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In order to improve the efficiency of early imaging diagnosis of patients with osteosarcoma and the effect of neoadjuvant
chemotherapy based on the results of imaging examinations, 48 patients with suspected osteosarcoma were selected as the
research objects and their diffusion-weighted imaging (DWI)-magnetic resonance imaging (MRI) images were regularized in this
study. *en, a DWI-MRI image discrimination model was established based on the class-structured deep convolutional neural
network (CSDCNN) algorithm. *e peak signal-to-noise ratio (PSNR), mean square error (MSE), and edge preserve index (EPI)
were applied to evaluate the image quality after processing by the CSDCNN algorithm; the accuracy, recall rate, precise rate, and F1
score were employed to evaluate the diagnostic efficiency of CSDCNN algorithm; the apparent diffusion coefficient (ADC) was
adopted to evaluate the therapeutic effect of neoadjuvant chemotherapy based on the CSDCNN algorithm, and SegNet, LeNet, and
AlexNet algorithms were introduced for comparison. *e results showed that the PSNR, MSE, and EPI values of DWI-MRI
images of patients with osteosarcoma were 29.1941, 0.0016, and 0.9688, respectively, after using the CSDCNN algorithm to process
the DWI-MRI images. *e three indicators were significantly better than other algorithms, and the difference was statistically
significant (P< 0.05). According to the results of imaging diagnosis of patients with osteosarcoma, there was no significant
difference between the assisted diagnosis effect of the CSDCNN algorithm and the pathological examination results (P> 0.05).*e
results of adjuvant chemotherapy based on the CSDCNN algorithm found that the ADCmean value of the patients after che-
motherapy was 1.66± 0.17 and the ADCmin value was 1.33± 0.15; the two indicators were significantly higher than other al-
gorithms, and the difference was statistically significant (P< 0.05). In conclusion, the CSDCNN algorithm had a good effect on
DWI-MRI image processing of patients with osteosarcoma, which could improve the diagnostic accuracy of patients with
osteosarcoma. Moreover, the diagnosis results based on this algorithm could achieve better neoadjuvant chemotherapy effects and
assist clinicians in imaging diagnosis and clinical treatment of patients with osteosarcoma.

1. Introduction

Osteosarcoma is a common primary malignant tumor
originating from interlobular tissues and mainly occurring
in adolescents and children. *e patients are mostly male
and tend to occur in the long bones of the extremities, with
high metastasis, strong malignancy, and high disability and
mortality rate [1, 2]. Osteosarcoma mostly originates from
the medullary cavity and invades the surrounding bone, and

then, the tissue around the vasculature infiltrates and
spreads beyond the bone to reach the outside of the bone.
*e periosteum is continually stimulated to form a new
bone, which then breaks through and invades the sur-
rounding soft tissue [3]. *e etiology of osteosarcoma is still
unclear. Some studies have reported that the incidence of
osteosarcomamay be related to radiation genetic viruses and
malignant transformation of benign bone disease, but no
clinical studies have confirmed that human osteosarcoma is
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induced by viral infection [4]. Osteosarcoma accounts for
about 15% of primary bone tumors, and its site varies slightly
with the patient’s age. Generally, patients under 30 years old
are more likely to develop osteosarcoma in long tube bones,
while patients over 50 years old are more likely to develop
osteosarcoma in flat bones [5]. In addition, it is difficult to
make early diagnosis with rapid growth, and patients are
often accompanied with the typical clinical symptoms such
as pain, soft tissue mass, and motor dysfunction. *e first
diagnosis is usually characterized by persistent limb pain.
When the tumor breaks through the bone cortex and
stimulates the periosteum, it presents persistent severe pain,
which involves the joints and causes joint pain and dys-
function. In addition, some patients may have pathological
fractures [6, 7].

Osteosarcoma causes great psychological and physio-
logical pressure to patients.With the continuous development
of medical technology, the clinical treatment of osteosarcoma
has changed from traditional surgical treatment to preop-
erative neoadjuvant chemotherapy combined with extensive
resection and postoperative chemotherapy, which has greatly
improved the limb salvage rate and five-year survival rate of
patients [8]. Preoperative neoadjuvant chemotherapy can
effectively kill the micro-metastases, reduce the invasion of
the local primary lesion on the soft tissue, andmake the tumor
boundary clear, thus increasing the success rate of limb
salvage surgery [9]. Complete surgical resection is the key to
cure osteosarcoma. At present, clinical surgical treatment of
osteosarcoma focuses on obtaining an ideal resection
boundary, which aims to remove the tumor to the maximum
extent while protecting normal tissues, and bone and soft
tissue reconstruction can be performed for bone or joint
defects caused by surgical resection [10]. In addition, ra-
diotherapy, gene therapy, and thermal and cold ablation
therapy are not used as routine treatment methods but only as
adjuvant treatment in the comprehensive treatment mode of
“preoperative neoadjuvant chemotherapy + extensive resec-
tion+postoperative chemotherapy” [11].

