimental group were de-
fined as patients older than 18 years old and younger than 70
years old, patients with an open anterior chamber angle,
patients with intraocular pressure greater than 21mmHg at
least twice, patients without glaucoma visual field defect or
other ocular diseases, patients whose visual field was normal
for two or more examinations in previous examinations, and
patients with complete clinical data.

Exclusion criteria of the experimental group were de-
fined as patients with other ophthalmological diseases, pa-
tients with tumors, hypertension, diabetes, cardiovascular,
or cerebrovascular diseases, pregnant or lactating women,
and patients with metal in the body, which affected the MRI
scan.

2.2. Image Preprocessing. At present, the registration algo-
rithms for target images are classified into two types: area-
based and feature-based. Feature-based one is more efficient
and stable than area-based one, which also has greater
advantages in image registration [11]. In this work, the SIFT
algorithm based on feature point matching was selected for
research.

For multiple multiangle fundus images, to register and
stitch them into a complete fundus image, the following
steps are generally required: image preprocessing, feature
similarity extraction, transformation matrix creation, uni-
fied coordinate transformation, and image fusion [12].
Assuming that there are two images, a(x, y) is the image to
be registered and b(x, y) is the reference image, the image
registration model can be expressed by the following
equation.

a(x, y) � A[B(b(x, y))]. (1)

In equation (1), A represents the one-dimensional gray
scale transformation and B represents the two-dimensional
spatial coordinate transformation. During registration, the
difficulty of image registration will increase due to inter-
ference from angle, time, scale, illumination, and noise.
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(erefore, before registration, the image to be registered
should be smoothed and denoised and contrast enhanced. In
this work, the method based on partial differential equations
was adopted to denoise the image.

(e basic principle of the noise reduction method based
on partial differential equations is utilizing the monotonous
decreasing function of the image in different directions as its
diffusion coefficient [13], and its calculation mode can be
expressed by the following equation.
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In equation (2), u is the pixel gray level, t is the iteration
step size, div is the divergence operator, g is the diffusion
coefficient, and ∇u is the image gray gradient. When ∇u
becomes smaller, the diffusion coefficient g becomes larger
and the image noise is removed. When ∇u becomes larger,
the diffusion coefficient g becomes smaller, and the features
of the image edge are retained. For the diffusion coefficient
g, its function expression is as follows.
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After the image is denoised, Gaussian matched filtering
is utilized to enhance the image contrast. (e change trend
of the fundus blood vessel in the cross-section is regarded as
a Gaussian curve.

Gc(x, y) � exp −
x
2

2σ2
 . (4)

In equation (4), Gc(x, y) represents a filtering kernel
function of n × n, and σ represents the standard deviation of
the Gaussian function along X-axis. After Gaussian filtering,
the contrast of the image is well enhanced.

2.3. SP-SIFT Image Registration Algorithm. After the image
preprocessing is over, the SIFT algorithm is employed for
image similar feature detection. First, the continuously
changing scale parameters and image processing informa-
tion based on different scales are acquired through the
Gaussian convolution kernel. (e scale space function of the
image can be expressed by the following equation.

S(x, y, δ) � Gc(x, y, δ) × A(x, y). (5)

In equation (5), S(x, y, δ) represents the scale-space
function, Gc(x, y, δ) represents the Gaussian function, and
A(x, y) represents the input image after preprocessing. For a
two-dimensional Gaussian convolution kernel Gc(x, y, δ),
its definition can be expressed by the following equation.

Gc(x, y, δ) �
1

2πσ2
e

− x2+y2( )/2δ2( )( ). (6)

Difference of Gaussian (DOG) space is adopted to im-
prove the calculation efficiency of stable extreme points
during scale space detection. (e Gaussian difference scale
space expression can be expressed by the following equation.

fDOG(x, y, δ) � Gc(x, y, kδ) − Gc(x, y, δ)  × A(x, y)

� S(x, y, kδ) − S(x, y, σ).

(7)

Because of the influence of DOG, it is ensured that the
image similarity feature is not affected by light, scale, and
noise. (e DOG operator can accurately reflect the basic
contour features of the input image and is more sensitive to
image edges and noise [14], so the precise selection of
candidate feature points is achieved by fitting a three-di-
mensional quadratic function.

