
Research Article
ANovel SparrowParticle SwarmAlgorithm (SPSA) forUnmanned
Aerial Vehicle Path Planning

Wangwang. Yu , Jun. Liu , and Jie. Zhou

School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China

Correspondence should be addressed to Jun. Liu; liujun@sdju.edu.cn

Received 14 September 2021; Accepted 23 November 2021; Published 9 December 2021

Academic Editor: Pengwei Wang

Copyright © 2021Wangwang. Yu et al.+is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Unmanned aerial vehicle (UAV) has been widely used in various fields, andmeeting practical high-quality flight paths is one of the crucial
functions ofUAV.Many algorithmshave the problemof too fast convergence and premature inUAVpath planning.+is study proposed a
sparrow particle swarm algorithm for UAV path planning, the SPSA.+e algorithm selects a suitable model for path initialization, changes
the discoverer position update, and reinforces the influence of start-end line on path search, which can significantly reduce blind search.+e
number of target points reached is increased by adaptive variable speed escapes in areas of deadlock. In this case, the planned trajectory will
fluctuate, and adaptive oscillation optimization can effectively reduce the fluctuation of the path. Finally, the optimal path is simplified, and
the path nodes are interpolatedwith cubic splines to improve the smoothness of the path,which improves the smoothness of theUAVflight
trajectory andmakes it more suitable for use as the UAV real flight trajectory. By comparison, it can be concluded that the improved SPSA
has good convergence speed and better search results and can avoid local optimality.

1. Introduction

Unmanned aerial vehicle (UAV) has been widely used in
various fields, such as transportation, rescue, andmilitary, with
the continuous progress of technology. Compared with ground
robot path planning, the path planning of UAV in 3D envi-
ronment increases the complexity of trajectory calculation as
the spatial dimension rises. UAVs are affected by buildings,
weather, and their energy consumption during flight, so how to
plan a safer, more efficient, and faster path is an ongoing hot
research problem. Traditional algorithms such as the A∗ al-
gorithm [1], artificial potential field method [2, 3], and RRT [4]
have been used for path planning, but most of them still suffer
from high computational complexity and local convergence.

A heuristic algorithm is a new solution algorithm obtained
by imitating various natural phenomena and summarizing and
refining that natural phenomenon.+e heuristic algorithm can
solve some problems that ordinary methods cannot solve.
+e UAV path planning problem is a multivariate problem in
the real environment to find the optimal solution. Many
scholars have studied this problem with heuristic algorithms
[5–11] to find suitable solutions. Duan [12] et al. used the

maximum-minimum adaptive ant colony optimization algo-
rithm to replan the UAV collaborative path in dynamic and
uncertain environments, determine the time for the UAV to
reach the conflict point, and then determine the flight trajectory
and speed of the UAV to avoid static threats and popup threats.
Shiri et al. [13] proposed a neural network-assisted online
control algorithm for remote UAV paths that enable UAV to
make control decisions locally in harsh communication en-
vironments, thereby reducing travel time. Qu [14] et al. pro-
posed a reinforcement learning algorithm based on the grey
wolf algorithm that adaptively switches selection by controlling
the performance accumulated by individual four operations of
exploration, exploitation, geometric adjustment, and optimal
adjustment, which has better results than other improved grey
wolf algorithms. Duan [15] et al. proposed a UAV path
planning based on an improvedwater droplet algorithm, which
considers the effects of ice accumulation, Richardson number,
meteorological changes, and different flight altitudes on UAV
path planning. +ey used the virtual potential field method to
adjust the flight direction of the UAV to perform static path
planning and dynamic path planning for the UAV. Liu [16]
et al. proposed an evolutionary algorithm based on the
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evolutionary algorithm for UAV path planning, which changes
the t distribution algorithm to effectively solve the high
computational complexity and low efficiency in UAV dynamic
path planning.

+e sparrow search algorithm [17] is a new heuristic al-
gorithm proposed by Jiankai Xue in 2020, and it is a group
intelligence algorithm that imitates sparrow predation. +e
algorithm has the characteristics of fast convergence andmerit-
seeking solid ability. +e sparrow search algorithm has been
widely used in the field of control engineering, for example,
tracking the maximum power point [18], network configu-
ration [19], and path planning field [20]. Liu [21] proposed a
modified sparrow search algorithm (CASSA) to balance the
convergence speed and searchability. +e algorithm improved
the efficiency of path planning by the Corsi–Gaussian variation
strategy and adaptive inertia weights. Ouyang [22] proposed
the learning sparrow search algorithm (LSSA) to improve
stability and security. +is algorithm solves the shortcomings
of strong randomness and easy to fall into local optimum.
Abdulhammed [23] applied the sparrow search algorithm to
the load balancing problem of cloud computing by separately
provisioning different tasks to shorten the server response time
and reduce power consumption. +e algorithm shows that the
advantages of fast convergence and good searchability of the
sparrow search algorithm are highly applicable in solving
engineering problems.

