
Research Article
Model Construction of Enterprise Financial Early Warning
Based on Quantum FOA-SVR

Wen-Tsao Pan ,1 Yi Liu ,2 Huan Jiang ,3 Ya-Ting Chen ,3 Ting Liu ,3 Yan Qing ,1

Guo-Hui Huang ,1 and Rong Li 4

1School of Economics and Management, Hunan University of Science and Engineering, Yongzhou, China
2School of Management, Guangzhou Huashang College, Guangzhou, China
3School of Electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
4School of Foreign Languages, Hunan University of Science and Engineering, Yongzhou, China

Correspondence should be addressed to Yi Liu; 619193220@qq.com

Received 2 August 2021; Accepted 30 August 2021; Published 15 September 2021

Academic Editor: Punit Gupta

Copyright © 2021Wen-Tsao Pan et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+e sudden outbreak of COVID-19 has a great impact on human life security and global economic development. To deal with the
rampant pandemic, many countries have taken strict control measures, including restricting gathering in public places and
stopping the production of enterprises; as a result, many enterprises suffered great challenges in survival and development during
the pandemic. In order to help enterprises monitor their own financial situation and realize their healthy development under the
pandemic, this paper constructs an Enterprise Financial Early Warning Model, in which Quantum Rotation Gate is used to
optimize four algorithms, namely, Fruit Fly Optimization Algorithm (QFOA), Bee Colony Optimization Algorithm (QABC),
Particle Swarm Optimization (QPSO), and Ant Colony Optimization (QACO). +e results show that the ability of the prediction
model can be greatly improved by using the Quantum Rotation Gate to optimize these four algorithms.

1. Preface

At present, under the influence of the epidemic, many
enterprises have experienced management problems.
+erefore, financial early warning has become an important
mean for companies to make risk predictions. In order to
solve the problem of the lack of effective early warning
measures and means for corporate financial risk manage-
ment, Liu [1] analyzed the basic connotation and causes of
marine corporate financial risk and proposed a marine
corporate financial risk prevention and control strategy
based on the marine economy. Tang [2] put forward some
suggestions to better strengthen risk warning based on the
forecast of Qingdao marine economy and pointed out that
by developing future financial risk assessment models and
establishing a sound financial warning mechanism, com-
panies can effectively provide early warning.

Affected by COVID-19, the whole economic market has
a tendency to stagnate, and many enterprises face the

pressure of tight cash flow, supply chain interruption, and
general decline of market supply and demand. Under the
background of global economy facing deep recession crisis,
the role of financial early warning is particularly important.
First, the financial data of 250 enterprises in 2018 and 2019
are collected, and then Quantum Rotation Gate is used to
optimize four algorithms, namely, Fruit Fly Optimization
Algorithm [3], Bee Colony Optimization Algorithm [4],
Particle Swarm Optimization [5], and Ant Colony Opti-
mization [6]. +en, the parameters of SVR neural network
are optimized by these optimized algorithms. Afterward, the
Financial Early Warning Model is constructed. Finally, the
error convergence trend chart and ROC curve of the four
models are generated, and the first group of data formed an
error narrative statistical table obtained by tests repeated 100
times. +e results show that the four algorithms combined
with Quantum Rotation Gate can effectively reduce the
prediction errors and improve the accuracy and effectiveness
of financial early warning.
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So far, there are many relevant studies on Quantum
Rotation Gate Optimization Swarm Intelligence Algorithm.
Mao et al. [7] proposed a hybrid algorithm of Quantum
Particle Swarm Optimization and Ant Colony Optimization
through the study of glass cutting problem. +e research
results show that the APSO-ACO algorithm is an effective
method to solve glass cutting problems because of its strong
optimization ability. Zhao [8] proposed a cloud computing
resource scheduling method based on the improved
Quantum Particle Swarm Optimization. +rough the
analysis of its performance through simulation experiments,
it is shown that the method can effectively improve the
utilization rate of cloud computing resources. Wang [9]
proposed an improved multipopulation quantum genetic
algorithm and introduced a new Quantum Rotation Gate in
the evolution of the algorithm. +e research results show
that the algorithm has better optimization performance than
conventional quantum genetic algorithm and multi-
population genetic algorithm. Wu et al. [10] proposed a
quantum genetic algorithm to optimize the extreme learning
machine. +ey compared the simulation results of ELM and
QGA-ELM on datasets, which showed that QGA-ELM can
effectively improve the classification accuracy of ELM net-
works. Yan and Ye [11] proposed a Hybrid Grasshopper
Optimization Algorithm based on quantum computing and
carried out simulation experiments, computational com-
plexity analysis, and global convergence proof of the algo-
rithm. +e research shows that the Hybrid Grasshopper
Optimization Algorithm has stronger global search ability
and better convergence accuracy. Guo et al. [12] proposed
Quantum Particle Swarm Optimization Based Patch-Graph
Sparse Optimization for Large Array. +is method is
combined with QPSO algorithm. Compared with the tra-
ditional Patch-Graph Sparse Optimization, the global search
ability is improved and the convergence speed is accelerated.
+eir simulation results show that the method is effective.