*e preoperative neoadjuvant chemotherapy in patients
with osteosarcoma will lead to necrosis of tumor cells in the
primary lesions, so the tumor necrosis rate (TNR) is gen-
erally considered the pathological gold standard to evaluate
the therapeutic effect of neoadjuvant chemotherapy in os-
teosarcoma. However, TNR detection is complicated and
sampling requirements are strict. Moreover, the TNR is only
applicable to tumors acquired after radical surgery, so there
is a certain lag in evaluating the therapeutic effect of oste-
osarcoma with TNR [12, 13]. *erefore, imaging exami-
nation is still the main method in clinical diagnosis and
treatment of osteosarcoma. *e most commonly used ex-
aminations include digital radiography (DR), computed
tomography (CT), and magnetic resonance imaging (MRI).
Imaging of osteosarcoma presents different pathological
features according to different examination methods, but
such examination methods have some problems due to
technical constraints, such as CT examination cannot ac-
curately measure the length of intramedullary lesion of
osteosarcoma and MRI examination is difficult to accurately
reflect the metabolic characteristics of tumor tissue [14].

With the continuous innovation and development of
technology, diffusion-weighted imaging (DWI) is used as a
MR functional imaging method that can reflect the move-
ment of water molecules in living tissues [15], which has
been increasingly widely applied in the musculoskeletal
system. DWI-MRI can display the relationship between the
morphology of musculoskeletal system lesions and sur-
rounding tissues and has a certain value in the identification
of osteosarcoma. However, DWI-MRI is prone to produce
magnetic sensitive artifacts and blur effect due to the lim-
itation of sampling time in the direction of phase coding,
resulting in poor image quality, low signal-to-noise ratio
(SNR), and unstable value of apparent diffusion coefficient
(ADC) [16]. In order to achieve the diagnostic accuracy of
early imaging of patients with osteosarcoma, and to improve
the effect of neoadjuvant chemotherapy for patients with
osteosarcoma, this study improved the CNN algorithm and
constructed a diagnostic model based on the CSDCNN
algorithm. *is study was designed to assist clinicians to
enhance the effect of chemotherapy in patients with
osteosarcoma.

2. Materials and Methods

2.1. Research Objects. In this study, 48 patients with sus-
pected primary osteosarcoma admitted to hospital from
January 2019 to January 2021 were selected as the research
objects, including 30 males and 18 females, aged 8–32 years,
with an average age of 17 years. All patients had no con-
traindications on MRI scanning and were confirmed by case
puncture examination after the examination. *is study was
approved by the Ethics Committee of Hospital, and all the
patients and their family members were informed about the
content of this study and signed the informed consent forms.

*e criteria for inclusion were defined to include patients
who were newly diagnosed and had no history of surgery or
chemotherapy before participating in this study; had no
contraindications to MRI examination and all underwent
MRI examination preoperatively; and did not suffer from
tumor, infection, blood system, and other systemic diseases.

*e criteria for exclusion were defined to include pa-
tients who lacked basic patient information, had a history of
surgery or chemotherapy before participating in this study,
and were difficult to cooperate with the treatment or did not
follow the standard chemotherapy surgery treatment.

2.2. Imaging ExaminationMethods. All patients received the
first MRI examination before puncture or surgical biopsy,
and there was the second MRI examination 7 days before
surgery after completing 4 cycles of neoadjuvant chemo-
therapy. *e SIEMENS Avanto 3.0T scanner was used for
MRI examination. Patients were placed in supine position,
and special cores were selected according to the lesion sites
of the patients. *en, they received the plain scanning of the
transverse axis of T1-weighted imaging (T1WI) and T2WI
and the sagittal fat-inhibition T2WI. Afterward, they un-
derwent the enhanced scanning of the T1WI fat-inhibition
transverse axis. *e scanning range included tumor
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segments of the patient’s affected limbs and knee joints.
T1WI SE sequence: time to repetition (TR): 500–660ms and
time to echo (TE): 10–15mm; T2WI FSE sequence: TR:
2,800–4,000ms and TE: 80–120ms; and matrix: 256×196,
layer thickness: 5mm, and layer spacing: 1mm. DWI was
applied to scan the sagittal position, with single excitation
plane echo sequence. Besides, TR was 3,800ms, TE was
88ms, number of excitations was 2, matrix was 256×196,
layer thickness was 5mm, layer spacing was 1mm, and
diffusion sensitivity coefficient b value was taken between 0
and 800 s/mm2.