Particle swarm algorithm [24] is an algorithm proposed
by James Kennedy and Russell Eberhart, which has the
characteristics of fast convergence and simple structure.Many
scholars have applied it to various optimization scenarios
[25–30] and achieved good results. Li [31] proposed an
SLPSO algorithm for solving collision hazards, insufficiently
smooth paths, and long planning paths of mobile robots in
path planning, and the experimental results showed that the
algorithm is effective and feasible. Phung [32] proposed an
improved discrete particle swarm algorithm (DPSO) to be
used in UAV path planning to improve the algorithm’s
performance through qualitative initialization, random var-
iation, and edge swapping by taking advantage of parallel
computing. Foo [33] proposed a particle swarm algorithm-
based 3D UAV path planning that considers the fuel con-
sumption of the UAV, flies over specified obstacles, and leaps
over specified reconnaissance targets. +abit [34] proposed a
multi-robot particle swarm optimization algorithm for multi-
UAV path planning in unknown situations.+e robot decides
the direction of movement based on the information collected
by sensors and combines probabilistic windows to obtain
current information and previous robot experience to select
the path with better fitness.

In the field of human-machine path planning, the
current UAV still suffers from the problem of locally optimal
solutions, making it difficult to search for globally optimal
paths. A novel SPSA is proposed for this problem, which
guides the subsequent path search through path initializa-
tion. +e discoverer position update rule is improved to
enhance the search near the start-end line. Adaptive variable
speed escape search is used to improve the search efficiency
of paths when obstacles are encountered. Adopting adaptive
oscillation optimization reduces path fluctuations and

improves path smoothing. Finally, the path smoothness is
improved by simplifying the nodes and smoothing process,
which is more suitable for path planning in the real envi-
ronment. It is also verified that the SPSA has a shorter
convergence path and lower energy consumption than other
algorithms.

+e structure of this study is as follows: Section 2 es-
tablishes the environment model that matches the actual
situation. Section 3 describes the specific implementation of
the sparrow search algorithm and the particle swarm al-
gorithm. Section 4 describes the specific implementation of
the SPSA. Section 5 draws the corresponding structure and
flow chart for the structure of the SPSA. Section 6 analyzes
the experimental results for the algorithm complexity
analysis and experimental results. Section 7 concludes the
SPSA.

2. Environment Modelling

In the actual complex environment, the UAV will encounter
multiple threats such as obstacles and trees in reaching the
target set from the start point, and sometimes, it also needs
to consider the climate, the energy of the UAV, and other
factors. +e main problem of UAV path planning is the path
optimization problem considering multiple disturbance
factors. By building a mathematical model, the optimal flight
path is calculated.

2.1. Environmental Model Building. +e movement of the
UAV is less restricted by the terrain and can reach the target
point quickly in a complex environment, but the trajectory
of the UAV’s movement is in a three-dimensional envi-
ronment. +e three-dimensional environment is more
complicated than the two-dimensional environment. +e
amount of calculation will also be tremendous. To reduce the
time of UAV path calculation, the establishment of a suitable
model has an important influence on the calculation of the
optimal path.+is study adopts the modelling method in the
literature [35]. Each time the position is selected, it will move
forward by one unit in the x-axis direction, simplifying the
three-dimensional path problem into a two-dimensional
path planning problem.

Assuming that the velocity of the UAV flight is variable
and disregarding the effect of the structure of the UAV on
the flight, the square tall building in the real environment is
equated to a square obstacle, and the cylindrical building is
equated to a cylindrical obstacle, as shown in Figure 1.

2.2. Adaptability Calculation. +e trajectory of the UAV
flight is usually close to the line between the start point and
the endpoint (start-end line) when avoiding obstacles, while
the path should be as smooth as possible. +e distance and
the safety of UAV from the obstacles are considered in the
literature [14]. However, the computational effort also in-
creases with the increase in obstacles, which is not conducive
to finding the globally optimal path. Considering the energy
loss of UAV, a new fitness calculation is proposed as follows:
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E � Epath + Eturning + Eclimb. (1)

