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Premature ventricular contractions (PVCs) are one of the most common cardiovascular diseases with high risk to a large
population of patients. It has been shown that supervised learning algorithms can detect PVCs from beat-level ECG data.
However, a huge human effort is needed in order to achieve an accurate detection rate. A convolutional autoencoder was trained
in this work in an unsupervised fashion to extract features automatically with zero prior specialized knowledge. Random forest
was adopted as a supervised algorithm trained on the features generated by the autoencoder. Various active learning selection
strategies, uncertainty-based and diversity-based, were studied on top of the random forest. In each iteration of active learning, the
training data are updated with newly selected samples and fed into the classifier. (e performance on an independent validation
set is recorded in each iteration. As a result, among the different uncertainty sampling strategies, the least confidence score shows a
better F1 score of 0.85 than other methods. In between the two diversity-based strategies, the representative clustering sample had
the best F1 score than the k-center-greedy algorithm. By comparing the performance of different active learning methods trained
on half of the original data size with the same classifier trained on the full set, the F1 score of least confidence is still better than the
full set. (is study demonstrates that active learning could help reduce human annotation effort by achieving the same level of
performance as the classifier trained on the fully annotated training data.

1. Introduction

Premature ventricular contractions (PVCs) are one of the most
common arrhythmias that occur in a large population of
patients [1]. In a more serious case, when PVCs happen with
other cardiac risk factors concurrently, it could lead to many
extreme situations, like cardiac death or heart attack. Elec-
trocardiograms (ECG) are recognized as the most useful and
noninvasive technique for monitoring cardiac activity, within
which the monitoring of various arrhythmias are the main
tasks [2]. Also, it would be difficult for clinicians to recognize
PVCs fromECG if only a short period of ECG is provided since
the evaluation of PVCs needs a reference from neighbor ECG
segments. (erefore, it is desirable if one approach can au-
tomatically detect PVCs from just one beat of ECG.

Applying traditional machine learning algorithms on de-
tection of PVCs is one mainstream category, in which feature
engineering is themost important process in order to get better
performance. ECG morphological based features have been
proved to be useful. Geddes [3] applied the QRS complexity
length interval gap between the two R peaks, and the first-order
signal derivative of the signal as the manually selected features,
and then fed them into a tree-based classification algorithm.
However, to follow the same approach, in addition to the
annotation of PVCs, the PQRS annotation for each beat of the
ECG is also needed, which causes much more work for human
clinicians. In work [4], the author came up with a combination
of features from a different aspect. Besides the temporal fea-
tures, sparse signal decomposition is also adopted for each
segment of ECG. At the same time, human-design rules were
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also proposed as an additional filter for features. (e results
show that PVCs can be detected in a robust way compared to
just applying any signal aspect of the feature.

Within all the work above, domain knowledge is re-
quired to find themost plausible features. In recent years, the
deep learning algorithms have become the focus of the
research community. Due to their powerful classification
capabilities and end-to-end methods, deep learning does not
require tedious feature engineering to process the data.
Researchers only need to feed the raw data into a deep neural
network, and the network can extract the most important
features and achieve a better performance than traditional
algorithms. In [5], they used a convolutional autoencoder to
extract features and then fed the extracted feature list into
the random forest for the classification task. (e results
achieved over 90% accuracy over the whole patient cohort.

Despite traditional machine learning or deep neural
network, the success of one classifier highly depends on the
massive and accurate annotated training set, which requires
tremendous human effort.

Active learning has been brought into much research as a
novel idea due to its ability to achieve similar or better per-
formance using only half of the original data [6–8], where the
core idea behind active learning is to seek out the most in-
formative data samples to annotate. (e general process of
active learning starts with an initial well-labeled training set and
a data pool with no annotation. Classifiers are then trained on a
baseline set of training and each data sample from the data pool
will be evaluated by a pre-trained classifier. (e output
probability for each sample in the data pool will be used as the
input for the active learning selection strategy. Finally, selected
samples from the data pool will be transmitted to annotators to
obtain the exact label and then appended to the training set for
the second iteration of the training process. It is evident
throughout the whole workflow that the selection strategy is the
most important part of the active learning process [9].

Some of the main contributions of this study are listed as
follows:

(1) Overall framework: An active learning framework is
proposed to detect premature ventricular beats,
which reduced the workload and the cost of manual
labeling data. (e advantages of artificial intelligence
are creatively applied to biomedicine to help clini-
cians improve the accuracy of PVCs detection.