+e structure of this paper is as follows: the first section
briefly introduces the background and literature review; the
second section describes the research methods of this paper;
the third section analyzes the verification process and re-
search findings; and the fourth section provides conclusions
and suggestions.

2. Research Methods

2.1. Quantum-Optimized Fruit Fly Optimization Algorithm
(QFOA). In terms of Quantum Coding Optimization of
FOA, the fly position dimension is 3L ∗ 2, in which 3
represents the three parameters of the SVR model, L rep-
resents the number of bits that each parameter needs to be
expressed as a binary code, and 2 means two of the quantum
gates. +e position of Drosophila is the [0,1] range of the
zone coordinates.

(1) Fruit fly position initialization: Randomly set a fly
position p0 within the defined domain, and use a
uniform distribution method to randomly generate
popsize fruit fly positions.

(2) Move: Find the current optimal fruit fly position “p,”
and set p0� p.

(3) Release: Take p0 as the center and use a uniform
distribution method to randomly generate new
popsize positions of fruit flies.

(4) Measure the position of the fruit fly code:
In the quantum spin gate, qubits |0> and |1> rep-
resent the two base states of tiny particles. According
to the principle of superposition, the superposition
state of quantum information can be expressed as a
linear combination of these two fundamental states;
namely, |ψ ≥ a|0〉+ß|1〉, where a and ß are com-
plex numbers, representing the probability ampli-
tude of the qubit state, which, respectively, represent
the probability that the quantum state |ψ> collapses
to the |0> state and |1> state due tomeasurement and
meet the normalization conditions.
In the Quantum Fruit Fly Algorithm, fruit flies use
the probability amplitude of qubits for encoding.+e
encoding scheme is as follows:
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θij � 2π × RAND, i � 1, 2, . . . n, j � 1, 2, . . . k.

(1)

θ is the phase of the qubit, n is the number of fruit
flies, k is the number of qubits, which means the
dimension of the solution space, and RAND is a
random number in the range [0,1]. Each qubit is
divided into upper and lower rows, corresponding to
the probability amplitudes of the two quantum basic
states and satisfying the normalization condition.
+erefore, each individual contains two upper and
lower cultural coding chains, each of which is a
candidate solution to the optimization problem. It
can be seen that the Quantum Fruit Fly Algorithm
has twice the number of candidate solutions of the
Fruit Fly Algorithm when the population size re-
mains unchanged, which increases the diversity of
the understanding space and improves the proba-
bility of successful optimization.
When measuring the code of fruit flies, the square of
each bit of the code is calculated so as to get its binary
code.

tid �
1, if xid( 􏼁

2 <RAND,

0, if xid( 􏼁
2 ≥RAND.

⎧⎨

⎩ (2)

(5) Convert binary code to decimal decision variable,
which means converting the binary code of each
decision variable to get the decimal value of the
decision variable we need.

(6) Calculate the value of the objective function: Cal-
culate the objective function of the fruit fly position.

(7) Quantum Rotation Gate: +e Quantum Rotation
Gate is used to change the phase of the qubit to
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update the probability range of the qubit, so as to
achieve the effect of fruit fly codingmutation. For the
operation mode of quantum revolving gate, please
refer to [13].