+e fitness value of UAV flight E is the total energy
required for UAV path planning. Epath is the energy con-
sumed for all planned paths assuming that the UAV flies at a
constant speed. Eturning indicates the additional energy
consumed for UAV flight turning. Eclimb indicates the energy
is required for UAV climbing and landing. Eclimb represents
the energy consumption for climbing and landing. It is
assumed that the energy of the UAV flight consists of three
parts, and one part is the energy of uniform flight, and it is
assumed that the energy consumption of this part is pro-
portional to the distance flown.+e second part is that when
turning, there will be additional turning energy loss in
addition to the first part of energy.When the turning angle is
larger, as the speed remains the same centripetal force is
needed to do work, more energy is needed to maintain a
constant speed and complete the flight turning. Similarly,
more work is required to move the aircraft in the vertical
direction, assuming that the energy required by the UAV is
proportional to the distance travelled in the vertical direc-
tion. Each part of the solution equation is as follows:

Epath � k0 · 􏽘
s−1

n�1
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xn − xn+1( 􏼁
2
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􏽱

,

Eturning � k1 · 􏽘
s−1

n�1
μ0 ∗ (1 + cos θ),

Eclimb � k2 · 􏽘
s−1

s�0
|Δz|.

(2)

Here, xs, ys, and zs denote the coordinates of x, y, and z

axes of the nodes, respectively, μ0 denotes the turning angle

coefficient, and θ denotes the angle between two adjacent
line segments. When the angle is larger, the trajectory is
smoother, and the fuel cost is lower. When the turn is
smaller, the UAV needs to slow down, steer, and accelerate
the process, which will consume more fuel. |Δz| denotes the
variation on the z-axis between two adjacent nodes, where
k0, k1, and k2 are scale factors. +e fitness is performed by
cubic spline interpolation, and the summation is performed
for each slice of the fitness, which is similar to the energy
consumption in the real situation.

As the UAV flight in the actual situation of variable
speed flight needs to adjust the route to avoid trees,
buildings, and other obstacles, UAV flight steering requires
more energy Eturning, while for the flight trajectory without
substantial height oscillation, the flight altitude constantly
changes will also consume more energy. In general, the
optimal adaptation in UAV flight corresponds to a smooth
and smooth flight trajectory.

3. Basic Theoretical Algorithms

+e choice of the algorithm has an essential impact on path
planning. A suitable algorithm can improve the convergence
of the optimal path and avoid local optima. +is section
describes the specific implementation of the involved
sparrow search algorithm and particle swarm algorithm.

3.1. Basic Sparrow Search Algorithm. +e sparrow search
algorithm is a novel bionic algorithm with fast convergence
and merit-seeking solid ability. Sparrows are divided into
producers and scroungers. +e identities of producers and
scroungers can be interchanged, but the weight remains the
same in the population. +e producer with good adaptation
in the sparrow search algorithm will get food first. +e
producers’ positions are updated by the following equation

0 X1 X2 X3 Xn-1 Xn X

Obstacle
Obstacle

Obstacle

Obstacle
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Target
point
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Figure 1: Environment modelling.
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t+1
i,j �

P
t
i,j · exp

−i

α · itermax
􏼠 􏼡, if R2 < ST,

P
t
i,j + Q · L, if R2 ≥ ST.
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(3)

Here, t denotes the current iteration, i denotes the serial
number of the current scrounger, j denotes the dimension, α
is a random number, and itermax denotes the maximum
number of iterations. r2 and ST denote the warning value
and safety value, which are constants, Q is a random
number, and L is a 1× dmatrix, and each element is 1. When
R2 < ST, it means there are no predators around the foraging
environment, and the scrounger can conduct an extensive
search. If R2 ≥ ST, it means that some sparrows in the
population found the predator and alerted other sparrows,
and then, the sparrows needed to fly to other places for
foraging.

+e scrounger will watch the scrounger, and if it per-
ceives that the scrounger has found better food, it will leave
its present position to grab the food, and if it wins, it gets the
scrounger’s food. +e scrounger’s position is updated as
follows:

P
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i,j �

Q · exp
P

t
worst − P

t
i,j

t
2

⎛⎝ ⎞⎠, if i> n/2,

P
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · A
+

· L, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

Here, Pt+1
i,j denotes the optimal position of the next it-

eration, Pt
worst is the worst position in the current iteration,

and n is the number of scroungers, where A denotes a 1× d

matrix where each element is randomly assigned to 1 or -1,
and A+ � AT(AAT)−1. When i > n/2, the less adapted
scroungers need to fly elsewhere in search of food.