2.3. Regularization of DWI-MRI Images in Patients with
Osteosarcoma. Due to the limitation of upsampling time,
DWI-MRI images of patients with osteosarcoma have a low
SNR and poor image resolution is caused by the influence of
physiological noise [17], which affects the subsequent
analysis of clinicians. In order to denoise the images and
effectively improve the SNR, the DWI-MRI images of pa-
tients with osteosarcoma were first denoising in this study.
According to the imaging principle of DWI-MRI, the noise
in DWI could be divided into three noise models.

Suppose there was a DWI image S, which could be
expressed as P � P1, P2, P3, . . . , Pn􏼈 􏼉, its Gaussian noise
model can be expressed as follows:

􏽢Pi � Pi + Ni � P0e
− bgT

i
Dgi + Ni. (1)

In equation (1), Ni represents the Gaussian white noise,
whose mean value is 0 and variance is σ2.

*e logarithmic Gaussian noise model can be expressed
as

log 􏽢Pi � log P0 − bg
T
i Dgi + N

l
i. (2)

In the above equation, Nl
i stands for the Gaussian white

noise, whose mean value is 0 and variance is σ2.
What’s more, the Rician noise model can be expressed as

follows:

􏽢Pi �

��������������

Pi + N1i( 􏼁
2

+ N2i

􏽱

. (3)

In equation (3), N1i and N2i represent the independent
white Gaussian noises and the probability density function
of 􏽢Pi can be calculated as follows:

f􏽢p
􏽢Pi|Pi; σ􏼐 􏼑 �

􏽢Pi

σ2
exp −

􏽢P
2
i + P

2
i

2σ2
⎛⎝ ⎞⎠I0

􏽢PiPi

σ2
􏼠 􏼡u 􏽢Pi􏼐 􏼑. (4)

In equation (4), I0 means the first kind of zero-order
improved Bessel function and u stands for the unit step
function. *e second-order matrix calculated according to
equation (3) is

E 􏽢P
2
i􏼚 􏼛 � E P

2
i􏽮 􏽯 + 2σ2. (5)

Assuming P2
i � 0 and E 􏽢P

2
i􏼚 􏼛 � 2σ2, the variance esti-

mate 􏽢σ2 can be calculated based on

􏽢σ2 �
1
2N

􏽘

N

i�1

􏽢P
2
i . (6)

In the above noise models, the Rician distribution was
approximate to the Gaussian distribution when the SNR of
the image was high; when the SNR was low, the Rician noise
was approximate to the characteristics of DWI noise. In
order to eliminate the noise in the DWI-MRI image, the
partial differential equation (PDE)model was used for image
denoising. Assuming there was a grayscale image, its time-
evolution differential equation can be expressed as follows:

zL

zt
� λ1Lξξ + λ2Lηη. (7)

In equation (7), η indicates the gradient direction of the
image; ξ represents the tangent direction of the equal-gray
contour of the image; λ1 and λ2 stand for the diffusion
coefficient in the normal direction and the tangent direction,
respectively; and Lξξ and Lηη mean the quadratic differential
in the normal direction and the tangent direction in the local
range, respectively. It could be found that differentiation in
the tangent direction was equal to smoothing along the
tangent direction, differentiation in the normal direction
was equal to blurring the edge of the image, and the diffusion
coefficient determined the smoothness of the corresponding
direction. In order to control the change of diffusion co-
efficient through the size of the image gradient mode, a PM
model of the anisotropic diffusion model was applied in this
study to regularize the image, and its function expression is
shown as follows:

zL

zt
� div[c(|∇L|)∇L]. (8)

In equation (8), div represents the divergence operator
and ∇ stands for the gradient operator. In the calculation of
the PM model, the change of |∇L| was small in the uniform
area of the image, and equation (8) was approximate to the
isotropic diffusion; in the boundary area of the image, the
change of |∇L| was large and c(|∇L|) was approximate to 0,
thus preserving the image boundary. However, the gradient
change was too large and it was easy to be preserved as the
edge of the image if there was a large amount of noise in the
image, which affected the noise removal to a certain extent.
*erefore, the Catte model was adopted on the basis of the
PMmodel for gradient solution after image filtering, and the
function expression of the Catte model is as follows:

zL

zt
� div c ∇Gσ ∗ L

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑∇L􏽨 􏽩. (9)

In equation (9), Gσ represents the Gaussian smoothing
kernel. *is model could further improve the denoising
performance and better retain the edge details of the image.

2.4. Optimization Model Based on CSDCNN Algorithm.
*e classification method of osteosarcoma pathological
images used in this study was designed based on deep
learning and data-driven multiclassification methods. *e
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CSDCNN algorithm could realize the data-driven method
by adopting an advanced enhancement method, and its
computing performance was more reliable and efficient.*is
algorithm could not only automatically adjust the distance of
feature space between different categories but also extract
high-level semantic features from images, so as to effectively
improve the problem of insufficient feature extraction of
machine learning algorithms. *e CSDCNN algorithm used
in this study consisted of an input layer, a convolution layer,
and a pooling layer.

