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Evaluating the performance assessments of solvers (e.g., for computation programs), known as the solver benchmarking problem,
has become a topic of intense study, and various approaches have been discussed in the literature. Such a variety of approaches
exist because a benchmark problem is essentially a multicriteria problem. In particular, the appropriate multicriteria decision-
making problem can correspond naturally to each benchmark problem and vice versa. In this study, to solve the solver
benchmarking problem, we apply the ranking-theory method recently proposed for solving multicriteria decision-making
problems. (e benchmarking problem of differential evolution algorithms was considered for a case study to illustrate the ability
of the proposedmethod.(is problem was solved using ranking methods from different areas of origin.(e comparisons revealed
that the proposed method is competitive and can be successfully used to solve benchmarking problems and obtain relevant
engineering decisions. (is study can help practitioners and researchers use multicriteria decision-making approaches for
benchmarking problems in different areas, particularly software benchmarking.

1. Introduction

Recently, evaluating the performance of solvers (e.g., com-
puter programs), that is, the problem of solver benchmarking,
has attracted significant attention from scientists. Currently,
most benchmarking tests produce tables that present the
performance of each solver for each problem according to a
specified evaluation metric (e.g., the central processing unit
(CPU) time and number of function evaluations) and use
various statistical tests for the conclusions. (us, the selection
of the benchmarking method currently depends on the
subjective tastes and preferences of individual researchers.
(e following components of the benchmarking process,
including the solver set, problem set, metric for performance
assessment, and statistical tools for data processing, are
chosen individually according to the researcher’s preferences.
For example, the performance profile method, which is
currently the most popular and widely used method in
practice (see [1]), is based on a comparative analysis of
empirical probability distribution functions obtained in nu-
merical experiments with different solvers.

In this study, we consider the benchmarking process
based on the viewpoint that emphasizes natural relations
between problems and solvers, as determined by their
evaluation tables (see [2]). Specifically, we present data for
benchmarking in the form of a so-called benchmarking
context, that is, a triple 〈S, P, J〉, where S and P are sets of
solvers and problems, respectively, and J: S × P⟶ R is an
assessment function (a performance evaluation metric).
(roughout the paper, the sets of solvers and problems are
assumed to be finite. (is concept is quite general and
emphasizes that problems, solvers, and assessment functions
must be considered closely related and not independent.

(e benchmarking procedure presented in this study is
described as follows. (e data encapsulated by the given
benchmarking context 〈S, P, J〉 are used to build the cor-
responding multicriteria decision-making (MCDM) prob-
lem 〈A, C〉, where A � S is a set of alternatives, and
C � J(·, p)|p ∈ P  is a set of criteria. Hence, we define a
decision matrix as a matrix whose elements exhibit the
performance of different alternatives (i.e., solvers) con-
cerning various criteria (i.e., problems) through the
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assessment function. (us, the investigation of bench-
marking problems was reduced to an MCDM problem.
Moreover, for each MCDM problem, a corresponding
benchmark context is presented. (e rationale for such a
consideration is that a vast array of different approaches for
MCDM problems can be used for benchmarking problem
analysis. In particular, such a multicriteria formulation al-
lows the consideration of Pareto-optimal alternatives (i.e.,
solvers) as “good” solvers.

(e next innovation presented in this study is that a
recently proposed technique (see [3]) is used to solve the
MCDM problem corresponding to a benchmarking prob-
lem. (e multicriteria formulation is a typical starting point
for theoretical and practical analyses of decision-making
problems to clarify the essence of the new technique used in
this study. Correspondingly, based on the fundamental
concept of Pareto optimality, several methods and com-
putational procedures have been developed to solve MCDM
problems (see, e.g., overviews by [4–8], and more recently,
[9–11]). However, unlike single-objective optimizations, a
characteristic feature of Pareto optimality is that the set of
Pareto-optimal alternatives is typically large. In addition, all
these Pareto-optimal alternatives must be considered
mathematically equal (equally “good”). Correspondingly,
the problem of choosing a specific Pareto-optimal alterna-
tive for implementation arises because the final decision
must usually be unique. Hence, additional factors must be
considered to aid decision-makers in selecting specific or
more favorable alternatives from the set of Pareto-optimal
solutions.

(erefore, we build a special score matrix for theMCDM
problem, which allows us to construct the corresponding
ranking for alternatives [3]. (e score matrix can be built in
different ways, but we use the simplest and most natural
method. (is study uses a scoring matrix calculating how
many times one alternative is better than another according
to the criteria. Hence, the proposed approach may yield an
“objective” ranking method and provide an “accurate”
ranking of the alternatives for MCDM. Correspondingly, a
best-ranked alternative from the Pareto set is declared a
“true” solution to the MCDM problem. (e approach
presented in this study for solvingMCDMproblems is useful
when no decision-making authority is available or when the
relative importance of various criteria has not been previ-
ously evaluated.

Finally, we demonstrate the possibilities of the proposed
method in a case study based on the computational and
experimental results for benchmarking differential evolution
(DE) algorithms presented by Sala et al. [12]. Specifically, we
benchmark nine DE algorithms on a set of 50 test problems,
following the random sampling equivalent expected run
time (ERTRSE) performance metric. By conducting a nu-
merical investigation, we demonstrate that the solution
results of the MCDM problem obtained using the methods
proposed in this study are quite competitive.

1.1. Contributions. (is paper makes the following main
contributions:

(1) (e concept of the benchmarking context is intro-
duced according to [2], and it is confirmed that a
one-to-one correspondence exists between the set of
benchmarking contexts and the set of MCDM
problems

(2) (e ranking-theory approach is proposed for solving
MCDM problems corresponding to a given bench-
marking context [3]

(3) (e approach proposed in this article is tested on a
known literature dataset for benchmarking DE al-
gorithms (see [12]), and the possibility of effectively
solving benchmarking problems is fully confirmed

1.2. Related Literature. Without claiming to be a complete
review, we present a brief overview of the literature on the
benchmarking problem in the context of optimization
problems. Generally, the consideration of a benchmarking
problem is motivated by various reasons, such as selecting
the best solver (algorithm, software, etc.) for some class of
problems, testing the proposed novel solvers, and eval-
uating the solver performance for different option set-
tings. For example, early contributions in the
benchmarking of optimization algorithms are considered
[13]. (e results achieved at an early stage in the devel-
opment of the subject can be judged according to work by
the following researchers: Nash and Nocedal [14], Billups
et al. [15], Conn et al. [16], Sandu et al. [17], Mittelmann
[18], Vanderbei and Shanno [19], and Bondarenko et al.
[20].