αi
′

βi
′

⎡⎣ ⎤⎦ �
cosθi − sinθi

sinθi cosθi

􏼢 􏼣
αi

βi

􏼢 􏼣. (3)

2.2. Quantum-Optimized Bee Colony Algorithm (QABC).
In terms of Quantum Coding Optimization of Bee Colony
Algorithm, the bee position dimension is 3L ∗ 2, in which 3
represents the three parameters of the SVR model, L rep-
resents the number of bits that each parameter needs to be
expressed as a binary code, and 2 means two quantum gates.
Each dimension range of bee position is the [0,1] range
interval of regional coordinates.

(1) Initialization of bee position: Use random initiali-
zation of bee position.

(2) Employment stage: A honey bee corresponds to a
honey source.+e honey bee corresponding to the ith
honey source searches for a new nectar source
according to the following formula:

xid′ � xid′ + φid xid − xkd( 􏼁. (4)

(3) Selection and wait-and-see phase:
+e newly generated possible solutions are

xi
′ � xi
′, xi
′, . . . , xi D

′􏼈 􏼉. (5)

+e original solutions are xi � xi1, xi2, . . . , xi D􏼈 􏼉.
Make comparisons, and use a greedy selection
strategy to retain better solutions. Each observation
bee selects a nectar source based on probability, and
the probability formula is

Pi �
fiti

􏽐
SN
j�1fitj

. (6)

Among them, fiti is the fitness value of the possible
solution Xi. For the selected nectar source, the ob-
servation bee searches for new possible solutions
according to the above probability formula.

(4) Investigation phase: When all honey bees and ob-
server bees have searched the entire search space,
and if the fitness value of a nectar source is not
increased within a given step (defined as the control
parameter “limit”), then the nectar source is dis-
carded, and the honey bee corresponding to the
nectar source becomes a scout bee to search for new
possible solutions using the following formula:

xid � x
min
d + r x

max
d − x

min
d􏼐 􏼑. (7)

(5) Measuring the position of the bee code: In quantum
computing, qubits |0〉and |1〉represent the two
basic states of microscopic particles. According to

the Principle of Superposition, the superposition
state of quantum information can be expressed as the
linear combination of two basic states; namely,
|ψ〉� a〉e0〉+ß〉e1〉, where a and ß are com-
plex numbers, representing the probability ampli-
tudes of the qubit state, in which the sum,
respectively, represents the probability that quantum
state |ψ〉collapses t |o0〉and |1〉state due to
measurement and satisfies the normalization
conditions.
In the Quantum Bee Colony Algorithm, bees use the
probability amplitude of qubits for encoding. +e
encoding scheme is as follows:
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θij � 2π × RAND, i � 1, 2, . . . n, j � 1, 2, . . . k.

(8)

Θ is the phase of the qubit, n is the number of bees, k
is the number of qubits, which means the dimension
of the solution space, and RAND is the random
number in the range of [0,1]. Each qubit is divided
into two lines, up line and down line, corresponding
to the probability amplitudes of the two quantum
fundamental states, and satisfies the normalization
condition. +erefore, each individual contains two
cultural coding chains, each of which is a candidate
solution to the optimization problem. +e results
show that the number of candidate solutions of
Quantum Bee Colony Algorithm is twice as large as
that of Swarm Algorithm, which can increase the
diversity of solution space and improve the proba-
bility of success.
When measuring the code of honey bee, the square
of each bit of the code of Xi is calculated.

tid �
1, if xid( 􏼁

2 <RAND,

0, if xid( 􏼁
2 ≥RAND,

⎧⎨

⎩ (9)

so as to get its binary code.
(6) Binary code conversion to decimal decision variable:

Convert the binary code of each decision variable to
obtain the decimal value of the decision variable we
need.

(7) Quantum Rotation Gate: +e Quantum Rotation
Gate is used to change the phase of the qubit to
update the probability range of the qubit, so as to
achieve the effect of bee encoding mutation.

αi
′

βi
′

⎡⎣ ⎤⎦ �
cosθi − sinθi

sinθi cosθi

􏼢 􏼣
αi

βi

􏼢 􏼣. (10)

2.3. Quantum-Optimized Particle Swarm Optimization
(QPSO). +e steps of Quantum Coding Optimization of
Particle Swarm are as follows:
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(1) Set quantum particle algorithm parameters.
(2) Initialize the particle swarm position.
(3) Because the position and velocity of the particle

cannot be determined together in quantum space,
the wave function f(x,t) is used to describe the state of
the particle.

(4) Get the probability density function of particles
appearing at a certain point in space by solving
Schrodinger equation.