For Gaussian difference scale space, the Taylor expansion
is as follows.
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In equation (8), (x0, y0, δ) represents the local extreme

point of the spatial function fDOG, and X � (x, y, δ)T. (e
partial derivative of is defined as 0; then, the precise position
of the extreme point is shown in the following equation.
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(e following equation is acquired by combining
equations (7) and (9) and discarding the low contrast points
in the image.

fDOG( X) � fDOG(x, y, δ) +
zf

T
DOG

2 zx
X. (10)

(e DOG space curvature characteristic is utilized to
remove the edge points of the image. Since the matrix ei-
genvalues are proportional to the principal curvature of
fDOG(x, y, δ), for a 2×2 Hessian matrix, there are the fol-
lowing equations.

tr(H) � fDOGxx + fDOGyy � m + n, (11)

det(H) � fDOGxxfDOGyy − fDOGxy 
2

� mn. (12)

Among which, H is calculated as follows.

H �
fDOGxx fDOGxy

fDOGxy fDOGyy

⎡⎣ ⎤⎦. (13)

In equations (11) and (12), let m � t × n; then, there is the
following equation.
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When m � n, (t + 1)2/t takes the minimum value, and
the detected feature points only need to meet the following
conditions.

tr(H)
2
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−
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2

t
< 0. (15)

(e feature points that do not satisfy equation (15) are
eliminated.
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After the transformation matrix is established, a unified
coordinate transformation is performed on the image, and
the main direction of the image feature points is determined

via gradient histogram. (e point (x′, y′) on the image is
defined to represent the feature point scale, and its gradient
value d(x′, y′) can be calculated by the following equation.

d x′, y′(  �
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2
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2



. (16)

(e direction ϑ can be calculated by the following
equation.

ϑ x′, y′(  � arctan
L x′, y′ + 1(  − L x′, y′ − 1( 

L x′ + 1, y′(  − L x′ − 1, y′( 
. (17)

(e coordinate axis is set as the main direction of the
feature point, and finally, the image feature vectors are
normalized to obtain the feature points and descriptors of
the two registered images. Finally, the images arematched by
calculating the similarity of the feature points, and a
complete fundus image was obtained.

When multifocus image registration is performed, the
different degrees of blurring of the input images may lead to
improper selection of the SIFT algorithm scale, resulting in
mismatched registration images or reduced similarity [15].
(erefore, the SIFT algorithm is improved to extract the
description information in multiple scales to describe the
undifferentiated features, which further reduces the mis-
matching rate.

For a to-be-registered image a and reference image b, the
set of their feature points is Xa and Xb, respectively. Nt

represents the number of feature points in the feature set t. A
point set Xt is adopted to construct the spatial affinity
matrix, after the objective function φ(c) is minimized, and
the following equation is acquired.
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For matrix H, the matrix form is adopted to find the
optimal solution.

c
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It is supposed that the dimension of the new space
coordinate matrix H is d; then, the optimal solution of the
above equation is the eigenvector corresponding to the
smallest d eigenvalues of the matrix H. By acquiring the
corresponding relationship between the feature points of the
images a and b, a spatial transformation model of point
matching is constructed to realize image registration, as
shown in Figure 1.

2.4. Surgical Methods. (e RNFL thickness of subjects was
detected by OCT. (e scanning length was set as 6.0mm,
and the resolution as 640× 300. Subject took a sitting po-
sition, the lower jaw on dynamic contour tonometer (DCT)
scanner rest, the forehead close to forehead bracket, and the
eyes fixed on lens marker. (e focus knob was adjusted step

by step until the fixed visual index was clearly reflected in the
eye. (en, a rapid 3D scan of the optic disc was performed,
and an annular tomography scan was performed on 640
axial scanning points in the center of the optic disc. (e
examination results were obtained via the analysis software,
and the average RNFL value of the patients was calculated.

MRI data were collected using a 3.0 T MRI scanner with
a standard 8-channel cranial coil. Subjects were placed in a
supine position with a towel/cushion over the head and the
entire brain scanned. Axial T2W1 scanning parameters:
6000/87ms; layer thickness: 6.0mm; layer spacing: 1mm;
flip angle: 90°; average frequency: 3 times; matrix:
240 × 240. A total of 22 layers were collected after the
scanning, and the scanning time was 2 minutes and 20
seconds. (e scanning data were exported for offline
analysis and processing.