(e beginning of a new stage of development is asso-
ciated with research work of Dolan andMoré [21], in which
a performance profile comparison technique was proposed.
(is technique is now prevalent (but see, e.g., Gould and
Scott [22]). Along with the performance profile comparison
method, other more direct approaches have also been used
in modern research. An idea of the modern research in the
area under consideration can be obtained from the fol-
lowing research examples: Moles et al. [23], Mittelmann
[24], Benson et al. [25], Kämpf et al. [26], Foster et al. [27],
Rios and Sahinidis [28], Weise et al. [29], Sala et al. [12],
and Cheshmi et al. [30]. A critical overview of the current
state in the subject area was provided by Beiranvand et al.
[1].

At the end of this brief overview, this study focuses on
benchmarking for solvers of only the optimization prob-
lem. However, the concept of benchmarking has a much
broader context (see, e.g., https://en.wikipedia.org/wiki/
Benchmarking). (e approach proposed in this article is
quite general and can also be applied in other areas, but we
do not consider this possibility here.
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1.3. Notation. (roughout the article, the following general
notation is used: N is a set of natural numbers, and for a
natural number n ∈ N, we denote an n-dimensional vector
space byRn and ‖ · ‖p is the lp − norm inRn. If not otherwise
mentioned, we identify a finite set A with set
N(n) � 1, . . . , n{ }, where n � |A| is the capacity of set A. We
also introduce the following notations for special vectors and
sets: for any n ∈ N: 0n � (0, . . . , 0)√√√√√√√√

n

∈ Rn, 1n �

(1, . . . , 1)√√√√√√√√
n

∈ Rn,Δn � ξ ∈ Rn
+| 

n
k�1 ξk , Δ∘n � Δn ∩ intRn

+,

and Rn
+ ⊂ R

n is a positive orthant. By necessity, we also
identify the matrix Π ∈ Rn×m with the map
Π: N(n) × N(m)⟶ R. For a matrix Π ∈ Rn×m, we denote
its transpose by ΠT ∈ Rm×n.

1.4. Outline. (e remainder of this paper is structured as
follows. In Section 2, all necessary theoretical preliminaries
regarding the MCDM problem (Section 2.1) and ranking-
theory methods for solving MCDM problems are presented
(Section 2.2). Section 3 introduces the concept of bench-
marking contexts, and its relationship with the MCDM
problem is discussed. In Section 4, the case-study problem of
DE algorithm benchmarking is investigated numerically.
Finally, the conclusions are presented in Section 5.

2. Methodology

2.1. Multicriteria Decision-Making Problems. We use the
following notation from the general theory of multicriteria
optimization theory [31]. We consider the MCDM problem
〈A, C〉, where A � a1, . . . , am  is a set of alternatives, and
C � c1, . . . , cn  is a set of criteria, that is,
ci: A⟶ R, i � 1, . . . , n. Hence, we introduce the following
decision matrix:

X �

x11 x12 · · · x1n

x21 x22 · · · x2n

⋮ ⋮ ⋱ ⋮

xm1 xm2 · · · xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where xij � cj(ai) is the performance measure of alternative
i ∈ N(m) on criterion j ∈ N(n). Without loss of generality,
we assume that the lower value is preferable for each cri-
terion (i.e., each criterion is not beneficial; see [32]), and the
goal of the decision-making procedure is to minimize all
criteria simultaneously. Furthermore, A is the set of ad-
missible alternatives, and map c

→
� (c1, . . . , cn): A⟶ Rn

is the criterion map (correspondingly, c
→

(A) ⊂ Rn is the set
of admissible values of criteria). A point
ξI

� (ξI
1, . . . , ξI

n) ∈ Rn, where ξI
j � mina∈Acj(a), j ∈ N(n), is

called the ideal point. An ideal point is considered attainable
if alternative aI ∈ A exists such that ξI

� c
→

(aI). (e fol-
lowing concepts are also associated with the criterion map
and set of alternatives. An alternative a∗ ∈ A is Pareto-
optimal (efficient) if a ∈ A exists such that cj(a)≤ cj(a∗) for
all j ∈ N(n) and ck(a)< ck(a∗) for some k ∈ N(n). (e set of
all efficient alternatives is denoted as Ae and is called the

Pareto set. Correspondingly, f(Ae) is called an efficient
front.

Pareto optimality is an appropriate concept for solutions
to MCDM problems in general. However, the set Ae of
Pareto-optimal alternatives is very large, and all alternatives
from Ae must be considered “equally good solutions.”
However, the final decision must be unique. Hence, addi-
tional factors must be considered to aid in selecting specific
or more favorable alternatives from the set Ae. We cannot
provide a detailed analysis of these methods; however, in-
terested readers can become acquainted with them through
overviews [4–8]. Furthermore, we consider only the method
proposed by Gogodze [3] without diminishing the value of
more classical methods.

2.2. Ranking Methods and ,eir Applications to MCDM
Problems. (is section provides a brief overview of the basic
concepts of the ranking theory (e.g., see [33] for further
details) and presents the necessary formal definitions. For a
natural number N, the matrix S � [Sij], 1≤ i, j≤N is a score
matrix if Sij ≥ 0, Sii � 0, 1≤ i, j≤N, and the pair (N(N), S) is
the ranking problem. We assume (conditionally) that the
elements of N(N) are athletes (or sports teams) who
compete in matches between themselves. Moreover, M(i, j)

denotes a joint match for each pair of athletes
(i, j), 1≤ i, j≤N, and we interpret entry Sij, 1≤ i, j≤N, of
matrix S as the total score of athlete i against athlete j in
match M(i, j). In addition, athlete i scored against athlete j

in match M(i, j) if Sij > 0, and athlete i has beaten athlete j in
match M(i, j) if Sij > Sji. Based on the introduced notation,
we define the following quantities:

G � S + S
T
, i.e., G � G(S) � Gij(S) ,

Gij(S) � Sij + Sji, 1≤ i, j≤N;

g(S) � g1(S), . . . , gN(S)( ,

gi(S) � 
N

j�1
Gij(S), 1≤ i≤N.