During the calculation of the CSDCNN algorithm, the
whole MRI image of osteosarcoma patient was first loaded,
and then the reduced 224∗ 224 3-channel image was output
to fit the convolutional layer.*e convolution layer applied a
configurable convolution kernel to perform convolution
operations on the input image. In the convolutional layer,
multiple neurons with shared weight parameters formed
feature subgraphs, and then a convolutional layer was
formed by multiple feature subgraphs together. In this way,
links between different levels could be reduced and excessive
fitting could be avoided. When the original image reached
the convolution layer, the original data were compared with
the obtained data convolved by the convolution kernel in
terms of the feature mapping. For a neural network, its
calculation equation on the two-dimensional tensor can be
expressed as follows:

y[a, b] � 􏽘
m

􏽘
n

x[a + m, b + n]w[m, n]. (10)

In equation (10), y[a, b], x[a, b], and w[m, n] represent
the output two-dimensional tensor, the input two-dimen-
sional tensor, and the weight of the convolution kernel in
turn, respectively. For a complete convolutional neural
network, each layer contained several feature images. It was
assumed that each layer contained b convolution kernels,
and each convolution kernel was composed of m groups of
parameters. *en, the operation of convolution at each layer
can be expressed as follows:

y
l
b � 􏽘

A

m�1
w

l
bm ∗y

l−1
m + c

l
b. (11)

In equation (11), yl
b stands for the b-th feature image of

the l-th convolution layer; wl
bm represents the convolution

kernel parameter of the m-th feature image of the l− 1-th
convolution layer mapped to the b-th feature image of the
l− 1-th convolution layer; yl−1

m means them-th feature image
of the l− 1-th convolution layer; and cl

b expresses the bias of
the b-th feature image of the l-th convolution layer. *e
convolution layer of the CSDCNN model used in this study
was composed of the ordinary convolution layer and the
inception convolution layer. *e step size of the ordinary
convolution layer was set as 2, and the convolution kernel
sizes of the two convolution layers were 7× 7 and 3× 3,
respectively. Convolution operation was a kind of linear
transformation. In order to realize multilayer nonlinear
features, a nonlinear activation function should be added at
the end of each layer of convolution operation. In addition,

the sigmoid function was taken as an example, and its ex-
pression is

f(x) �
1

e
− x

+ 1
. (12)

*e pooling layer belongs to a special convolution, and
the training goal of the whole pooling process is to reduce
the model parameters and simplify the training model.
Besides, pooling operation includes the maximum average
pooling and mean pooling. Pooling does not carry out
weighting operation, nor does it need activation function,
but participates in the design of network mechanism to
reduce data dimensions and accelerate calculation speed to
prevent overfitting [18]. Maximum pooling can reduce the
error caused by the bias of the mean value of the estimate
caused by the parameter error of the convolutional layer, and
mean pooling can reduce the error caused by the variance of
the estimate caused by the neighborhood size limitation.*e
two pooling methods are designed to better retain the image
texture and image background information (Figure 1).

*e last step of the CSDCNN algorithmwas to set a high-
precision loss multiple classifier and constraint equation.
Assuming there were N input images, the mark of each
image can be expressed as

Yj ∈ 0, 1, 2, . . . , k, . . . , K{ }, K> 2. (13)

For a given test image Xj, a hypothesis function was
applied to estimate the probability value p of each category
g, so the expression of the function Hθ(Xj) is supposed as
follows:

Hθ Xj􏼐 􏼑 �

p Yj � 0|Xj; θ􏼐 􏼑

p Yj � 1|Xj; θ􏼐 􏼑

⋮

p Yj � K|Xj; θ􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1

􏽐
K
K�0e

θT
g Xj

e
θT
0 Xj

e
θT
1 Xj

⋮

e
θT

k Xj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

In equation (14), 1/􏽐K
K�0e

θT
g Xj stands for the normali-

zation of probability distribution, and the loss function can
be expressed as

R(X, Y, θ) � −
1
E

􏽘

E

j�1
􏽘

K

K�0
1 Yj � r􏽮 􏽯log

e
θT

k Xj

1/􏽐K
K�0e

θT
k Xj

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(15)

In the above equation, 1 Yj � r􏽮 􏽯 represents the indic-
ative function. In fine-grained images with a small gap
between classes, the data feature space would be compressed
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to a very small corner, and the feature difference between
classes could not be effectively preserved. In order to retain

the difference between classes, a loss layer considering the
prior category should be added to the loss layer after the
classifier.