2.5. Evaluation Criteria

(i) (e benchmark data method and root mean square
error (RMSE) were utilized in the accuracy eval-
uation of the registration algorithm. (e bench-
mark data method took a certain section during
MRI scanning as the reference and compared and
analyzed the relevant data of the registered image
with the reference data. RMSE was utilized to
calculate the degree of difference between the
image to be registered and the reference image.(e
calculation equation is as follows.

σ �

���������������
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In equation (20), ai
′ and bi are a pair of matching

points in the image to be registered and the refer-
ence image, f represents the spatial transformation
model, and n represents the logarithm of matching
points

(ii) By calculating the sensitivity and accuracy of dif-
ferent registration algorithms for POAG diagnosis,
the consistency between the diagnosis results based
on different registration algorithms and the expert
diagnosis results were compared

(iii) POAG may cause damage to the entire visual
pathway. (erefore, the superiority of the algorithm
was judged by evaluating the comparison of the
cortical thickness tested by different registration
algorithms with the true thickness.
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2.6. Statistical Analysis. All data were processed by SPSS18.0
software. Mean± standard deviation was how measurement
data were illustrated. Differences between groups were tested
by the independent sample t-test. P< 0.05 indicated that the
differences were statistically substantial.

3. Results

3.1. Registration Accuracy Comparison. (e 19th slice of the
32nd MRI image of the experimental group was randomly
selected for analysis. First, the MRIcro image processing
software was employed to rotate the 19th slice, which was the
reference image, clockwise by 12°. (en, it moved 8mm to
the right along theX-axis, andmoved 10mm up along the Y-
axis to obtain the image to be registered. (e SIFTalgorithm
proposed was employed to simulate the image registration,
and the registration results are shown in Figure 2.

(e KLT algorithm and the SIFT algorithm were in-
troduced for registration accuracy comparison. (e regis-
tration parameters are given in Table 1.

From Table 1, the rotation angle of the SP-SIFT algo-
rithm was 11.701°, which was 0.299° different from the actual
transformation parameters. (e translation amount in the
X-axis was 7.581mm, and the search value of the translation
amount in the Y-axis was 4.489mm, which was 0.419mm
and 0.511mm apart from the actual transformation pa-
rameters, respectively.(e rotation angle, X-axis translation,
and Y-axis translation of the SIFT algorithm differed from
the actual transformation parameters by 0.675°, 0.895mm,
and 0.711mm, respectively. (e rotation angle, X-axis
translation, and Y-axis translation of the KLT algorithm
differed from the actual transformation parameters by
0.899°, 0.968mm, and 0.875mm, respectively. Analysis of
the registration parameters showed that the relevant reg-
istration parameters of the SP-SIFTalgorithm were closer to
the standard transformation value, and the registration was
more accurate. In terms of convergence speed, since the SP-
SIFT algorithm first denoised the image and enhances the
contrast, it converged after 33 iterations, which had a higher
registration speed than the SIFT algorithm and the KLT
algorithm.

(rough the multisample registration analysis of the
three algorithms, as shown in Figures 3–5, it was found that
the SP-SIFT algorithm had 2.11%, 4.56%, and 4.31% in the
mean errors of rotation angle, X-axis translation amount,
and Y-axis translation, respectively. (e mean errors of the
SIFT algorithm in the rotation angle, X-axis translation, and
Y-axis translation were 5.55%, 9.98%, and 7.01%, respec-
tively.(e KLTalgorithm hadmean errors of 7.45%, 11.31%,
and 8.56% in the rotation angle, X-axis translation, and Y-
axis translation, respectively. (e difference among the three
algorithms was statistically significant (P< 0.05).