(2)

(e weak order on the set N(N) is transitive and the
complete relation R ⊂ N(N) × N(N). (e relation
RN(S) ⊂ N(N) × N(N) is a ranking method if, for any given
ranking problem (N(N), S), RN(S) is a weak order on the
set N(N). Any vector r � (r1, . . . , rN) ∈ RN can be con-
sidered a rating vector for elements of N(N), in the sense
that each ri, 1≤ i≤N, can be interpreted as a measure of the
performance of player i ∈ N(N). For the ranking problem
(N(N), S), a ranking method RN(S) is induced by the rating
vector r ∈ RN if (i, j) ∈ RN(S) (i.e., RN(S) ranks i weakly
above j) if and only if ri ≥ rj.

For illustrative purposes, we consider only a few of the
many ranking methods discussed in the literature. All of
these methods are induced by their corresponding rating
vectors. (e considered ranking methods originate from
different areas, such as athlete/team ranking in sports, ci-
tation indices, and website ranking. Hence, all of these reflect
some (intuitive as a rule) human experience regarding the
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solution concept of the ranking problem. A brief overview of
the ranking methods in this article is provided in Appendix.

We can unite all the information described above and
demonstrate that, for anyMCDMproblem, we can construct
the necessary matrices (e.g., S, P(S), andA(S)) and,
therefore, apply a suitable ranking method for the MCDM
problem solution. To simplify the perception of the con-
structions described below, we use sports terminology. We
assume that 〈A, C〉 is an MCDM problem (see Section 2.1)

with a set of alternatives A � a1, . . . , am  and a set of
nonbeneficial criteria C � c1, . . . , cn  and that the decision-
making goal is to minimize the criteria simultaneously. We
imagine that the number of athletes is N � m for con-
structing matrix S and that they are competing in an
n-athlon (i.e., each match M(i · j) includes competitions in
n different disciplines, 1≤ i, j≤ n). For illustrative purposes,
we introduce the simplest method for score calculation:

Sij � 
k∈N(n)

s
k
ij,where s

k
ij �

1, ck ai( < ck aj 

0, ck ai( ≥ ck aj 

⎧⎪⎨

⎪⎩
, k ∈ N(n), i, j ∈ N(m). (3)

(us, for criterion k ∈ N(n), the equality sk
ij � 1 means

that ck(ai)< ck(aj) and the alternative ai (i.e., athlete
i ∈ N(m)) receives one point (i.e., athlete i ∈ N(m) wins the
competition in discipline k ∈ N(n)). Correspondingly, Sij

indicates the number of total wins of athlete i ∈ N(m) in
match M(i, j)). (us, m≥ Sij ≥ 0, Sii � 0,∀ i, j ∈ N(m). An
alternative ai (athlete i ∈ N(m)) has defeated an alternative
aj (athlete j ∈ N(m)) if Sij > Sji. In addition, the result of
match M(i, j) is Sij wins by athlete i ∈ N(m) (losses
of athlete j ∈ N(m)), Sji wins of athlete j ∈ N(m) (losses of
athlete i ∈ N(m)), and the number of draws is
(m − Sij − Sji). (e constructed matrix S � [Sij], 1≤ i, j≤m,
is the score matrix for a set of alternatives.

(us, we can define an auxiliary matrix
Π(S) � [Πij(S)], 1≤ i, j≤m, where

Πij(S) �
Sij +

m − Sij − Sji 

2
, i≠ j;

0, i � j;

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, ∀i, j ∈ N(m).

(4)

Furthermore, using matrix Π(S) and a well-known
transformation, we can construct a (row) stochastic matrix
P � P(S) as follows: P(S) � Λ(Π(S)1m + π(S))− 1Π(S)+

π(S)ξT, where a vector ξ ∈�Δm (usually ξ � (1/m)1m), and
π(S) � (π1(S), . . . , πm(S)) is a vector defined as follows:

πi(S) �
1, if i

th row of Π(S) is 0m,

0, otherwise.

⎧⎨

⎩ (5)

(e introduced matrix Π(S) can be interpreted as an
adjacency matrix for a directed graph Γ(A, C) (associated
with the MCDM problem 〈A, C〉), called the adjacency
matrix for the MCDM problem 〈A, C〉. Correspondingly,
matrix P(S) can be interpreted as a transition probability
matrix for the Markov chain determined by the graph
Γ(A, C). Moreover, we can construct a reciprocal matrix of
pairwise comparisons A(S) � [aij], i, j � 1, . . . , m, for the
MCDM problem 〈A, C〉 as follows:

aij �

exp Πij −
m

2
  i≠ j;

1, i � j;

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, i, j � 1, . . . , m. (6)

Subject to the facts presented in this section, the fol-
lowing procedure for solving the MCDM problem under
consideration, 〈A, C〉, can be formulated:

(i) For the MCDM problem 〈A, C〉, the score matrix
S � [Sij], 1≤ i, j≤m, is constructed

(ii) Using the score matrix S, the alternatives from set A

are ranked using a ranking method R

(R ∈ RS, RN, RB, RC, RK, RPF, RGM, . . . , ; see, e.g.,
Appendix)

(iii) (e alternative from the Pareto set, Ae, ranked best
by method R is declared the R solution of the
considered MCDM problem

3. Benchmarking Problem

We consider a set P of problems, a set S of solvers, and a
function J: S × P⟶ R, the assessment function (perfor-
mance metric). (e terms “solver,” “problem,” and “as-
sessment function” are used conditionally only to simplify
interpretation, although this is not generally necessary (and,
as we observe below, can even lead to terminological in-
consistency). Furthermore, we assume for definiteness that
the high and low values of J correspond to the worst and best
cases, respectively, and for convenience, we interpret J(s, p)

as the cost of solving the problem p ∈ P by the solver s ∈ S.
Moreover, the following conditions are assumed:

(i) Slover s ∈ S solves problem p ∈ P better than solver
s∗ ∈ S, if J(s, p)< J(s∗, p)

(ii) Problem p ∈ P is easier for solver s ∈ S than problem
p∗ ∈ P, if J(s, p)< J(s, p∗)