Sparrows aware of the danger account for 10% to 20% of
the total population. +e locations of these sparrows are
updated as follows:

P
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P
t
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i,j − P

t
best

􏼌􏼌􏼌􏼌􏼌
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P
t+1
i,j + K ·

P
t
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t
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fi − fw + ε
⎛⎝ ⎞⎠, if fi � fg.
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⎪⎪⎪⎪⎪⎪⎩

(5)

Here, Pt
best is the current global best position, β and K are

random numbers, fg and fw are the current global best and
worst fitness values, and ε is a constant to avoid the de-
nominator being zero.

+e presence of obstacles in the environment of UAV
path planning can interfere with the sparrow search algo-
rithm to search the optimal and worst paths, resulting in the
presence of unsearchable target points and loss of good
search routes. Since the absolute value of each element in A+

is the same, the presence of obstacles in the planned path
loses the number of individuals.

3.2. Basic Particle Swarm Algorithm. +e particle swarm
algorithm is an algorithm that is studied by imitating the
predatory behaviour of a flock of birds. +e particle swarm
algorithm uses massless particles to simulate the birds in a
flock, and the particles have velocity and position properties.
+e optimal solution obtained by each particle searching for
a single individual in space is used as the individual’s ex-
tremum, and the extremum of all individuals is used as the
optimal global solution. All particles in the swarm adjust
their velocity and position according to the current indi-
vidual extreme value and the optimal global solution.

+e particle swarm algorithm first initializes the position
of the particle itself and adjusts its position by iteration. In each
iteration, the particle adjusts its speed by the extreme indi-
vidual value and the optimal global solution, thus changing its
position. +e particle swarm algorithm velocity and position
updates are shown in equations (6) and (7) as follows:

Vij(t + 1) � Vij(t + 1) + c1 · Rand · Pl best ij − Pij􏼐 􏼑

+ c2 · Rand · Pg best j − Pij􏼐 􏼑,
(6)

Pij(t + 1) � Pij(t) + Vij(t + 1). (7)

Here, Vij denotes the velocity in j-dimensional space of
the particle with index i, Pl best ij denotes the position in
j-dimension corresponding to the particle with index i

obtaining the local extremum, and Pg best j denotes the
position in j-dimension corresponding to the optimal global
solution obtained by all particles. Rand is a random number
from 0 to 1, and c1 and c2 are learning factors.

+e corresponding pseudocode for the basic particle
swarm algorithm 1 is shown below.

4. Sparrow Particle Swarm Algorithm

4.1. Path Initialization. UAV path planning is a pathfinding
optimization that considers multiple environmental con-
straints and the UAV’s dynamics. +e selection of the next
adjacent path node is affected by obstacles and the current
node position constraints, and from safety considerations,
the UAV cannot cross obstacles from the current node to the
next node. +e path initialization of the sparrow particle
swarm algorithm has an essential impact on the convergence
of the subsequent sparrow search algorithm. A good path
initialization can effectively improve the search efficiency
and prevent the path from generating large oscillations that
do not conform to the characteristics of the smooth
movement of the UAV in the real environment, for which a
path initialization method is proposed.

Assuming a variable speed of the UAV, the UAV should
tend to fly to the target point if the target point is known. As
shown in Figure 2, Pa denotes the current position and
PTarget denotes the position of the target point. Xa denotes
the x-axis coordinates corresponding to the current position,
and Pa+1 is the next point to be determined, and it is the
orange point in Figure 2. Pt is the centre of the following
available coordinate range determined from the current
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point Pa and the coordinates of the target point. Pt is cal-
culated according to the following equation:

Pt � Pa +
PTarget − Pa

m
. (8)

Here, m is the difference between the horizontal coordinate
Xa+m of the target point and the horizontal coordinateXa of the
current point Pa. Pa+1 is chosen by the following formula:

Pa+1 � round Pt + 2∗ rand∗Δh − Δh( 􏼁, (9)

Pt − Δh≤Pa+1 ≤Pt + Δh. (10)

Here, round denotes rounding. rand is a random value
from 0 to 1. Δh denotes half of the square length of the range
of selectable coordinate points.

During the initialization process, each time the individual
confirms the following position based on the current point and
the target point, this improved method can avoid too much
difference between two adjacent nodes during the UAV
movement, interfering with the subsequent convergence.

4.2. Improving the Producer Location Update Formula.
+e traditional sparrow search algorithm with better
pathfinding capability can lead to stagnant search in an
environment with more obstacles, thus losing more indi-
viduals.+e intelligence body has weaker search capability in
an environment with more obstacles, leading to local con-
vergence of the path search.+e current speed of the particle
swarm algorithm is affected by the globally optimal path,
assuming that there are no obstacles between the start point
and the target point. +e optimal path is start-end line. If
there is an obstacle, the shortest path should be closer to the
start-end line. Using the start-end line as an idealized global
optimal path increases the influence of this optimal global

path on the producer and enhances the producer’s ability to
find the optimal solution in the start-end line and enhance
the ability to search near the start-end line by changing the
producer’s function.