(5) +e position equation of the particles is obtained by
random simulation of Monte Carlo method:

x(t) � P ±
L

2
ln

1
u

􏼒 􏼓, (11)

where u obeys a uniformly distributed random
number on [0,1]; L(t+ 1)� 2β|mbest−X(t)| is de-
termined. Finally, the evolution equation of the
Quantum Particle Algorithm is

mbest �
1

M
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Pi1 · · ·
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Pid � ϕ∗Pid +(1 − ϕ)
∗
Pg d.

(12)

2.4. Quantum-Optimized Ant Colony Algorithm (QACO)

(1) Initialize pheromone and heuristic values: Initialize
the pheromone intensity of each side and the taboo
table of each ant in advance.+e pheromone on each
edge is initialized to a smaller value r0; for each ant, a
taboo table is needed to record the nodes that it has
passed, and its taboo table is initialized to the node
where the ant is located.+e length of taboo table is I,
and the amount of pheromone released by the ants
on each side is initialized to 0.

(2) Initialize quantum gate: In quantum computing,
qubits |0> and |1> represent the two basic states of
microscopic particles. According to the principle of
superposition, the superposition state of quantum
information can be expressed as a linear combi-
nation of these two basic states; namely, |ψ〉 � a〉|
0〉+ß|1〉, in which a and ß are complex numbers
representing the probability amplitude of the qubit
state and the sum, respectively, represents the
probability that the quantum state |ψ〉collapses to
|0〉and |1〉states due to measurement and sat-
isfies the normalization condition. Assign values to
a and ß of each qubit 1/

�
2

√
to complete the

initialization.
(3) Construct a path: Each ant selects the next node to

reach under the constraint of the taboo table
according to certain probability rules until a legal

path is finally formed. +e ant determines the city to
be reached next according to a certain probability.
+e probability is calculated as follows:

Pij(t) �
τij

(t)
􏽨 􏽩

α
ηij􏽨 􏽩

β
μj􏽨 􏽩
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α ηik􏼂 􏼃

β μk􏼂 􏼃
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⎧⎪⎨

⎪⎩

(13)

where the pheromone intensity between node i and
node j is [τij(t)]α, the heuristic value intensity
between node i and node j is ηij, and μj is the
quantum information intensity of node j, which is
defined as

μj �
1

αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2, (14)

where αj is the amplitude of the jth quantum gate.
+e formula of (1) represents the probability that the
ant chooses city j from city i at time t. a is the weight
of the pheromone in the probability calculation, and
the greater its value, the more important the role the
pheromone will play in choosing the next city to be
visited by the ant. ß is the weight of the heuristic
factor (usually expressed as the reciprocal of d in the
TSP problem) in the probability calculation, and the
greater its value, the more important the role of the
heuristic factor in the process of choosing cities by
ants. allowed is a collection of cities that are not in the
ant taboo list.
+e formula of (1) shows that the ants will not choose
the cities in the taboo list, so as to ensure the legality
of understanding.

(4) Calculate the intensity of quantum information:

μj �
1

αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 (15)

where j is the quantum information intensity node
and αj is the amplitude of the jth quantum gate.

(5) Calculate the path length generated by each ant,
which is the sum of the length of each side in the
path.

(6) Quantum Rotation Gate.
(7) Update pheromone: +e pheromone is volatilized

from each side, and then the pheromone released by
the ants is obtained according to the length of the
path produced by each ant. After all ants have
completed the pheromone update, record the cur-
rent shortest path, initialize the taboo table and the
pheromone increment value △T(t, t+ l), and pro-
ceed to step 2. Repeat this cycle until the final
condition of the Algorithm is satisfied; for example,
the solution cannot be further improved or the
specified number of cycles is reached.
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τij(t + 1) � ρτij(t) + Δτij(t, t + 1), (16)

where τij(t + 1) represents the pheromone on the
edge ij during t iterations. ρ is the pheromone
maintenance factor, and 1−ρ is the pheromone
volatilization factor. Δτij(t, t + 1) is the sum of the
pheromones released by all ants on the edge ij, as in
(16).

Δτij(t, t + 1) � 􏽘

m

k�1
Δτk

ij(t, t + 1), (17)

where ij belongs to all feasible paths.