(us, we can introduce the following definition, which is
sufficient for many real-world applications.
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Definition 1. A triple 〈S, P, J〉 is in the (solvers) bench-
marking context if and only if S and P are the finite sets
(called a set of solvers and set of problems, respectively),
J: S × P⟶ R is a function (called the assessment function,
or performance evaluation metric), and the following as-
sumptions hold:

(A0) P � N(n), S � N(m),

(A1) J(s, p)≥ 0,∀(s, p) ∈ S × P.
 (7)

(e presented concept is quite general and, as men-
tioned, emphasizes that the set of solvers, set of problems,
and assessment function must be considered closely related
objects for the benchmarking goal and not independently.
Assumption (A0) establishes that sets S andP have sizes
m, n ∈ N, respectively, and Assumption (A1) establishes the
nonnegativity of the assessment function. Moreover, be-
cause sets S andP are finite, Condition (A1) does not limit
the generality of our considerations. Generally, the selection
of a benchmarking context 〈S, P, J〉 component is based on
the research questions motivated by a benchmarking
analysis goal. However, the choice of sets S andP is often a
disputable issue in the practice of certain applications. In
contrast, the situation is relatively straightforward in
choosing the assessment function, J, at least in computer
science (see, e.g., [34]). For example, the following indicators
are often used in this case: running time (e.g., the CPU time
[35]), reliability (i.e., the solver’s ability to successfully solve
several problems, such as the success rate [36]), and others.
Moreover, the case when assessment, J, is a mapping in
Rl, where l ∈ N (i.e., it is a multiple criterion), also can be
considered but we do not delve into this issue. Next, we
consider the benchmarking context 〈S, P, J〉 as given, and
introduce the following definition:

Definition 2. For a given (solver) benchmarking context
〈S, P, J〉, we define function J∗: P × S⟶ R as follows:
J∗(p, s) � J(s, p), ∀p ∈ P,∀s ∈ S. We call J∗ the adjoint (to J)
assessment function, and 〈P, S, J∗〉 is the adjoint to the 〈S, P, J〉

benchmarking context or problem benchmarking context
(corresponding to the solver benchmarking context 〈S, P, J〉).

Definition 2 is easily validated as correct (i.e., J∗ is the
assessment function in the sense of Definition 1). Termi-
nological inconsistency appears, as noted above. In the
benchmarking context 〈P, S, J∗〉, the set of solvers is set P,
which is the set of problems in the sense of the bench-
marking context 〈S, P, J〉. We hope that this does not create
any problems in understanding the text below.

We assume now that a benchmarking context 〈S, P, J〉 is
given and build a corresponding MCDM problem 〈A, C〉 as
follows: A � S is a set of alternatives, and
C � cp|p ∈ P , cp(·) � J(·, p): A⟶ R,∀p ∈ P is a set of
criteria. Hence, we define the decision matrix as a matrix
whose elements exhibit the performance of different alter-
natives (i.e., solvers) with respect to various criteria (i.e.,
problems) through the assessment function. From Property
(A1), cp(s)≥ 0∀s ∈ S, 0∀p ∈ P In contrast, we assume that
〈A, C〉, where A � a1, . . . , am  and C � c1, . . . , cn , is a
given MCDM problem such that ck(a)≥ 0∀a ∈

A � N(n) and∀k ∈ N(n) � C. Hence, for P � N(n), S �

N(m), and J(i, k) � ck(ai)∀i ∈ N(n),∀k ∈ N(n), triplet
〈S, P, J〉 is a benchmarking context corresponding to the
MCDM problem 〈A, C〉. (e correspondences described
above are one-to-one and reciprocal.(us, we prove that the
following proposition holds.

Proposition 1. One-to-one mapping exists between the
benchmarking contexts and MCDM problems with nonneg-
ative criteria.

To summarize the results of this section and achieve
greater clarity in the presentation, we formulated the proposed
approach to solving benchmarking problems in an algorithmic
form. Furthermore, we assumed that the considered bench-
marking problem has already been formalized as a bench-
marking context 〈S, P, J〉, where S is a set of solvers, P is a set
of problems, and J is an assessment function. ,e flowchart of
the algorithm is presented in Figure 1. All elements of the
Pareto set, Ae, are considered equally “good” solvers (in the
sense of Pareto optimality). However, the R ranking allows
detailed classification to define the “best of the good,” “worst of
the good,” and other intermediate “good” solvers.

4. Case Study: Benchmarking Differential
Evolution Algorithms

4.1.Data. In this section, we focus on an illustrative example
of the proposed approach in Section 2. Our consideration is
based on the results of numerical experiments borrowed
from Sala et al. [12], where nine optimization DE algorithms
and 25 test functions were considered (see Table 1) for a
short description of the test functions. (e set of solvers in
the benchmarking problem under consideration is the set of
the following algorithms:

(i) S1-DE: rand/1/bin differential evolution [37],
(ii) S2-DE2: best/2/bin differential evolution [38],
(iii) S3-jDE: self-adapting differential evolution [39],
(iv) S4-JADE: adaptive differential evolution [40],
(v) S5-SaDE: strategy adaptation differential evolution

[41],
(vi) S6-epsDE: ensemble parameter differential evo-

lution [42],
(vii) S7-CoDe: composite trial vector strategy differ-

ential evolution [43],
(viii) S8-SQG: stochastic quasigradient search [44], and
(ix) S9-SQG-DE: stochastic quasigradient-based dif-

ferential evolution [12].

(us, S � S1, . . . , S9  is a set of solvers. (e set of
problems P � P1, . . . , P50  comprises 50 problems, and
each problem is defined by the dimension indicator d �

30, 50 and by the test function types F1, . . . , F25, as listed in
Table 2.

A description of the assessment function used by Sala
et al. [12] is as follows: first, the expected running time
(ERT), a widely used performance metric for optimization
algorithms, is defined as follows:
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Input: Benchmarking context <S, P, J>.

Initialization: The MCDM problem <A(S), C(P, J)>, where A(S) = S and

C(P, J) = {cp | p ∈ P}, cp(·) = J (·, p) : A → ℝ, ∀ p ∈ P, is introduced.

Step 1: For the MCDM problem <A(S), C(P, J)>, the Pareto-set, Ae ⊂ A(S)
isdefined.