P
t+1
i,j �

P
t
i,j + exp

−i

α · intermax
􏼠 􏼡 + rand · PST − P

t
i,j􏼐 􏼑, if fi >fg,

P
t+1
i,j + rand · PST − P

t
i,j􏼐 􏼑, if fi � fg,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

Here, PST is the corresponding coordinate position on
the start-end line. rand is a random number from 0 to 1. By
increasing the difference between the current path and the
start-end line, the searchability around the start-end line is
strengthened to avoid falling into the local optimum.

Initialize
Set the basic parameters
For each particle i

Initialize velocity and position of particles
Calculate fitness fi and set p Besti � fi

End For
g Best� fi

For each iteration
For each particle
Update the position and velocity using by (6) and (7)
Calculate the fitness fi

If fi < pBesti
p Besti � fi

End If
If pBesti < g Best
g Best� p Besti

End If
End For

End For
Return results
Terminate

ALGORITHM 1: Basic particle swarm algorithm pseudocode.
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Figure 2: Path selection schematic.
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4.3. Adaptive Variable Speed Escape Search. In the sparrow
search algorithm, when i> n/2, it indicates that the sparrow
needs to fly to other places to find food for more energy, since
each element in A+ has the same absolute value and is a
number from 0 to 1 (excluding 0 and 1). Since the values of
formula (4) running to Pt+1

i,j , Pt+1
P , A+, and L have been fixed,

when the next node is unreachable due to obstacles, even if the
search is carried out again, it still cannot reach the next node,
which is the same as the last one, and at this time, the path
search is stalled. For this stagnation, the adaptive variable speed
escape exploration is inspired by the particle swarm algorithm.

When the scrounger flies to other places in search of
food, if the next node is unreachable, the scrounger searches
at the lowest speed and searches ten times, and if a moveable
node cannot be found, the speed of movement is increased.
If there is a moveable node, the search stops, and the point is
taken as the current point. Every ten searches are no
moveable point, and then, the speed increases by one until it
reaches the maximum search speed. If it still cannot find a
moveable node, then the search ends.

P
t+1
i,j � P

t
i,j + 2 · rand · ≤Vcur − Vcur. (12)

Here, Vcur denotes the current velocity, increasing from
the lowest velocity, since the globally optimal path corre-
sponds to the smallest possible distance between two ad-
jacent points.

+e pseudocode for the variable speed escape search
Algorithm 2 is shown below.

4.4. Adaptive Oscillation Optimization. Since there are
random numbers in the selection of paths and significant
differences between other paths and the current path, it
leads to the planning with oscillation. +e oscillation of
the drone trajectory will interfere with the judgment of the
optimal path adaptation value and easily fall into local
minima. +e oscillating trajectory will also consume more
energy of the UAV and is not suitable as the actual UAV
flight trajectory.

For addressing this problem, an adaptive oscillation
optimization method is proposed to optimize the planned
original path with adaptive oscillation to reduce the
trajectory oscillation of the UAV. To reduce the path
oscillation at certain points, the overall trajectory trend is
judged by its multiple adjacent points to reduce the path
oscillation better. +e trajectory optimization equation is
as follows:

Pi,j
′ � round

Pi,j−1 + Pi,j + . . . + Pi,j+NP−2􏼐 􏼑

NP

⎛⎝ ⎞⎠. (13)

Here, round means rounding the value. NP is the
number of adjacent nodes that will have an impact on the
current position (including the node itself ), the maximum
value of NP is 5, and the minimum value is 3. Initially, the
value of NP is 5. +e optimization of the current position is
influenced by the position of the previous node, this node,
and the next three nodes. If the optimized position Pi,j

′ has
obstacles, then the value of NP is subtracted by 1 and re-

optimized. If NP is less than 3, no position optimization is
performed for the current point. As shown in Figure 3, the
original trajectory is blue, and the path after adaptive os-
cillation optimization is red, which shows that the smooth
trajectory has better smoothness.

4.5. Simplification of Path Nodes and Smoothing. +e paths
after adaptive oscillation optimization have lower oscillation
compared with the original paths. +e UAV should move in
a straight line or smoothly as much as possible in the actual
environment. To make the path more realistic, the SPSA
finally converges and simplifies the optimal path nodes
found to facilitate the subsequent smoothing process with
the third spline interpolation.