Finally, this research uses the same four algorithms,
QPSO, QFOA, QABC, and QACO, to optimize the pa-
rameter gamma and C of the SVR, which greatly improves
the predictive ability of the Financial Early Warning Model.

3. Empirical Analysis

3.1. Sample Data and Variables. Considering the demand of
sample size, the impact of various factors in 2018 and 2019
on 250 companies in different industries (including 75 crisis
companies and 175 normal companies) is studied in this
paper. +ere are nine influencing factors: return on net
assets (X1), net profit margin (X2), gross profit margin (X3),
shareholder equity growth rate (X4), net profit growth rate
(X5), net asset growth rate (X6), current ratio (X7), quick
ratio (X8), and asset-liability ratio (X9). Taking into account
the diversity of data, the maximum, minimum, average, and
variance of each influencing factor are calculated for the 250
sets of data in 2019 and 2018 in Table 1, so as to compare the
differences in financial warning data in the past two years
more visually.

3.2. Using Quantum Swarm Intelligence to Optimize SVR
Steps. First, in the QFOA optimization of SVR, select the
financial early warning data and set the Fruit Fly Optimi-
zation Algorithm parameters; then, initialize the position of
the fruit fly swarm, taking p0 as the center, and the method of
uniform distribution is applied, randomly generating new
popsize positions of fruit flies. +e positions of fruit flies code

are measured, and the binary code is converted into a decimal
decision variable. +en, the objective function value is cal-
culated, and the qubit phase is changed by Quantum Rotation
Gate. Finally, the error is calculated by SVR. In terms of
quantum swarm SVR optimization SVR, by employing bees,
greedy selection, wait-and-see, reconnaissance, and other
stages, the quantum revolving gate is used to change the phase
of the qubit and measure the fitness of the swarm. Please refer
to relevant literature for details. In the aspect of Quantum
Particle Swarm Optimization SVR using SVR, the particle
probability density function is obtained by solving the
Schrodinger equation, and finally the error is obtained by
SVR. Please refer to the relevant literature for details. In the
aspect of quantum ant colony using SVR to optimize SVR,
each ant constructs a legal path according to a certain
probability rule, then calculates the quantum information
intensity, calculates the transition probability, and updates the
path, that is, calculates the length of the path generated by
each ant. +en, use the Quantum Rotating Gate to measure
whether the ant colony search is completed. Please refer to the
relevant literature for details.

3.3. Result Analysis. According to the convergence trend
graph of the four model errors calculated by ESM in Fig-
ure 1, QFOA-SVR converges earlier than the other three
algorithms, indicating that the algorithm has reached the
optimal algorithm. After reaching the optimal algorithm, it
can be seen from the trend graph that the QFOA is better
than the other three algorithms. +e algorithm is more
stable, indicating that the QFOA is highly stable. Using
Matlab software, the last 50 sets of data in 2018 and 2019 are,
respectively, fixed as test data, and the first 200 sets of data
are sample; then, repeatedly run QFOA, QABC, and QABC
100 times. After running the four algorithms of QACO and
QPSO, count the maximum, minimum, average, variance,
and total running time of five indicators of absolute errors,
and get the error table that has repeated 100 times, Table 2. It
can be seen in the table that the average value of QFOA is
smaller than the average of the other three algorithms, in-
dicating that the neural network of QFOA has smaller fi-
nancial forecast errors than the other three algorithms, and
the predicted results are more accurate.

Table 1: Descriptive statistics of sample data in 2019 and 2018.
2019

Var X1 X2 X3 X4 X5 X6 X7 X8 X9
N 250 250 250 250 250 250 250 250 250
Max 207.50 398.12 96.43 1217.11 3335.51 1126.42 18.49 17.95 3983
Min −1909.0 −10472 −220.8 −118.87 −17362.4 −473.82 0.03 0.03 4.26
Avg −36.81 −114.05 31.12 −4.58 −110.23 4.26 2.32 1.87 79.04
Std 422.41 7166.78 7.34 210.31 13580.29 110.99 0.09 0.07 991.44