Step 2: For the MCDM problem <A(S), C(P, J)>, the score matrix S = [Sij],
1 ≤ i, j ≤ m, is constructed.

Step 3: An appropriate ranking method R is chosen (see, e.g., Annex A).

Step 4: Using the score matrix S, the alternatives from set A are ranked using
ranking method R.

Output: The alternatives from the Pareto set, Ae, ranked using method R are
declared the R solutions of the benchmarking problem <A(S), C(P, J)>.

Figure 1: Algorithm flowchart for solving a benchmarking problem.

Table 1: Test functions.

Short description
F1 Shifted sphere function
F2 Shifted Schwefel’s problem 1.2
F3 Shifted rotated high conditioned elliptic function
F4 Shifted Schwefel’s problem 1.2 (with noise in fitness function)
F5 Schwefel’s problem 2.6 with the global optimum on the bounds
F6 Shifted Rosenbrock’s function
F7 Shifted rotated Griewank’s function
F8 Shifted rotated Ackley’s function (with the global optimum on the bounds)
F9 Shifted Rastrigin’s function
F10 Shifted rotated Rastrigin’s function
F11 Shifted rotated Weierstrass function
F12 Schwefel’s problem 2.13
F13 Expanded extended Griewank’s plus Rosenbrock’s function
F14 Shifted rotated expanded Schaffer’s F6
F15 Hybrid composition function
F16 Rotated hybrid composition function
F17 Rotated hybrid composition function (with noise in fitness function)
F18 Rotated hybrid composition function
F19 Rotated hybrid composition functions (with the global optimum on the bounds)
F20 Rotated hybrid composition function (with a narrow basin for the global optimum)
F21 Rotated hybrid composition function
F22 Rotated hybrid composition function (with a high condition number matrix)
F23 Noncontinuous rotated hybrid composition function
F24 Rotated hybrid composition function
F25 Rotated hybrid composition function
Note: F1, . . ., F25 are the test functions. Source: Sala et al. [12].

Table 2: Problem description.

Problem Dim-
on

Test
function Problem Dim-

on
Test

function Problem Dim-
on

Test
function Problem Dim-

on
Test

function Problem Dim-
on

Test
function

P1 30 F1 P11 30 F11 P21 30 F21 P31 50 F6 P41 50 F16
P2 30 F2 P12 30 F12 P22 30 F22 P32 50 F7 P42 50 F17
P3 30 F3 P13 30 F13 P23 30 F23 P33 50 F8 P43 50 F18
P4 30 F4 P14 30 F14 P24 30 F24 P34 50 F9 P44 50 F19
P5 30 F5 P15 30 F15 P25 30 F25 P35 50 F10 P45 50 F20
P6 30 F6 P16 30 F16 P26 50 F1 P36 50 F11 P46 50 F21
P7 30 F7 P17 30 F17 P27 50 F2 P37 50 F12 P47 50 F22
P8 30 F8 P18 30 F18 P28 50 F3 P38 50 F13 P48 50 F23
P9 30 F9 P19 30 F19 P29 50 F4 P39 50 F14 P49 50 F24
P10 30 F10 P20 30 F20 P30 50 F5 P40 50 F15 P50 50 F25
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ERT(τ) � mean Mτ(  +
1 − q

q
Nmax,

q �
Nsucces

Ntotal
,

(8)

where τ indicates a reference threshold value, Mτ is the
number of function evaluations required to reach an ob-
jective value better than τ (e.g., successful runs), Nmax de-
notes the maximum number of function evaluations per
optimization run,Nsucces represents the number of successful
runs, Ntotal is the total number of runs, and q denotes the
named success rate [45]. (e ERT is interpreted as the
expected number of function evaluations of an algorithm to
reach an objective function threshold for the first time. A
threshold or success criterion is required for the ERT per-
formance measure. However, unlike conventional optimi-
zation problems (where the ERT criterion is usually related
to reaching the value of the known global optimum within a
specified tolerance), the probability of coming close to the
global optimum is negligible for difficult optimization
problems, and a more acceptable alternative success crite-
rion is required. Moreover, all compared algorithms must
meet the success criterion a few times to compare qualitative
performance using ERT for difficult optimization problems.
Correspondingly, Sala et al. [12] used the success criterion to
reach the target value corresponding to the expected value of
the best objective function value from the uniform random
sampling (1000 samples). Next, the estimation of the ex-
pected objective value ERSE(f) for test function f is based on
100 repetitions. Finally, the ERT with respect to this ob-
jective function value limit was referred to as ERTRSE for test
function f. (e dataset of ERTRSE estimations [12] for the
above-described solvers and problems is presented in
Table 3.

(us, the benchmarking context 〈S, P, J〉, where
S � s1, . . . , s9 , P � p1, . . . , p50 , and J is the ERTRSE as-
sessment, is fully defined. Hence, in Section 3, the MCDM
problem associated with the benchmarking problem under
consideration is fully defined with a set of alternatives A �

S � N(9) a set of (nonbeneficial) criteriaC � P � N(50), and
a primary decision matrix obtained by transposing the
matrix/table presented in Table 3, which is the transposed
primary decision matrix Z � [zij], i ∈ N(9), j ∈ N(50), for
writing convenience. Hence, the MCDM problem associated
with the benchmarking context 〈S, P, J〉 (i.e., the solver
benchmarking problem) is fully defined. (e benchmarking
context 〈P, S, J∗〉 is analogously defined, where the as-
sessment function J∗ is obtained based on the decision
matrix Z∗ (which is the transpose of the decision matrix Z

defined above). Hence, the MCDM problem associated with
this benchmarking context (i.e., the benchmark problem for
the problems) is also fully defined.

4.2. Calculation Results. In this section, we present a brief
description of the calculation results (all calculations related
to the case study were calculated in the MATLAB envi-
ronment using standard equipment: laptop with 2.59GHz,

8GB RAM, and a 64 bit operation system and required a few
seconds (4.87 s for the solver benchmarking and 5.04 s for
the problem benchmarking for calculating all considered
rankings without special code optimization measures). First,
we consider the solver benchmarking problem and explain
the construction of the normalized decision matrix by
transforming the primary dataset (see, e.g., [32]).