In Figure 4(a), a simplified diagram of the nodes is
shown, where the black line represents the planned path and
the blue line represents the simplified path nodes. Point A
can reach points B, C, and D, and cannot reach points E and
F. Assuming that the UAV reaches point F from point A,
which subsequent nodes can be reached from point A is first
determined. +e corresponding vector is (1, 1, 1, 0, 0), where
1 represents that it can be reached safely and 0 means that it
cannot be reached safely, and there are obstacles in the linear
path. +e last one among these nodes sorted to represent the
node that can be reached is D, and it is taken as the current
node. When the current node is D, judging the subsequent
nodes is continued, assuming that point D can reach point E
and point F, the corresponding path vector is (1, 1), and then
F is selected as the next node.

+is method can effectively avoid the situation that the
path is not streamlined enough due to path oscillation, etc.
For example, point A′ in Figure 4(b) can reach points B′, C′,
D′, and F′, corresponding to the vectors (1, 1, 1, 0, 1). Due to
the presence of obstacles, point A′ cannot reach point E′, so
directly choose F′ as the next node. Points A′, D′, and F′
form a triangle in space, by the triangle. +e sum of line
segment A′D′ and line segment D′F′ is greater than A′F′ by
the law, from which it can be concluded that this optimi-
zation method can minimize the path.

+e triple spline interpolation function can improve the
path’s smoothness and reduce the path’s twists and turns,
and the path is more consistent with the flight path of the
UAV as a real environment. +e simplified path can be
smoothed better by the cubic spline interpolation function,
which reduces the turn amplitude in the path and saves the
energy consumption of the UAV.

5. Structure and Flow chart of the Sparrow
Particle Swarm Algorithm

5.1. Structure of the Sparrow Particle Swarm Algorithm.
+e pseudocode of the sparrow particle swarm algorithm
Algorithm 3 is shown below.

5.2. Flow chart of the Sparrow Particle Swarm Algorithm.
+e sparrow particle swarm algorithm flow chart is shown in
Figure 5.
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6. Experimental Simulation and Result Analysis

To verify the feasibility of the sparrow particle swarm
algorithm for path planning, experimental simulations
are conducted in three different environments with in-
creasing complexity, and each algorithm is simulated 30
times in each case. +e equipment parameters of this

simulation experiment are as follows: CPU is Intel(R)
Xeon(R) E5-2450H @ 2.10 GHz; graphic card is GTX 1050
Ti; memory space is 32G; and simulation software is
MATLAB 2020b.

To verify the performance of the algorithms, we need to
avoid the effect of path initialization and perform the same
path initialization for all the compared algorithms. In the

Update the position by equation (4)
Initialize the velocity Vcur of individual: Vcur � Vmin
Set T� 0
While the position can not reach
If T�Tmax

Vcur � Vcur + 1
If Vcur >Vmax
break

End If
Set T� 0

End If
T�T+ 1
If Vcur ≤ Vmax

Update the position by equation (12)
End If

End While

ALGORITHM 2: Variable speed escape search algorithm pseudocode.
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Figure 3: Comparison of before and after adaptive trajectory optimization.
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Figure 4: Simplified schematic diagram of UAV trajectory nodes.
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initialization of the search path, the path shifted one unit in
the x-axis direction (corresponding to a horizontal move-
ment of 20m) and by ten units in the y-axis and z-axis
(corresponding to a movement of 200m in the y-axis
direction and 100m in the z-axis direction, respectively). In
Table 1, Tmax is the maximum number of cycles. For im-
proving the efficiency of all path searches, when the search
reaches the next path point, it is determined whether the
next path point is an obstacle, and if it is an obstacle, it is
reselected. If the reselected times reached Tmax, then the
search is deadlocked, and the search for that individual ends,

and the path search continues for the next individual. For
reflecting the fairness of each algorithm comparison, the
method is used for each algorithm individual if it encounters
an obstacle when searching for the next path. +e results of
the initialization of the experimental data are shown in the
following table.