(2) Feature engineering: Convinced autoencoders are
designed to automatically extract features from data
without the prior knowledge of medical experts,
providing novel insights for feature engineering of
physiological data. After the extracted features are
input into the classifier, the results show that the
traditional machine learning methods have advan-
tages. Using convolutional autoencoders to extract
features is more convenient and fast than incorpo-
rating human annotation efforts.

(3) Data distribution: Initial training data distributions
were investigated, and in most cases, random sam-
pling of initial training data may not be sufficient to

represent the entire data set. We propose an alter-
native approach to initial training data and test the
impact of each approach.

(4) Selection strategy: In active learning, the selection
strategy is crucial. By comparing the selection
strategies, we put forward the selection strategies
suitable for PVC testing.

(is paper is organized as follows. Additional related
work is reported in Section 2. Methods and the entire design
of the work are reported in Section 3. A comprehensive
illustration of the work is given in Section 4. Finally, the
discussion section of this paper is in Section 5 and the
conclusion is presented in Section 6.

2. Related Work

2.1. Traditional Machine Learning. Active learning has
attracted a lot of spotlight in the machine learning com-
munity. Different selection strategies have proven to be
useful in many tasks, which were designed from different
perspectives. When considering uncertainty, the uncertainty
is calculated based on output probability from the initiation
classifier. When it comes to diversity, many geometry-based
approaches are proposed. (e core idea behind them is to
calculate the distance between samples in the unlabeled pool
and then select the data points that represent the entire
distribution of the data pool. Many state-of-art methods
have been proposed. In [10], the author took the selection
strategy as the k-cover problem, which is the solution to find
the best k data point out of the whole data pool. While the k-
cover problem is NP-hard and has been proven, the authors
tried a k-greedy algorithm to simulate the k-cover problem.
Reference [11] proposed a novel way by building an auxiliary
model to estimate the loss for each input, by which those
samples with higher loss will be selected for annotation in
each iteration. (ese works examine the data distribution of
active learning, but these advanced active learning tech-
niques have not been explored in physiological research.

2.2. Traditional Selection Strategies. Traditional selection
strategies for active learning in ECG data have been pursued
recently. Reference [12] applied active learning as an ef-
fective approach for finding the most relevant signals with
motion artifacts in order to accurately classify the human
activity, in which only 16% of the original training data is
used. In [13], active learning is used mainly to produce more
generalizable training data among the patient cohort rather
than reducing the human annotation effort. (e authors
adopted a global recurrent neural network that captures the
time order of the input signal. (e selection strategy is based
on a combination of entropy index, model output, and
Premature-or-Escape-Flag index, which is temporal infor-
mation learned from the embedding layer of the model. At
the same time, the comparison between different selection
strategies [14–17] has not been investigated in the field of
physiological measurement research. In the biomedical area,
active learning was adopted as the strategy combined with
SVM trying to discriminate an ECG-based classification task
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[18]. In [19], a novel selection strategy called AIFT was
created.(e results show that the proposed method can help
improve the performance of classifying three biomedical
image classification tasks, with less human effort involved.
(ese works had contributed to the development of active
learning, and selection strategies suitable for PVCs have not
been studied.

2.3. Deep Learning Algorithms. Deep learning algorithms are
also being used to create active learning classifiers for ECG-
based classification tasks [20, 21]. In [22], a global recurrent
neural network was adopted for the purpose of ECG beat
classification. Morphological and temporal features for ECG
beats were investigated, and active learning was utilized to
select the most representative samples for training. As for the
work [23], a convolutional neural network was applied for the
wearable ECG classification. Breaking-ties and modified
breaking-ties algorithms were used with active learning si-
multaneously to improve model performance. ECG abnor-
malities with the convolutional neural network were studied in
[24]. Despite the noisy part, additional six arrhythmia events
within beat ECG were also detected. Active learning was also
planned in the procedure in order to deal with the unseen
pattern inside the original training data. Manually set decision
rules are used for PVCs detection in [25]. By identifying
statistical and rhythm rules, the PVC beats could be detected
with high accuracy. Electrocardiograms (ECG) data are a
powerful tool for reflecting cardiovascular events. Different
arrhythmias can be automatically detected through machine
learning algorithms. In the most recent work [26], the authors
proposed a deep learningmethod that can detect PVCswithout
any human annotation effort by localizing the PVC beats via
deep learning algorithms.