For the primary decision matrix Z � [zij], we define the
normalized decision matrix X � [xij] asxij � (zij − lj)/
(uj − lj) where uj � maxi∈N(9) zij , lj � mini∈N(9) zij ,

j ∈ N(50). For the solver benchmarking problem, we con-
sider all criteria to be nonbeneficial (i.e., minimizable). We
consider a solver to be better if it solves a given problem in
less time (ERTRSE).

To illustrate this, we present the score matrix for the
solver benchmarking problem in Table 4. Table 5 presents
the obtained RS, RN, RB, RC, RK, RPF, andRGM ranks for the
solver benchmarking problem.

Analogously, we consider the problem benchmarking
but define the normalized decision matrix X � [xij] as
follows: xij � (z∗ij − l∗j )/(u∗j − l∗j ) where u∗j � maxi∈N(50)

z∗ij , l∗j � mini∈N(50) z∗ij , and Z∗ � [z∗ij], is the corre-
sponding primary decision matrix. For the benchmarking
problem, we also assume that all criteria are nonbeneficial
(i.e., minimizable). Again, a problem is better (i.e., easier) for
a given solver if it is solved in less time (ERTRSE) by this
solver. Table 6 presents the RS, RN, RB, RC, RK,

RPF, andRGM ranks for the problem benchmarking (the
score matrix for the problem benchmarking is not
presented).

4.3. Discussion. As Table 5 indicates, the results of solver
ranking using the considered methods (RS, RN, RB,

RC, RK, RPF, andRGM) are somewhat similar. (is obser-
vation was confirmed quantitatively by considering the
Spearman correlations between ranks (Table 7), where the
correlations of the solver ranks for the RS, RN, RB,

RC, RK, RPF, andRGM rankings are presented. As Table 7
demonstrates, the RS, RN, RB, RC, RK, RPF, andRGM ranks
are strongly correlated with each other. Analogously, Table 8
reflects the interrelation between ranks for problem
benchmarking. In particular, RS, RN, RB, RC, RK,

RPF, andRGM ranks are strongly correlated with each other.
Regarding the results of the correlation analysis, the

observed similarity of the ranking results for
RS, RN, RB, RC, RK, RPF, andRGM ranking methods appears
very intriguing, given that these methods have completely
different areas of origin and underlying ideas (see the
corresponding scholium in Appendix). It is interesting to
consider the Pareto optimization results (see the solvers and
problems marked in gray in Table 5 and 4, respectively). In
particular, from Table 5, all considered solvers were Pareto-
optimal (i.e., they are considered “equally good” in the
considered benchmarking context). We believe that this is
due to the large (compared to the number of solvers)
number of problems (i.e., too many criteria exist in the
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corresponding MCDM problem) and, accordingly, each
solver is good in “its own way.” However, ranking methods
enable the establishment of an appropriate hierarchy among

solvers. Analogously, Table 6 demonstrates that Pareto-
optimal problems are allocated to different groups or
clusters, indicating similar problems belonging to the same

Table 3: ERTRSE metric.

S1 S2 S3 S4 S5 S6 S7 S8 S9
P1 11657 24049 491 264 329 904 606 202 168
P2 7401 11567 739 309 379 894 3653 137 318
P3 6536 32763 606 356 519 1148 1045 135 210
P4 6182 13326 570 285 342 662 1712 694 310
P5 4342 4766 536 311 527 871 564 459 160
P6 7404 11728 491 234 315 807 603 124 168
P7 256 124 482 310 596 879 169 32365 107
P8 2877 3011 1783 2084 2673 2720 2082 132 2771
P9 15735 24058 467 269 380 818 726 126 193
P10 11658 24054 474 256 320 850 630 201 172
P11 2414 1555 1967 1502 1321 1541 1979 368 1949
P12 1072 934 509 342 416 931 594 128 225
P13 15709 10150 524 224 231 723 898 161 289
P14 7497 19174 2735 1735 1509 2366 6379 6899 1658
P15 437 373 668 366 565 857 458 1016 185
P16 2999 11671 490 335 615 689 616 219 179
P17 6925 11670 514 362 572 845 693 9096 178
P18 1017 1036 501 314 460 741 341 263 143
P19 1271 1045 533 317 551 836 389 259 148
P20 1190 1098 491 315 545 1039 384 284 154
P21 9466 24251 498 253 327 901 597 301 175
P22 2433 2889 489 281 389 730 602 13320 202
P23 13650 24194 474 254 325 802 586 664 181
P24 7785 4449 544 272 376 911 573 10183 187
P25 220 115 445 304 554 855 167 5321 109
P26 19030 9054 439 205 254 674 579 192 178
P27 9055 8145 572 316 388 908 2135 127 296
P28 3819 10317 514 289 455 764 566 121 145
P29 19059 10175 538 341 434 920 2931 1332 310
P30 9173 19040 568 294 366 964 1418 451 214
P31 11557 13327 491 235 244 831 609 132 182
P32 394 187 443 289 536 884 231 24041 109
P33 1732 2347 2098 1792 2724 2522 2740 117 1960
P34 15719 19060 482 245 295 845 738 123 194
P35 24071 24059 456 235 306 739 661 169 188
P36 2024 2568 2187 1324 1814 1825 1675 347 1331
P37 1183 1263 560 340 418 1132 774 119 224
P38 7381 9057 514 227 193 604 1139 145 336
P39 7476 15824 1792 1310 1198 1296 3482 4706 1808
P40 341 291 557 354 556 852 331 205 173
P41 7506 11568 495 320 487 738 593 260 156
P42 11585 32369 640 327 515 794 809 5743 192
P43 10264 19135 631 319 380 1071 892 352 226
P44 24351 7387 511 290 389 866 728 307 210
P45 19307 13407 533 321 372 915 794 380 227
P46 13571 9089 486 243 320 871 605 325 176
P47 3311 5068 564 291 431 755 724 19048 153
P48 7468 7544 483 248 333 880 590 537 170
P49 15709 13335 498 231 245 784 688 8170 201
P50 304 163 488 315 552 1038 210 13368 109
Note: S1, . . ., S9 are solvers, P1, . . ., P50 are problems, and ERTRSE metric is assessment function (as described in the main text of the article, see Section 4.1).
Source: Sala et al. [12].
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Table 4: Score matrix for the solver benchmarking problem.