6.1. AlgorithmComplexity Analysis. +e complexity analysis
of the algorithm is one of the criteria to evaluate the per-
formance of the algorithm. SPSA is divided into the

Initialize
Set the basic parameters
Set the start point and target point
Initialize the position Pi of each individual in the population using equations (10)–(12)
Oscillation optimization of all individuals trajectories
For each iteration
Initialize optimal fitness and worst fitness
For each producer

For each dimension
Update the position of Pi by the equation (11)
Set T� 0
While the position can not reach and T<Tmax
Update the position of Pi by the equation (11)
T�T+ 1

End While
End For

End For
For each scrounger

For each dimension
Update the position of Pi by the equation (4)
Set T� 0
While the position can not reach and T<Tmax
Update the position of Pi by the equation (4)
T�T+ 1

End While
If T≥Tmax
Search for the next position by adaptive escape using equation (12)

End If
End For

End For
For each individual that finds danger

For each dimension
Update the position of Pi by the equation (5)
Set T� 0
While the position can not reach and T<Tmax
Update the position of Pi by the equation (5)
T�T+ 1

End While
End For

End For
Optimize adaptive oscillation using equation (13)
Update position of all individuals
Calculate and sort fitness values
End For

Perform node optimization on the optimal path and smooth optimization
Return results
Terminate

ALGORITHM 3: Sparrow particle swarm algorithm (SPSA) pseudocode.

8 Scientific Programming



initialization phase and the algorithm iteration phase: the
initialization phase is executed only once and the algorithm
iteration phase is executed according to the iteration cycle.
+e dimension to be calculated for each individual is D, the
number of individuals is N, the maximum number of it-
erations is M, the range of movement in the y-axis and z-axis
directions selected during initialization is A and B, re-
spectively, and SD is the proportion of sparrows found to be

in danger. +e structure of the sparrow search algorithm for
path planning in three-dimensional space is
O(N × D × A × B + M × N × D), where the complexity of
the initialized path is O(N × D × A × B). +e computational
complexity of the path iterative search optimization is
O(M × N × D). +e SPSA increases some computational
complexity due to the enhanced ability to optimize the
search path, and the complexity of the adaptive oscillation

Start

Initialize the path
usIng Eq. (10), Eq.
(11) and Eq. (12)

Optimize adaptive
oscillation using Eq.

(15)

Whether to reach the
number of iterations

Update the next
node of the

producer using Eq. (13)

Yes

No

No

No No

Yes

Yes Yes Yes

Whether all producer
complete the search

Node optimization and
smooth optimization End

Update the next node
of the scrounger using

Eq. (6)

Search for the next
position by adaptive
escape using Eq. (14)

Whether all scroungers
complete the search

Whether
all individuals

that find dangers
complete the search

Update the next node
of the individuals that
find dangers using Eq.

(7)

Optimize adaptive
oscillation using Eq.

(15)

Figure 5: Sparrow particle swarm algorithm flow chart.

Table 1: Initialization of SPSA parameters.

Parameters Symbol Value
Warning value ST 0.6
Scrounger ratio JD 0.3
Producer ratio PD 0.7
+e proportion of sparrows who are aware of the danger SD 0.2
Total group number G 30
Number of iterations M 1000
Maximum speed V 5
Minimum speed V 1
Maximum number of cycles Tmax 10
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optimization algorithm is O(M × N × D) considering the
worst case. +e complexity of adaptive variable speed es-
cape search is O(S D × M × N × D), and the computa-
tional complexity of path simplification and smoothing is
O(D) only for the final converged minimum value path.
Since the SPSA does not improve the structure of the
sparrow algorithm, the maximum computational com-
plexity is O(N × D × A × B + M × N × D), so the compu-
tational complexity of this SPSA is O(N × D × A×

B + M × N × D). It shows that the SPSA also has a fast
convergence rate.

6.2. Analysis of Experimental Results. To verify the effect of
the simplified node on the path, the experimental results are
shown in Figure 6. +e red line is the trajectory curve of the
path without the simplified node after three times of spline
interpolation, and the blue line is the curve after three times
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Figure 7: Comparison of path planning trajectories of different algorithms in environment 1.
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of spline interpolation after the simplified node. It can be
seen that there is almost no oscillation in the x-axis and
y-axis directions, and there is oscillation in the z-axis direction
for the nodes of the un-simplified path, which shows that the
simplified path is more suitable as the flight path of the UAV.

It can be seen in Figures 7–9 that the SPSA has better
convergence than other algorithms. +e SSA has better
smoothness than the paths planned by CSO, DE, GWO, and

PSO algorithms, which all show different degrees of oscil-
lation, and the altitude of the flight trajectory keeps changing
with less smoothness. Oscillation optimizes and simplifies
the nodes, improves the smoothness of the trajectory, and is
more suitable for smooth operation as a UAV. +e fitness
values of SPSA in Figures 10–12 can converge to the optimal
value faster than other algorithms. For the presence of
different obstacles in the UAV-specific constrained
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Figure 8: Comparison of path planning trajectories of different algorithms in environment 2.
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environment, increasing the influence of the start-end line
on the producer strengthens the searchability of the indi-
viduals near the start-end line, leading to a path that can
converge quickly.+e SPSA has significantly better results in
the first iteration due to the start-end line guidance, which
makes the path shorter than other algorithms. For the
stability of the actual UAV flight path, the adaptive oscil-
lation optimization makes it possible that there is no ex-
cessive distance difference between two adjacent path nodes,
making the path length much shorter and achieving better
results than other algorithms.+e exploration of the optimal

path is avoided by oscillatory optimization to avoid missing
the optimal path. Figures 13–15 show that the SPSA is highly
robust in different environments.