It was assumed that Xj, P+
j , P−

j , and vj represent the
original image, the same small class of image, the same big
class of image, and different big class of image, respectively.
During calculation, the Euclidean distance of the feature
space of the same image should be reduced, and the Eu-
clidean distance of the feature space of the image of different
classes should be increased, namely,

Z Xj, P
+
j􏼐 􏼑 + w1 <Z Xj, P

−
j􏼐 􏼑 + w2 <Z Xj, vj􏼐 􏼑. (16)

In equation (16), Z means the Euclidean distance be-
tween the features of two images; w1 and w2 are super
parameters, which were employed to control the distance
interval between images. *e Hinge function was used as its
error function:

Ut Xj, P
+
j , P

−
j , vj, w1, w2􏼐 􏼑 �

1
2E

􏽘

E

j�1
max 0, Z Xj, P

+
j􏼐 􏼑 − Z Xj, P

−
j􏼐 􏼑 + w1 − w2􏽮 􏽯

+
1
2E

􏽘

E

j�1
max 0, Z Xj, P

−
j􏼐 􏼑 − Z Xj, vj􏼐 􏼑 + w2􏽮 􏽯.

(17)

Combined with equation (14), the new loss layer could be
obtained:

U � λR(X, Y, θ) +(1 − λ)Ut Xj, P
+
j , P

−
j , vj, w1, w2􏼐 􏼑.

(18)

*e workflow of the CSDCNN algorithm consisted of
training stage, validation stage, and testing stage (Figure 2),
and the main purpose of the training stage was to learn
enough feature representation and to optimize the distance
of the feature space of different categories. *e purpose of
the training stage was to fine-tune the parameters and to
select the characteristics of each epoch, so as to adjust the
search for the best multiclassification model for osteosar-
coma and corresponding histopathological images. *e
purpose of the test stage was to evaluate the computational

performance of the CSDCNN algorithm. In this study, the
learning rate of CSDCNN was set as 0.01 and the number of
iterations was set as 52,000.

2.5. Image Quality Evaluation. For all patients with osteo-
sarcoma in this study, two methods of subjective evaluation
and objective evaluation were used for the processing effect
of DWI-MRI images. Subjective evaluation was mainly
observed by naked eyes, which was easily affected by the
subjective consciousness of the evaluator. *erefore, it
lacked a quantitative standard to measure the quality of the
image. On this basis, some objective evaluation indicators
were introduced for evaluation, including peak SNR (PSNR),
mean square error (MSE), and edge preserve index (EPI),
and the three indicator functions are displayed as follows:

PSNR � 10 lg
pe

2
max

(1/h · l)􏽐
h,l
ς�1,τ�1[f(ς, τ) − 􏽢f(ς, τ)]

2
⎡⎢⎣ ⎤⎥⎦, (19)

MSE �
1

h · l
􏽘

h,l

ς�1,τ�1
[f(ς, τ) − 􏽢f(ς, τ)]

2
, (20)
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Figure 1: Schematic diagram of maximum and mean pooling.
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EPI �
􏽐ς�1,τ�1[|􏽢f(ς + 1, τ) − 􏽢f(ς, τ)| +|􏽢f(ς, τ + 1) − 􏽢f(ς, τ)|]

􏽐ς�1,τ�1[|f(ς + 1, τ) − f(ς, τ)| +|f(ς, τ + 1) − f(ς, τ)|]
. (21)

In equations (19)–(21), h and l represent the height and
width of the image in turn, respectively, f indicates the gold-
standard image, 􏽢f means the denoised image, and pemax
stands for the maximum peak value, which is 1 in this study.

2.6. Evaluation of Diagnostic Accuracy. In order to diagnose
the performance of the CSDCNN algorithm in medical
images of patients with osteosarcoma, the accuracy, recall
rate, precision rate, and F1 score were adopted in this study
to evaluate the evaluation effect of the algorithm, and
SegNet, LeNet, and AlexNet algorithms were introduced for
comparison.*e calculation equations of the four evaluation
indicators are shown as follows:

accuracy �
TP + TN

TP + TN + FP + FN
, (22)

recall �
TP

TP + FN
, (23)

precise �
TP

FP + TP
, (24)

F1 �
2(recall × precise)
recall + precise

. (25)

In equations (22)–(25), Accuracy, Recall, and Precise
stand for accuracy, recall rate, and precision in sequence.
Furthermore, TP means the number of correctly classified
positive samples, TN represents the number of correctly
classified negative samples, FP indicates the number of
misclassified negative samples, and FN expresses the number
of misclassified positive samples. Furthermore, F1 score is a
weighted mean of model precision and recall rate, with the
value range of 0–1.