0 30 8 5 7 7 2 9 1
20 0 7 5 7 7 8 8 1
42 43 0 1 10 46 40 17 2
45 45 49 0 46 49 44 24 9
43 43 40 4 0 49 39 20 6
43 43 4 1 1 0 12 15 3
48 42 10 6 11 38 0 14 1
41 42 33 26 30 35 36 0 17
49 49 48 41 44 47 49 33 0

Table 5: Solver ranking using the proposed methods.

Ranking
RS RN RB RC RK RPF RGM

S1 8 9 8 8 8 8 8
S2 9 8 9 9 9 9 9
S3 5 5 5 5 5 5 5
S4 2 2 2 3 3 2 2
S5 4 4 4 4 4 3 4
S6 7 7 7 7 7 7 7
S7 6 6 6 6 6 6 6
S8 3 3 3 2 2 4 3
S9 1 1 1 1 1 1 1
Note: the Pareto-optimal solvers are gray marked.

Table 6: Problem ranking using the proposed methods.

Ranking
RS RN RB RC RK RPF RGM

P1 24 25 25 25 27 25 24
P2 38 37 37 40 38 37 38
P3 42 43 42 43 43 41 42
P4 34 34 34 35 34 35 34
P5 26 26 26 27 26 26 25
P6 4 4 4 7 6 3 4
P7 7 7 7 5 5 7 7
P8 45 44 45 48 45 46 45
P9 25 24 24 24 23 23 26
P10 18 16 18 12 14 18 18
P11 47 47 47 47 47 45 47
P12 22 23 22 28 25 21 22
P13 20 20 20 18 17 22 20
P14 50 50 50 50 50 50 50
P15 33 32 33 31 32 32 33
P16 27 27 27 23 24 28 27
P17 37 38 38 36 36 38 37
P18 3 3 3 4 4 4 3
P19 9 12 9 15 13 11 9
P20 13 15 13 14 15 15 13
P21 29 30 29 26 30 29 29
P22 14 14 14 22 16 13 14
P23 23 21 23 21 22 24 23
P24 31 31 31 32 31 33 31
P25 2 2 2 2 2 2 2
P26 1 1 1 1 1 1 1
P27 36 36 36 38 37 36 36
P28 6 6 6 6 7 6 6
P29 48 48 48 44 48 48 48
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clusters. Ranking methods also make it possible to establish
an appropriate hierarchy among the problems.

Summarizing the results of the case-study investigation,
we conclude the following:

(i) (e results of the calculations (Table 5) confirm that
the SQG-DE algorithm (solver S9) is the best in the
considered benchmarking context (for comparison,
see [12]), and this conclusion is correct for all
rankings used in this study, despite their quite dif-
ferent natures. Moreover, the worst results are DE2

(solver S2) according to all considered ranking
methods, excluding Neustadt’s method, and DE
(solver S1) according to Neustadt’s ranking method.

(ii) Unlike Sala et al. [12], where the analysis of the
problems was not carried out, our calculations also
indicate (Table 6) that the best problems in the
considered benchmarking context (in the sense of a
lower value of the considered metric) are the shifted
sphere function in Dimension 50 (problem 26) and
the rotated hybrid composition function in

Table 6: Continued.

Ranking
RS RN RB RC RK RPF RGM

P30 39 39 39 37 39 39 39
P31 8 8 8 11 10 8 8
P32 5 5 5 3 3 5 5
P33 44 40 44 49 42 42 44
P34 19 19 19 19 19 20 19
P35 17 13 17 8 11 17 17
P36 46 46 46 45 46 47 46
P37 32 33 32 33 33 27 32
P38 11 9 11 9 8 14 11
P39 49 49 49 46 49 49 49
P40 16 18 16 20 20 10 15
P41 21 22 21 16 21 19 21
P42 41 41 41 42 41 43 41
P43 43 45 43 41 44 44 43
P44 35 35 35 34 35 34 35
P45 40 42 40 39 40 40 40
P46 15 17 15 17 18 16 16
P47 28 28 28 30 29 31 28
P48 10 11 10 13 12 12 10
P49 30 29 30 29 28 30 30
P50 12 10 12 10 9 9 12
Note: the Pareto-optimal problems are gray marked.

Table 7: Spearman correlations for the solver benchmarking problem.

Ranks RS RN RB RC RK RPF RGM

RS 1
RN 0.983 1
RB 0.999 0.983 1
RC 0.983 0.967 0.983 1
RK 0.983 0.967 0.983 0.999 1
RPF 0.983 0.967 0.983 0.950 0.950 1
RGM 0.999 0.983 0.999 0.983 0.983 0.983 1

Table 8: Spearman correlations for the benchmarking problem.

Ranks RS RN RB RC RK RPF RGM

RS 1
RN 0.996 1
RB 0.999 0.996 1
RC 0.977 0.980 0.977 1
RK 0.990 0.996 0.991 0.989 1
RPF 0.993 0.989 0.993 0.968 0.982 1
RGM 0.999 0.995 0.999 0.977 0.990 0.993 1
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Dimension 30 (problem 25). Accordingly, the worst
ones are the shifted rotated expanded Schaffer’s
function 6 in Dimension 30 (problem P14), and the
next worst ones are the shifted rotated Ackley’s
function in Dimension 50 (problem P33) (by the
Colley ranking method) and the shifted rotated
expanded Schaffer’s function 6 in Dimension 50
(problem P39) (for all other considered ranking
methods).

We stress that these results were obtained using only the
ranking-theory methods without an analysis of any statis-
tical indicators of the assessment function values, as cur-
rently practiced (see, e.g., the related literature overview in
the Introduction section).

5. Conclusions

In this study, we presented a new MCDM technique for
solving decision-making problems for benchmarking. Our
investigation was based on the concept of a benchmarking
context, presented in detail, and the observation that a
benchmarking problem is an MCDM problem. Corre-
spondingly, to solve benchmarking problems successfully,
an extensive array of MCDM methods can be used. We also
presented a new approach to the MCDM problem solution
based on the ranking-theory methods. (e corresponding
ranks are obtained by constructing a special score matrix.
We emphasize that this method defines the appropriate
ranks directly from the decision matrix and does not use
preliminary assessments conducted by external experts or
other methods. (erefore, the technique presented in this
study is useful when the relative importance of various
criteria has not been evaluated in advance. As a case study,
the benchmarking problem of DE algorithms was consid-
ered based on the data presented by Sala et al. [12]. A detailed
numerical investigation was conducted using various
ranking methods. Moreover, these ranks were also corre-
spondingly compared for solvers and problems. (e results
demonstrate that the method presented in this study is
competitive and generates relevant solutions.