From the mean, worst, optimal, and standard deviation
of different algorithms in Table 2, we can see that the CSO
algorithm has the worst convergence effect in path planning.
Because in the CSO algorithm, there are differences in the
routes between each individual, the smooth paths may be
affected by other paths leading to oscillations instead of easy
convergence. DE algorithm, PSO algorithm, and SSA have
better convergence effect as the iteration increases, and the
iterative oscillation of the path makes it difficult to converge
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Figure 10: Adaptation of different algorithms in environment 1
with iterations.
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with iterations.
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with iterations.
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Figure 15: Comparison of the results of path planning in environment 3.

Table 2: Simulation results of various algorithms.

CSO DE GWO PSO SSA SPSA
Mean 6201.82 4408.46 3763.38 4676.34 2686.43 2008.42
Worst 6756.89 4938.99 3973.66 5128.23 2993.09 2009.55
Optimal 4970.68 3907.56 3421.28 4427.57 2614.56 2006.73
Standard 413.09 243.01 83.02 218.58 127.61 0.89
Mean 6271.97 4233.72 3718.73 4710.89 2882.40 2043.68
Worst 6854.16 4781.97 4160.03 5323.78 4895.46 2057.16
Optimal 5105.15 3757.25 3291.77 4304.02 2616.61 2028.70
Standard 465.75 244.00 177.03 233.50 631.23 8.10
Mean 6221.22 4562.37 3958.70 4683.83 2784.55 2004.95
Worst 6702.69 6625.81 6902.46 5182.99 3081.59 2024.60
Optimal 5251.67 3473.63 3294.27 4143.35 2525.77 1999.51
Standard 381.40 752.85 578.59 297.68 183.07 5.84
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to a better path. By comparison, the SPSA has better con-
vergence stability and the lowest fitness value due to the
directional nature of the path search, which strengthens
the ability of individuals to search near the start-end line.
+e smoothness of the paths is improved by continuously
optimizing the paths and avoiding the oscillating paths from
interfering with the convergence of subsequent paths.

7. Conclusions

+e traditional SSA algorithm is suitable for the optimization
search algorithm performed in an unconstrained environ-
ment. In the real environment, various environmental factors
will affect the SSA algorithm planning path, resulting in poor
convergence of the algorithm and loss of more individuals. To
address this situation, strengthening the search efficiency and
improving the path smoothing are the main problems that
need to be solved for UAV path planning. In this study, we
combine the sparrow search algorithm and particle swarm
algorithm to propose the SPSA, and the main contributions of
this study are as follows:

(1) Path initialization has a guiding role in the con-
vergence of the subsequent algorithm. +e
next node’s range is calculated according to the
spatial geometry, and then, the node that can
be moved within the range is randomly selected as
the next node.+is method avoids the interference
of the initialization path trajectory oscillation
on the convergence of the subsequent algorithm
and can ensure the search capability of the
algorithm.

(2) Position update of the producer.+e start-end line as
the globally optimal path, combined with the particle
swarm algorithm, improves the position update of
the producer in the sparrow particle swarm algo-
rithm, strengthening the searchability of the algo-
rithm near the start-end line.

(3) +e searchability of discovering dangerous indi-
viduals. Due to the existence of Â+ in the position
update formula of the sparrow found to be dan-
gerous in the algorithm, the path may not reach the
target point and lose the searched individuals. In-
spired by the particle swarm algorithm, a variable
speed escape search method is proposed to improve
the sparrow search algorithm when the next node is
unreachable, improve the path’s exploration ability,
and reduce the loss of the searched individuals.

(4) Adaptive oscillation optimization. For the ran-
domness on path selection resulting in oscillation, an
adaptive oscillation optimization method is pro-
posed to reduce the interference of path oscillation to
the subsequent path search and improve the
smoothness of the path.

(5) Simplify node and smoothing processing. Node
optimization can reduce the path turning points and
improve the smoothness of the path, making the path
suitable as the actual flight trajectory of the UAV.

+rough simulation experiments, it can be concluded that
the sparrow particle swarm algorithm has better convergence
and stronger searchability in complex environments, and the
smoothed path is suitable as the flight path of the UAV.
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