However, active learning for PVCs detection is not well
explored. (e above methods are not particularly good for
PVC detection. Firstly, there is a lack of research on ini-
tialization training data. Secondly, the above work is still
lacking in the extraction of data features. Moreover, most of
the work requires manual annotation of data, and sufficient
sample features cannot be extracted from small samples.
How to improve the accuracy with fewer data remains to be
studied. Finally, there was less research on active learning
selection strategies for those works. In particular, there are
few studies on the classification of active learning in
biomedicine.

3. Materials and Methods

Active learning algorithms are applied in PVCs for detection
in this paper. (e algorithm model comprehensively con-
siders data initialization, data feature extraction, and sam-
pling strategies. In order to improve the performance of the
original classifier, this paper uses k-means++ for initiali-
zation. In order to extract features better, this paper designs a
convolutional autoencoder. To fully study the impact of
sampling strategies on active learning, uncertain sampling
and diversity sampling were also studied.

3.1. Overview. Compared to related work, we hope to learn
from small samples, to reduce the workload of manual
annotation. In addition, in order to improve training ac-
curacy, we proposed an initialization method for training
data. To fully examine the data characteristics, we propose a
convolutional autoencoder. Finally, we comprehensively
examined selection strategies to improve the effectiveness of
active learning. (e overall flow of the framework is as
follows:

(1) Initial training data: we propose a training data
initialization method that is more suitable for PVC
detection, and the method is k-means++.

(2) Feature engineering: in this framework, we design a
convolutional autoencoder for feature engineering.
Self-convolutional encoders can learn the charac-
teristics of data by themselves to solve the problem of
low efficiency of manual annotation data sets.

(3) Data pool selection strategy: in this work, two main
aspects of the selection strategy, uncertainty and
diversity, were well explored in the task of PVCs
detection on beat-level ECG data. Uncertainty
sampling is discussed as follows:① Least confidence
sampling.②Margin sampling.③ Shannon entropy
sampling. Diversity sampling is discussed as follows:
① K-center-greedy sampling. ② Representative
cluster sampling.

(e process can be summarized as follows.
A convolutional autoencoder was trained to extract the

features automatically. (ese data-driven features are then
fed into a random forest classifier. During each iteration of
active learning, the same algorithm is trained on the updated
training data. (e overall framework is shown in Figure 1.

We first downloaded PVCs detection data sets from the
website, and these data sets have not been annotated by
experts. In the initial phase, we performed random initial-
ization and initialization of the K-means++ algorithm. (is
was done to study the impact of data initialization on the
effect of active learning. After the initialization algorithm is
complete, the active learning algorithm can select a portion
of the representative data. (is small part of the initialized
data is integrated into the initial subset. We hope that the
initial subset of the initialization algorithm can represent the
overall data distribution. A selected initial subset was
manually marked by oracle. After manually marking the
initial subset, we constructed a convolutional autoencoder to
extract features from the initial subset. In addition, these
features are trained using a random forest classification
algorithm. Before the initial data subset is trained, the
weights of the convolutional autoencoder and the random
forest classifier are randomly distributed.

Because we assume that the meaning of the initial data
subset is that a portion of the data represents the total data,
after training on the initial data subset, our convolutional
autoencoder and classifier may fully learn the characteristics
of the data set. In the next iteration of the algorithm, we need
to reassign a representative part of the data set to the oracle
for annotation. (erefore, in an iterative process, we first
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input the remaining unlabeled data into a convolutional
autoencoder and classifier for predictive classification. We
selected the data after classification using the uncertainty
sampling strategy and the diversity sampling strategy. We
call this data set an iterative subset. We resubmit data that
are difficult to classify to Oracle for labeling. After multiple
iterations, until the labeled data reaches half of the data pool,
the iteration ends.

(is paper presents a model from three aspects: training
data initialization, iterative process, and selection strategy
classifier.

3.2. Training Data Initialization. In most of the work, the
researcher tended to select the initial training set randomly.
At the same time, random selection might lead to the
skewness of model parameters due to a lack of the big picture
of all the training data. In this paper, we also propose a data
initiation approach, k-means++, to investigate whether it is
important to consider initiating the training set by design
versus selecting randomly. (e ultimate goal of k-means++
is to find the best subset that covers the whole big picture of
the original training data. A detailed description of the
significance of the results is presented in Table 1.