Referring to the analysis presented in this study, we
conclude the following:

(i) (e results of applying MCDM methods to aid
benchmarking problem solutions based on the
proposed approach are encouraging.

(ii) (e proposed approach provides a constructive
view of the benchmarking problem solution,
identifying the “best” and “worst” cases and or-
dering all intermediate cases.

(iii) (e proposed approach is easily implementable
because of its simplicity and flexibility. Moreover,
the approach is sufficiently general and can be
successfully used to investigate benchmarking
problems in other application areas.

However, this study has limitations because we provided
a tool for benchmarking only in the case in which the
benchmarking context is given (i.e., when the sets of solvers

(problems), problems (solvers), and performance metrics
are given). However, issues regarding selecting bench-
marking context components remain unresolved. (e lit-
erature does not contain clear and direct recommendations
regarding the correct selection of solvers, problems, and
performance metrics. Hence, further investigation in this
direction will be helpful.

Appendix

A. Ranking Methods

Let us assume that the ranking problem (N(N), S) is given
and considered as examples the following rating methods
(see notations and concepts in Section 2.2) for it.

A.1. Score Method. (e rating vector for the score method
rS � (rS

1, . . . , rS
N) ∈ RN is defined as the average score:

r
S
i � 

N

j�1

Sij

gi(S)
, 1≤ i≤N, (A.1)

and ranking defined by rating vector rS will be call RS rank.

A.2. Neustadt’sMethod. Neustadt’s rating vector rN ∈ RN is
defined by the equality rN � SrS, where S � [Sij],
Sij � (Sij/gi(S)), 1≤ i, j≤N and ranking defined by rating
vector rN will be call RN rank.

A.3. Buchholz’sMethod. Buchholz’s rating vector (the score,
Neustadt, and Buchholz methods were used in practice of
chess tournament, and go back to the investigations of
H. Neustadt, E. Zermelo, and B. Buchholz, for more details
see [33]) rB ∈ RN is defined by the equality

r
B

� G(S) + EN r
S
, (A.2)

where G(S) � [Gij(S)], Gij(S) � (Gij(S)/gi(S)), 1≤ i, j≤N,
and ranking defined by rating vector rB will be call RB rank.

A.4. ColleyMethod. We describe the Colley method (Colley,
W., Colley’s college football ranking method, https://www.
colleyrankings.com/, (accessed 12.08.2020)) as follows: let N

be the number of athletes/teams,wi is the number of wins for
athletes/team i, li is the number of losses for athlete/team i,

ni is the total number of games played by athletes/team i,

and nij is the number of times athlete/teams i, j played,
i, j � 1, . . . , N. From these data, the following objects can be
introduced: the Colley matrix, C � [Cij]i,j�1,...,N, and the
Colley vector vC � (vC

1 , . . . , vC
N), where

Cij �

2 + ni, i � j,

−nij , i≠ j,

⎧⎪⎨

⎪⎩

v
C
i � 1 +

1
2

wi − li( , i, j � 1, . . . , N.

(A.3)
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Now, using score matrix S � [Sij], 1≤ i, j≤N, we define
quantities wi, li, ni, nij as follows:

wi � 
N

j�1
χ Sij − Sji , li � 

N

j�1
χ Sji − Sij ,

nij � χ Sij − Sji  + χ Sji − Sij .

(A.4)

1≤ i, j≤N and, obviously, ni � wi + li � j�

1Nnij, 1≤ i, j≤N. (e Colley rating vector, rC, is obtained as

a solution of the equation CrC � vC, and the ranking defined
by rating vector rC is called RC rank.

A.5.KeenerMethod. We describe the Keener method [46] as
follows: let N be the number of athletes/teams and
S � [Sij], i, j � 1, . . . , N is the corresponding score matrix.
Keener matrix K � [Kij]i.j�1,...,N is defined as follows:

Kij �

κ
1 + Sij

2 + Sij + Sji

  if teams i and j played each other

0 otherwise

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, i, j � 1, . . . , N, (A.5)

where

κ(x) �
1
2

+
1
2
sgn x −

1
2

 
�������
|2x − 1|


. (A.6)

Correspondingly, the rating vector for the Keener
method rK is obtained as a solution of the eigenvalue
problem KrK � λrK and the ranking defined by rating vector
rK is called RK rank.

A.6. Analytical Hierarchy Process. (e analytical hierarchy
process (AHP) is a well-known decision-making method [47].
Many modifications of this method exist, but we restrict
ourselves to considering only two of them: AHP Perron–
Frobenius version (AHPPF) and AHP geometric mean version
(AHPGM), which are briefly described below. A main problem
related to AHP is the inconsistency problem (of a pairwise
comparison matrix). We will not discuss this problem here
because of its technical nature. (erefore, we consider AHP
only as a procedure for constructing a rating vector. Let us
assume again that N is the number of athletes/teams, which
should be ranked based on the score matrix
S � [Sij], i, j � 1, . . . , N. We also assume that the scorematrix
S allows the construction of a matrix A � A(S) which is the
reciprocal matrix of pairwise comparisons. Recall that matrix
A � [aij], i, j � 1, . . . , N, is called the reciprocal matrix of
pairwise comparisons if it has the following properties:
aij > 0, aii � 1, aij � a−1

ji , ∀i, j ∈ 1, . . . , m{ }. Note also that for
a positive reciprocal matrixA, its principal eigenvalue λmax has
following properties: λmax ≥ n and if λmax ≠ n we have an in-
consistency problem.(eAHPPF rating vector rPF is defined as
the solution to the eigenvalue problem: ArPF � λmaxr

PF, with
the principal eigenvalue λmax, and the corresponding ranking is
called RPF rank. At the other hand, the AHPGM rating vector
rGM � (rGM

1 , . . . , rGM
m ) is defined as follows:

r
GM
i �

���������������



m

j�1
aij, 1≤ i≤m,

m




(A.7)

and corresponding ranking will be call RGM rank.
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