2018
Var X1 X2 X3 X4 X5 X6 X7 X8 X9
N 250 250 250 250 250 250 250 250 250
Max 169.34 157.28 94.30 876.30 3108.42 1000.28 18.70 17.18 1879.04
Min −922.79 −890.59 −72.85 −1419.9 −348922.74 −1419.9 0.07 0.04 4.74
Avg −9.89 −12.84 27.21 −2.62 −2019.64 0.28 2.19 1.81 54.61
Std 90.32 87.30 4.87 141.52 4941745.15 144.56 0.06 0.05 140.41
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Figure 1: Convergence trend diagram of the four models.
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It can be seen from Table 3 that the variance of QFOA is
smaller than that of the other three algorithms, indicating
that the QFOA is the most stable among the four algo-
rithms. In terms of the total time, it can be seen that the
QFOA runs for less time compared with the other three
algorithms, which indicates that the responsiveness of the
Fruit Fly Optimization Algorithm is more sensitive, but the
five indicators calculated by the four algorithms are rel-
atively small, and the difference is slight, because we use
quantum optimization of four algorithms at the same time;
the stability, accuracy, and sensitivity of the optimized
algorithm have been greatly improved.+e ROC curve and

table for 2018 and 2019 are drawn with the SPSS software.
Figure 2 is the ROC curve circle, and Table 3 is the ROC
table. +e ROC table includes clarity, sensitivity, area
under the curve, and Gini Coefficient. From the ROC curve
and ROC table in 2018, it can be seen that the area, AUC
value (0.677), and Gini Coefficient (0.354) of the QFOA are
large, indicating that the QFOA is the most accurate of the
four algorithms. +e sensitivity (0.43) and specificity
(0.924) are the highest in QFOA, indicating that the QFOA
is more sensitive and responds faster. Moreover, from the
ROC curve and ROC table in 2019, the conclusions are the
same. Based on the ROC curve of two years, it can be

Table 2: Descriptive statistics repeated one hundred times.

QABC
Particular year Max Min Avg Std Total time (s)

2018 1.071907 0.000052 0.273969 0.066597 24.7
2019 1.054144 0.000044 0.295520 0.062692 23.9

QACO
Particular year Max Min Avg Std Total time (s)

2018 1.065305 0.000037 0.232538 0.058119 21.8
2019 0.979081 0.000364 0.274045 0.046896 20.7

QPSO
Particular year Max Min Avg Std Total time (s)

2018 1.065305 0.000037 0.229276 0.059667 15.4
2019 0.866827 0.001849 0.275428 0.045227 13.9

QFOA
Particular year Max Min Avg Std Total time (s)

2018 1.048369 0.001652 0.228247 0.057383 14.9
2019 0.946589 0.000247 0.274033 0.048588 13.6

Table 3: ROC curve analysis results.

2019 QFOA QPSO QACO QABC 2018 QFOA QPSO QACO QABC
AUC 0.677 0.671 0.623 0.648 AUC 0.701 0.699 0.661 0.664
Gini 0.354 0.342 0.246 0.296 Gini 0.402 0.398 0.322 0.328
Sens 0.43 0.418 0.304 0.43 Sens 0.447 0.461 0.368 0.408
Spec 0.924 0.924 0.942 0.865 Spec 0.954 0.937 0.954 0.92
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Figure 2: ROC curves of the four models.
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concluded that the QFOA is the one with the most accurate
prediction and most sensitive response among the four
algorithms.

4. Conclusions and Recommendations

+e main contribution of this paper lies in the use of a
relatively new Quantum Rotation Gate to optimize algo-
rithms, namely, Fruit Fly Optimization Algorithm, Particle
Swarm Optimization, Swarm Optimization Algorithm, and
Ant Colony Optimization Algorithm. +e results of the
study show that the ROC curve is obtained by iterative trend
graphs, repeated test data, and ROC curves. In this paper, we
find that the Quantum Fruit Fly Optimization Algorithm
and the optimized SVR Financial Early Warning Model are
superior to the other three algorithms in convergence speed,
optimization stability, and financial early warning stability.
In addition, it is found that the four models are very close to
each other in terms of convergence rate, model stability, and
prediction error. +erefore, the Quantum Rotation Gate is
superior in the ability to optimize the four algorithms.
+erefore, it is suggested that Fruit Fly Optimization Al-
gorithm can be used to optimize SVR to construct Financial
Early Warning Model in the future. In this paper, we use
Quantum Rotation Gate to optimize the four algorithms,
and propose other methods to optimize the four algorithms
in the future, such as chaos theory or wavelet theory.
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