After data initialization is completed, feature engi-
neering is required for the data. Feature selection directly
affects the performance of the algorithm [27, 28]. Common
deep learning algorithms often require a large number of
classification tags, which need manual labeling. Manual
labeling of data is a huge workload, which is also a disad-
vantage of deep learning. In order to reduce manual labeling
data and fully extract features of small samples, we designed
a convolutional autoencoder. An autoencoder is one of the
most popular unsupervised neural network methods that
take the input data also as output data. (e fundamental
architecture of the autoencoder is a three-layer neural
network that includes an input layer, hidden layer, and

output layer. (e restrictions for the architecture are as
follows: (1) (e whole architecture is symmetric, being
connected by the hidden layer. (2) (e number of percep-
trons of input and output are identical. (3) (e number of
perceptrons of the hidden layer must be smaller than the
number of perceptrons of the input layer. By the “learning
myself” philosophy, as shown in equation (1), the autoen-
coder managed to get a usable representation of the original
input in a lower dimension from the hidden layer, and
minimize the distance between the input x and output z as
follows:

J(x, z) � ‖x − z‖
2
. (1)

However, the ability of the autoencoder to handle
complex real-world data is highly restricted if only the
traditional three-layer architecture is adopted. (e PVCs
data set is sequence information and the potential con-
nection between the data before and after cannot be ignored.
Traditional autoencoders use ordinary neural networks to
train data, which causes data stacking, and the context or
spatial information of the data is also ignored.(erefore, it is
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dataset

Data 
initialization Random

K-means++

Unlabeled 
data

Annotate

Oracle

Test subset

Least confidence

Margin sampling

Entropy sampling

K-center-greedy
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Iteration 
subset

Random forest

Figure 1: (e overview of the workflow.

Table 1: (e algorithm of k-means++.

Algorithm K-means ++
Input: Training data Z� (xi, yi), i� 1, . . ., N,

Number of selected centroids K.
initiation centroids� [one random selected points]
For j from 1 to K− 1

Distance← { }
For t from 1 to length (centroids)
compute distances of “point” in Z to centroids
and store the point P with minimum distance

End
centroids� centroids + P

End
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critical to design an autoencoder that can consider con-
textual information. As shown in the figure, the convolu-
tional autoencoder improves the traditional autoencoder.
Following the convolutional layer, linear rectification layer,
and pooling layer, the convolutional autoencoder retains the
spatial information of the PVCs data set. At the same time,
more variants of autoencoders were proposed [29, 30].
Among these, convolutional autoencoders are widely used.
Instead of importing raw data, the input data first go through
several layers of convolutional kernels for feature extraction.
(en, the extracted feature list is fed into a fully connected
hidden layer. As shown in Figure 2, in our study, the input
ECG recordings will go through a batch of one-dimensional
convolutional layers, and then the length of the latent layer is
set at 25. After that, the convolutional autoencoder makes
the difference between the input and output as small as
possible.

In this paper, each beat was extracted with the length of
250 data points, in which 89 samples were before the po-
sition of each R peak annotated by humans, and 160 after the
position of each R peak annotated. In the model aspect, the
dimension of latent space in the hidden layer is selected at
25, which has been proven to be sufficient to represent the
raw 250-length signal [5]. We use the mean squared error as
our loss function and Adam as the optimizer for the training
process, and a more detailed description of the model is
described in Table 2.

After the hyperparameters are set, the CAE is trained for
50 epochs at a batch size of 200.(e final weight is selected in
the epoch with the least loss during training, and this weight
is used for inference purposes only except in the experiment
in which a different approach of updating the weight of CAE
is applied. In Table 1, the output size column indicates the
number of samples.

3.3. IterativeProcess andSelectionStrategy. After the data are
initialized with K-means++, we also design a convolutional
autoencoder to extract features from the data. We will now
discuss the iterative process of active learning for each round
and the selection strategy for the iterative process.

As illustrated in Figure 3, active learning begins with
initial training data to obtain the intermediate model. (en
for each iteration, a batch of unlabeled data is selected
according to the output probability of the intermediate
model across the entire data pool, as illustrated in equation.

min
s1: s1| |≤b

Ex,y∼pz l x,y;As0∪s1( )[ ], (2)

where s0 and s1 are denoted as labeled data sets and unla-
beled data candidates, respectively, and b represents the
selected samples during each iteration. (e math behind
equation (2) is trying to select b samples from s1 which
results in a minimal loss based on the current intermediate
model.

Newly selected samples will be appended to the
training set and fed into the next iteration. An inde-
pendent validation set is used to evaluate the performance
of the model in each iteration. (e entire active learning

process stops when the performance on the validation set
is satisfied.