2.7. ADC Value Measurement. *e maximum tumor layer
of all patients with osteosarcoma was selected to measure the
ADC value before and after neoadjuvant chemotherapy. *e

mean of 3 measurements was taken as ADCmean, and the
minimum value was taken as ADCmin. *e region of interest
in the patient images was drawn by referring to T2WI and
enhanced images, and then the region of interest was placed
in the solid region of the tumor. What’s more, it should
avoid necrosis, bleeding, cystic degeneration, and neoplastic
bone components. *en, the ADC change rate was auto-
matically generated, and its calculation equation is as
follows:

ADC �
ADCafter − ADCbefore

ADCbefore
× 100%. (26)

In equation (26), ADCbefore and ADCafter stand for the
ADC value of patients with osteosarcoma before neo-
adjuvant therapy and the ADC value of patients with os-
teosarcoma after neoadjuvant therapy, respectively.

2.8. Statistical Analysis. SPSS19.0 software was used for data
processing in this study. Measurement data were repre-
sented by x, which were detected by t-tests of two inde-
pendent samples. Besides, count data were tested by χ2, and
the correlation of parameters was analyzed by Pearson. In
addition, P< 0.05 indicated that the difference was statis-
tically substantial.

3. Experimental Results

3.1. General Clinical Data of the Patient. Among the 48
patients participating in the study, 30 were males, with an
average age of 16± 2.1 years, and 10 were females, with an
average age of 17± 1.5 years. All 48 patients involved in this
study underwent puncture biopsy after DWI-MRI exami-
nations and were analyzed. Pathological sections and im-
munohistochemical analysis results disclosed that 41
patients had osteosarcoma, among which 16 cases had le-
sions at the lower end of the femur, 10 at the upper end of the
humerus, 7 at the upper end of the tibia, and 8 at the upper
end of the fibula (Figure 3).

Input image

Use the Catte model to solve
gradient

Use the model for
regularization 

Use PDE model denoising 

Convolution operation 

Pooling operation 

Set multiple classifiers and
constraint equations

Add a new
Loss

layerequations

Output image
constraint
equations

Figure 2: Calculation flow of CSDCNN algorithm.
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3.2. DWI-MRI Image Denoising Results of Patients with
Osteosarcoma. DWI-MRI images of patients with osteosar-
coma used in this study were all clinical scanning data, and the
scanning parameters were as follows: TR� 3,800ms,
TE� 88ms, b� 800 s/mm2, pixel size was 0.9× 0.9× 2.5mm3,
and acquisition time was 6.3 minutes, with a total of 48
scanning layers. Besides, DWI images of patients were col-
lected from 35 gradient directions. After the scanning, the
DWI images of the patients were denoised, and the results are
shown in Figure 4. *e original image was locally enlarged
and compared with the image regularized by the PM algo-
rithm and solved by gradient solution after image filtering
with the Catte model (Figure 5). It was found that there was
obvious noise in the original DWI image of the patient, but
the noise was well filtered out after the denoising algorithm
and the image information was retained intact.

3.3. Discrimination of Lesion Sites in Patients with Osteo-
sarcomaBased onDifferent Algorithms. Different algorithms
were used to distinguish the lesion location on the DWI-
MRI image of patients with sarcoma, as shown in Figure 6
(male patients aged 18 years). T2WI showed low signal,
periosteal reaction showed cortical thickening, tumor
margins had slightly enhanced tumor, and bone strength-
ening was not obvious. Data were taken to enhance the
generalization CSDCNN model, including random distor-
tion, random filtering, random brightness, and contrast.
From the DWI-MRI images obtained after discrimination by
different algorithms, the CSDCNN algorithm used in this
study could be applied to accurately diagnose the location of
the lesions in patients with osteosarcoma, and even the
boundary between the lesions and normal tissues had a high
degree of overlap.*e CSDCNN algorithm also achieved the
precise positioning of the lesions, indicating that the
CSDCNN algorithm had great advantages in the identifi-
cation of lesions in patients with osteosarcoma.

3.4.EvaluationResultsof ImageQuality. Since the processing
effect of different algorithms based on visual discrimination
was easily affected by the subjective consciousness of the
evaluator, the PSNR, MSE, and EPI were adopted to

objectively evaluate the processing effect of different algo-
rithms. *e PSNR represented the ratio between useful
signal power and noise power in an image, which was in-
versely proportional to the degree of image distortion. *e
larger the PSNR, the smaller the image distortion.*e PSNR
values after image processing by different algorithms are
displayed in Figure 7(a).*e results suggested that the PSNR
value of the images processed by the CSDCNN algorithm
was higher obviously than the value of SegNet, LeNet, and
AlexNet algorithms (P< 0.05) after the DWI-MRI images of
patients were processed by different algorithms, suggesting
that the image distortion processed by the CSDCNN al-
gorithm was smaller.