3.2. Comparison of Diagnostic Accuracy Based on Different
Registration Methods. 60 patients with suspected POAG
underwent routine eye examinations and then OCT testing.
Two ophthalmologists diagnosed the results of the exami-
nation, and it was found that there was a total of 52 patients
that were finally diagnosed with POAG, which was taken as
the gold standard for diagnosis. (en, 60 subjects were
examined byMRI, and different registration algorithms were
employed to register the patient’s MRI images, and the
diagnosis was made based on the registration results. Table 2
provides that the sensitivity of the SP-SIFT algorithm for
POAG diagnosis was 96.15%, the accuracy was 94.34%, the
false-positive rate was 5.66%, and the false-negative rate was
3.77%. (e diagnostic sensitivity of the SIFT algorithm was
94.68%, the accuracy was 90.74%, the false-positive rate was
9.26%, and the false-negative rate was 5.56%. (e diagnostic
sensitivity of the KLT algorithm was 94.21%, the accuracy
was 90.57%, the false-positive rate was 9.43%, and the false-
negative rate was 7.55%. Figures 6 and 7 show the com-
parison of the diagnosis results of the other two algorithms,
and the diagnosis accuracy of the SP-SIFT algorithm was
statistically different (P< 0.05).

3.3. Cortical :ickness Analysis Based on Different Registra-
tion Algorithms. (e visual path MRI images of healthy
patients in the control group were analyzed, the cortical
thickness of the healthy group was calculated, and those

Output
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Image
denoising

Enhance
image

contrast

Similarity
feature

extraction

Create a
transformation

matrix

Unified
coordinate

transformation

Blending image

Image
preprocessing

Image
registration

Figure 1: (e basic process of image registration.
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diagnosed with POAG were taken as the reference standard.
(en, theMRI images of 52 patients were analyzed. Based on
the results of expert calibration, it was found that the average
thickness of the left calcarine sulcus (BA17) cortex was
2.48± 0.11mm, and the average thickness of the right cal-
carine sulcus was 2.60± 0.13mm (Figure 8). In addition,

Figure 9 shows that the patient’s left middle temporal gyrus
(BA37) and left fusiform gyrus (BA19) also had a small area
of cortical thickness thinning, whose average cortical
thickness was 2.98± 0.18mm and 3.01± 0.17mm, respec-
tively. In contrast to healthy volunteers, the cortical thick-
ness of POAG patients had a certain degree of thinning.
(en, the average thickness of the patient’s cortex was
calculated according to the MRI images of the patient ob-
tained by different registration algorithms. (e analysis
results of MRI images based on the SP-SIFT algorithm
showed that the average thickness of the cortex of the pa-
tient’s left calcarine sulcus, right calcarine sulcus, left middle
temporal gyrus, and left fusiform gyrus was 2.49± 0.15mm,
2.62± 0.13mm, 3.00± 0.10mm, and 2.99± 0.17mm, re-
spectively. (e MRI images based on the SIFT algorithm
showed that the average thickness of the cortex of the pa-
tient’s left calcarine sulcus, right calcarine sulcus, left middle
temporal gyrus, and left fusiform gyrus was 2.51± 0.17mm,
2.69± 0.12mm, 3.11± 0.13mm, and 3.09± 0.14mm, re-
spectively. (e MRI images based on the KLT algorithm
showed that the average thickness of the cortex of the pa-
tient’s left calcarine sulcus, right calcarine sulcus, left middle
temporal gyrus, and left fusiform gyrus was 2.35± 0.12mm,
2.52± 0.16mm, 2.77± 0.11mm, and 2.87± 0.17mm, re-
spectively. (e algorithm detection results were compared,
and the differences were highly considerable (P< 0.05). It
was revealed that the analysis result of the patient’s cortical

(a) (b) (c)

Figure 2: Registration result of the SP-SIFT algorithm. (a) Reference image. (b) Unregistered image. (c) Image after registration.

Table 1: Registration parameters.

Parameter algorithm Rotation angle (°)
Translational distance (mm)

Iterations
X Y

Actual parameter 12 8 10 —
KLT 11.101 7.032 4.125 45
SIFT 11.325 8.895 5.711 41
SP-SIFT 11.701 7.581 4.489 33

M
ea

n 
er

ro
r (

%
)

Rotation angle

SP-SIFT
SIFT
KLT

∗

∗

0

2

4

6

8

10

Figure 3: Mean error of rotation angle of different registration
algorithms. ∗(e difference was statistically significant (P< 0.05).
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thickness based on the SP-SIFT algorithm was closer to the
true value, and the measurement result was more accurate.