In each iteration of active learning, the selection strategy
determines the quality of the results of active learning.
(erefore, we discuss two types of sampling strategies,
namely, uncertainty sampling and diversity sampling.
Specific uncertainty sampling is discussed as follows: ①
Least confidence sampling. ② Margin sampling. ③ Shan-
non entropy sampling. Diversity sampling is discussed as
follows: ① K-center-greedy sampling. ② Representative
cluster sampling. (e discussion of different selection
strategies enables to design a framework that is more suitable
for the detection of PVCs.

As pool-based sampling strategies are the most widely
used, and when there is only one unlabeled sample in the
sample pool, it is equivalent to a stream-based sampling
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Flat
Latent

FC

De-
Cov2 De-

Cov1

Input Output

25 × 25
25 × 1 × 1 25 × 1 × 25

250 × 1 × 1

Figure 2: (e architecture of the convolutional autoencoder.

Table 2: A detailed description of the architecture of the con-
volutional autoencoder model.

Layer
number Layer name Kernel

size Output size

0 Input (−1, 250)
1 Reshape (−1, 250, 1)
2 Convolution1D 20 (−1, 25, 25)

3 Reshape (−1, 25, 25,
1)

4 Convolution2D (1, 20) (−1, 25, 1, 1)

5 Convolution2D
transpose (1, 20) (−1, 25, 1,

25)

6 Convolution2D
transpose (20, 1) (−1, 250, 1,

1)
7 Reshape/output (−1, 250)

Unlabeled pool
U

Machine 
learning model

L0
Labeled 

training set

Initial data

Feature map

Sampling 
strategy

Uncertainty 
or diversityOracle

L1
Labeled 

training set

Update data Train model

Figure 3: General workflow of active learning.
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strategy. (erefore, this article mainly studies this type of
sampling strategy, especially uncertainty sampling strategies
and differential sampling strategies.

A sampling strategy based on uncertainty is the most
widely applicable type of sampling strategy. (is sampling
strategy selects the classifier to mark the samples whose
predicted value of p is closest to 0.5. (e sampling strategy is
not only suitable for most classifiers; it effectively reduces the
workload of human experts and greatly improves classifier
accuracy and generalization abilities.

(e sampling strategy selects one or a batch of samples in
each iteration. We certainly hope that the information
provided by the sample inquired is comprehensive, and the
information provided by each sample is not repeated or
redundant, that is, there are certain differences between the
samples. In the case of extracting a single sample with the
largest amount of information in each iteration and adding it
to the training set, the model is retrained in each iteration, so
that the acquired knowledge is used in the evaluation of
sample uncertainty and can effectively avoid data redun-
dancy. But if you query a batch of samples for each iteration,
you should find ways to ensure the diversity of the samples
and avoid data redundancy. (is is the differential selection
strategy.

By using the least confidence strategy, in each iteration,
the learner will select samples which the intermediate model
is most unconfident about, as shown in equation (3), in
which Xnew represents all the data from the unlabeled pool.
For example, in a binary classification task class A and class
B, there are two different unlabeled data samples s1 and s2.
(e intermediate model predicts samples s1 with label A at a
probability of 0.9 and samples s2 with label A at a probability
of 0.5. (e least confidence strategy will select s2 and
transport it to the annotators for its actual label.

ϕLC(x) � 1 − Pθ y
∗
|xnew( . (3)

Although the least confidence has been proven to be
useful, it still has disadvantages when the model is only
unconfident in one class, which will lead to a data imbalance
problem. At the same time, the parameters in the inter-
mediate model will skew toward one class. Margin sampling
is capable of solving this problem. Instead of only focusing
on the probability of one class, margin sampling also cal-
culates the difference of probabilities between the first
possible label (yfirst in equation (4)) and the second possible
label (ysecond in equation (4)), as shown in equation (4). (e
sample with the least difference means the model is also
confused as to which label this sample truly belongs to.
(ose samples will be selected under this strategy.

Sampleselected � argminx P yfirst|xnew(  − P ysecond|xnew( ( .

(4)

Moving the margin sampling one step further, Shannon
entropy allows us to consider the probabilities from all the
possible classes in a classification task. In the field of in-
formation theory, entropy is a popular measurement of the
randomness of a system. In the study of active learning, for
each iteration, the Shannon entropy is calculated over all of

the predicted label probabilities, as shown in equation (5).
(e higher the entropy value, the more uncertainty there will
be. Under entropy sampling, samples with the highest en-
tropy value will be selected for the annotation process.

Sampleselected � argmaxx − 
i

p yi|xnew( log p yi|xnew( .