*e MSE was the degree of gray change between the
processed image and the ideal image. *e smaller the MSE,
the closer the processed image to the real image. MSE values
after image processing by different algorithms are shown in
Figure 7(b), indicating that the MSE value of the images
processed by the CSDCNN algorithm rose hugely in contrast
to the value of other algorithms after the processing of
patients’ DWI-MRI images by different algorithms
(P< 0.05). *us, it revealed that the accuracy of the images
processed by the CSDCNN algorithm was higher.

*e EPI reflected the degree of image edge protection,
and its value range was 0–1. *e larger the value, the better
the edge protection. Figure 7(c) shows the EPI values after
image processing by different algorithms. It was found that
after the DWI-MRI images of patients was processed by
different algorithms, the EPI value of the images processed
by the CSDCNN algorithm elevated greatly compared with
other algorithms (P< 0.05), meaning that the CSDCNN
algorithm had better protection of image details after
processing.

3.5. Evaluation of Diagnostic Accuracy Based on Different
Algorithms. Different algorithms were adopted to evaluate
the detection rate of osteosarcoma, a total of 40 cases with
osteosarcoma were detected by the CSDCNN algorithm, and
1 case was missed. Compared with the other three algo-
rithms, the diagnosis results were hugely different (P< 0.05).
Accuracy, Recall, Precise, and F1 score were adopted to

85.41%

14.58%

Osteosarcoma
Non-osteosarcoma

(a)

Lower end of femur
Upper humerus
Upper Tibia

39.2%

24.39%

17.07%

19.51%

(b)

Figure 3: General information of the patient: (a) the prevalence of osteosarcoma and (b) the lesion site of osteosarcoma.
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Figure 4: DWI-MRI image denoising effect of patients with osteosarcoma.
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Figure 6: Discriminant results of lesion sites in patients with osteosarcoma based on different algorithms.
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Figure 5: Local magnification effect before and after denoising of DWI-MRI images of patients with osteosarcoma.
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evaluate the diagnostic effects of different algorithms on
osteosarcoma; the results showed that the Accuracy of the
CSDCNN algorithm was 0.9812, Recall was 0.9011, Precise
was 0.8563, and F1 score was 0.9316. *e above four indi-
cators were significantly better than other algorithms, and
the difference was statistically significant (P< 0.05), sug-
gesting that the CSDCNN algorithm had a better diagnostic
effect on patients with osteosarcoma (Figure 8).

3.6. Effect Evaluation of Neoadjuvant Chemotherapy Based on
Different Algorithms. In this study, the ADC value was
adopted to evaluate the therapeutic effect of neoadjuvant
chemotherapy. *e change of ADC value could be used to
judge the degree of water molecular diffusion, which indi-
rectly reflected the therapeutic effect of osteosarcoma.*e 41
patients were rolled randomly into 4 groups, including 10
cases in the SegNet algorithm adjuvant chemotherapy group,
10 cases in the LeNet algorithm adjuvant chemotherapy
group, 10 cases in the AlexNet algorithm adjuvant che-
motherapy group, and 11 cases in the CSDCNN adjuvant
chemotherapy group.*e results indicated that there was no
marked difference in ADC values of the 4 groups before
chemotherapy (P> 0.05). After they were treated with
neoadjuvant chemotherapy, the ADCmean value of the
SegNet adjuvant chemotherapy group was 1.32± 0.19, and
the ADCmin value was 0.95± 0.14; the ADCmean value of the
LeNet adjuvant chemotherapy group was 1.35± 0.22, and
the ADCmin value was 0.98± 0.19; the ADCmean value of the
AlexNet adjuvant chemotherapy group was 1.41± 0.21, and
the ADCmin value was 0.96± 0.21; the ADCmean value of the
CSDCNN adjuvant chemotherapy group was 1.66± 0.17,
and the ADCmin value was 1.33± 0.15. *e two indexes were
significantly higher than the other three groups, and the
difference was statistically significant (P< 0.05). It was

suggested that the CSDCNN algorithm was better for DWI-
MRI images of patients with osteosarcoma after preanalysis
and discrimination (Figure 9).