4. Discussion

To explore the effect of different image registration algo-
rithms on the diagnosis of visual path damage in POAG
patients, the SIFT registration algorithm was enhanced in
this work, and the optimized SP-SIFT registration

algorithm was proposed. 60 suspected POAG patients were
taken as the research subjects, and a healthy control group
was set up. (e SP-SIFTalgorithm was employed to analyze
the accuracy of MRI image registration, the accuracy of
POAG diagnosis, and the accuracy of cortical thickness
detection. (e SIFT algorithm and KLT algorithm were
introduced for comparison, and the superiority of the SP-
SIFT algorithm for POAG visual path damage diagnosis
was verified.
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KLT

M
ea

n 
er

ro
r (

%
)

The shift in the X-direction

∗

0

3

6

9

12

15

Figure 4: Mean error of translation of different registration algorithms in the X-axis. ∗(e difference was statistically significant (P< 0.05).
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Figure 5: Mean error of translation of different registration algorithms in the Y-axis. ∗(e difference was statistically significant (P< 0.05).

Table 2: POAG diagnosis results of different registration algorithms.

Algorithm Sensitivity (%) Accuracy (%) False-positive rate (%) False-negative rate (%)
SP-SIFT 96.15 94.34 5.66 3.77
SIFT 94.68 90.74 9.26 5.56
KLT 94.21 90.57 9.43 7.55
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It was found that compared with the SIFTalgorithm and
the KLT algorithm, the relevant registration parameters of
the SP-SIFT registration algorithm were closer to the
standard transformation value, and the registration was
more accurate. Moreover, due to the denoising processing
and contrast enhancement of the SP-SIFT algorithm before
registration, the SP-SIFT algorithm had a faster registration
speed. (e suspected POAG patients were diagnosed based
on different registration results, and it revealed that the
sensitivity of the SP-SIFTalgorithm for POAG diagnosis was
96.15%, the accuracy rate was 94.34%, the false-positive rate
was 5.66%, and the false-negative rate was 3.77%. (e four
indicators were better than those of the SIFT algorithm and
the KLT algorithm. (e diagnostic accuracy of different
algorithms was compared, and the difference was statistically

remarkable (P< 0.05). Finally, by analyzing the cortical
thickness of POAG patients, the visual pathway damage of
the patients was evaluated. (e results showed that com-
pared with the analysis results of MRI images based on the
SP-SIFTalgorithm, the average thickness of the cortex of the
patient’s left calcarine sulcus, right calcarine sulcus, left
middle temporal gyrus, and left fusiform gyrus was
2.49± 0.15mm, 2.62± 0.13mm, 3.00± 0.10mm, and
2.99± 0.17mm, respectively, which were closer to the expert
analysis results. Such results were similar to the results of
Wang et al. [16], which showed that the analysis of the
patient’s cortical thickness based on the SP-SIFT algorithm
was accurate, and the diagnosis of POAG visual pathway
damage was ideal.

SP-SIFT
SIFT
KLT

Se
ns

iti
vi

ty
 (%

)

POAG diagnosis

∗

92

93

94

95

96

97

Figure 6: Comparison of sensitivity of different registration al-
gorithms in POAG diagnosis. ∗(e difference was statistically
significant (P< 0.05).
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Figure 7: Comparison of accuracy of different registration algo-
rithms in POAG diagnosis. ∗(e difference was statistically sig-
nificant (P< 0.05).
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Figure 8: Analysis of the cortical thickness of the calcarine sulcus
based on different registration algorithms. ∗(e difference was
statistically significant (P< 0.05).
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Figure 9: Analysis of the cortical thickness of the left middle
temporal gyrus and left fusiform gyrus based on different regis-
tration algorithms. ∗(e difference was statistically significant
(P< 0.05).
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5. Conclusion

(is study revealed the impact of different registration al-
gorithms on the accuracy of POAG visual path damage
diagnosis. (e results showed that the proposed SP-SIFT
algorithm had higher registration accuracy and registration
speed and had a better diagnosis effect on POAG patients
with visual path damage compared with the traditional SIFT
algorithm and KLT algorithm. (is research provides a
theoretical basis for the registration of MRI medical images
and provides evidence for the clinical diagnosis of the POAG
visual pathway. However, it also has some shortcomings.
First of all, the sample size is small, which may lead to
reduced statistical reliability. In addition, this MRI exami-
nation is the same as before, which adopts the cross-sectional
information for study, so it cannot accurately reflect the
relationship between visual cortex thickness and POAG
disease progression. In the future, research efforts should be
strengthened in longitudinal image research.
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