4. Discussion

Osteosarcoma is composed of highly heteromorphic oste-
oblastic sarcoma cells and the osteoid tissue and tumor bone
tissue formed by them. It usually occurs in adolescents and
children, which is prone to distant metastasis due to its high
degree of malignancy [19]. *e current clinical treatment of
osteosarcoma is a combination of chemotherapy and sur-
gery. Since the comprehensive treatment of “neoadjuvant
chemotherapy + extensive resection + postoperative che-
motherapy” has been extensively used, the limb salvage rate
and five-year survival rate of patients have been greatly
improved [20]. Research investigations have pointed out
that the incidence of osteosarcoma is increasing year by year.
*erefore, early diagnosis and treatment largely determines
the prognosis [21], and the treatment strategy for the clinic
can be adjusted based on the accurate assessment of the
focus of the disease in the early stage of the disease. It usually
leads to substantial differences in the results because of the
different methods of obtaining materials from different
patients’ pathological sites. *erefore, imaging examination
is very important for the early diagnosis of osteosarcoma and
the evaluation of the therapeutic effect. Due to its advantages
of multidirectional parameter imaging and high soft tissue
resolution, MRI can not only accurately reflect the char-
acteristics of the patient’s lesion but also reflect the he-
modynamic changes of the lesion through dynamic
enhancement [22]. With the continuous development of
MRI technology, the application of DWI technology has
played a vital role in the detection of osteosarcoma lesions
and the determination of osteosarcoma boundaries.
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Figure 7: Evaluation of DWI-MRI image processing effect of different algorithms in patients with osteosarcoma. (Note. Compared with
SegNet, ∗P< 0.05; compared with AlexNet, #P< 0.05; compared with CSDCNN, &P< 0.05.)
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However, the SNR is low and the image quality is poor due to
the large susceptibility distortion artifacts of routine DWI
imaging [23], which makes it difficult for clinicians to make
accurate diagnosis based on patient images. With the
continuous development of computer technology, many
machine learning and deep learning algorithms have been
applied to the field of image recognition. *e purpose is to
reduce the repeated work of clinicians, relieve the pressure of
reading pictures, help doctors make more reliable and ob-
jective diagnosis results, and assist in the completion of
clinical treatment of various diseases [24]. *erefore, the use
of computer technology to mine and analyze clinical data is
of great significance to the development of clinical medicine.

In order to improve the efficiency of the early imaging
diagnosis of patients with osteosarcoma and the effect of
neoadjuvant chemotherapy based on the results of imaging
examinations, the patient DWI-MRI image noise model was

first established, the PDE was adopted to denoise the image,
and the image was filtered by the Catte model for gradient
solution. *e DWI-MRI image discrimination model of
patients with osteosarcoma based on the CSDCNN algo-
rithm was established after the regularization process. 48
patients with suspected osteosarcoma were selected as the
research objects in this study. *rough the processing of
DWI-MRI images of the patients, it was found that the
CSDCNN algorithm realized the precise location of the
lesions in patients with osteosarcoma, and the PSNR, MSE,
and EPI values after image processing were significantly
higher than those of the SegNet, LeNet, and
AlexNet algorithms (P< 0.05). *us, it showed that the
CSDCNN algorithm had a better discrimination effect on
DWI-MRI images of patients with osteosarcoma. By eval-
uating the accuracy of the diagnosis of osteosarcoma patients
with different algorithms, the CSDCNN algorithm had only
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Figure 8: Evaluation of diagnostic effect of different algorithms on patients with osteosarcoma. (Note. Compared with SegNet, ∗P< 0.05;
compared with LeNet, #P< 0.05; compared with AlexNet, &P< 0.05.)
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one missed diagnosis, and the diagnosis result was similar to
the pathological examination result. *is suggested that the
CSDCNN algorithm was more effective in the diagnosis of
patients with osteosarcoma than the SegNet, LeNet, and
AlexNet algorithms, and this was similar to the results of Fu
et al. [25]. Finally, neoadjuvant chemotherapy was per-
formed on the imaging results processed by different al-
gorithms, finding that the ADCmean and ADCmin values of
the neoadjuvant chemotherapy group based on the
CSDCNN algorithm were greater remarkably than those of
the other three groups. *erefore, it was suggested that the
CSDSNN algorithm could be used for prediscriminant
analysis of DWI-MRI images of patients, which was helpful
to improve the therapeutic effect of neoadjuvant
chemotherapy.

5. Conclusion

In this study, the DWI-MRI images of patients with oste-
osarcoma were first processed to regularize, in order to
eliminate the noise in the images.*en, the DWI-MRI image
discrimination model of the CSDCNN algorithm was
established and applied to the diagnosis and treatment of
patients with osteosarcoma. *e results of this study found
that the CSDCNN algorithm had substantial results in
discriminating DWI-MRI images of patients with osteo-
sarcoma, which could significantly improve the accuracy of
the diagnosis of osteosarcoma and assist clinicians in the
imaging diagnosis of patients with osteosarcoma. Moreover,
the diagnostic results based on this algorithm could obtain
better therapeutic effect of neoadjuvant chemotherapy.
However, there are still some shortcomings in this study.*e
sample size of this study is small, and the effect of extensive
resection and postoperative chemotherapy has not been
evaluated, which needs to be confirmed by more large-
sample clinical studies in future studies.
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*e data used to support the findings of this study are
available from the corresponding author upon request.
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