(5)

(e main idea behind K-center-greedy is to select K
points, which can represent the whole distribution of the
unlabeled data pool.(eK-center-greedymethod starts with
initiating the centroid with one randomly selected data
point. For each iteration, the centroid is updated by adding
the data point with the longest distance to the original
centroid. (e distance between one point and the centroid is
calculated based on its distance from the nearest center
point. Formally, we can denote existing pool s1, labeled set s0,
and a budget b for each iteration, then the idea of K-center-
greedy can be defined as follows :

min
s1: s1| |≤b

max
i

min
j∈s1∪s0
Δ xi, xj . (6)

Representative cluster sampling improves the K-center-
greedy by selecting new points from the margin of the classes
instead of from the whole data set. K-center-greedy has been
proven to be successful, but its performance can be con-
taminated if there are too many outliers in the data. By only
selecting new samples from the margin of each class, this
situation can be greatly alleviated.

3.4. Random Forest. A good classifier can greatly improve
the effectiveness of active learning. (erefore, a classifier
suitable for PVCs data is the core component of the entire
algorithm.

Random forest classifier is more commonly used for
medical data because of its remarkable ability to resist
training overfitting, which makes it a perfect choice for
downstream active learning approaches. Since the output
probability of the classifier is one major criterion for se-
lection strategies, bini impurity is used as the criteria for
splitting the nodes when the tree is building in this work.

(e overall algorithm flow of this paper is shown in
Table 3:

4. Results and Discussion

In this paper, we aimed to investigate the influence of
active learning in terms of PVCs detection in three as-
pects: Initiation training data creation, different selection
strategies, and different choices for updating the weights
for CAE. (is section presents the results of those
experiments.

4.1. Experiment Data. To evaluate the proposed approach,
we adopted the MIT-BIH arrhythmia database [26]. In this
database, 48 30-minute two-channel ECG recordings were
collected from 47 patients from 1975 to 1979. (ose re-
cordings were sampled at 360Hz. In the annotation aspect,
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both the QRS complexes are annotated automatically first
and then reviewed by a human expert, and beat-level ar-
rhythmia types are also annotated by human experts into ten
categories, in which normal beats and PVCs are the two
populated classes. In this paper, we used the first 20 re-
cordings, indexed from 100 to 125, as the training set and the
remaining 24 records, indexed from 200–234 as the testing
set. Figure 4(a) represents a normal ECG, and Figure 4(b)
represents an ECG of PVCs beat. Ventricular premature
beats occur before the sinus node impulse reaches the
ventricle, at any part of the ventricle or ectopic rhythm point
of the ventricular septum, and an electric pulse is sent out in
advance, causing ventricular depolarization, called ven-
tricular premature contraction, or PVC for short. (e
summary is: heart attacks resulting from untimely impulses
originating in the ventricles are the most common
arrhythmia.

(e data preprocessing procedure follows the same
method as in [5]. Each recording is split into beat-levels
according to the position of the labeled R peak. (e segment
is then constructed using 89 data points before the R peak
and 160 data points after. In this way, the input shape for the
downstream classifier is 250, in which the position of the R
peak is located at 90. A standard normalization is then
applied on each input of length 250 to obtain the new
segment with all data points valued between 0 and 1.

4.2. Evaluation Index. (e problems studied in this paper
belong to classification problems. (e common evaluation in-
dexes of classification problems include accuracy P, recall R, and
F1 score. (e confusion matrix is needed to calculate the above
indexes, and the confusion matrix [31] is shown in Table 4:

Accuracy is the score of the classifier correctly predicted
in all samples [32]. F1 value is a comprehensive consider-
ation of precision and recall, as shown in equation (7). It can
reflect the classification performance more comprehen-
sively, and so it is the main evaluation index to measure the
experimental effect in this paper.

accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 �
2∗ precision∗ recall
precision + recall

.

(7)

In the metrics presented above, although the accuracy
rate can judge the overall correct situation, it cannot be used
as a good indicator to measure the result when the sample is

Table 3: Overall algorithm flow of PVC detection.

Algorithm ALPVCsD
Input: Unlabeled data set Z� (xi, yi), i� 1, . . ., N,

Number of initial selected samples: K,
Number of samples selected during iteration: i.

Output: Labeled data set L� (aj, bj), j� 1, . . ., M (0<M<N),
Trained classifier model: random forest

Initialize: centroids� [one random selected points]
Z_len⟵ length (Z)
L_len⟵ length (L)
Feature extraction from data by self convolution encoder

For j from 1 to K− 1
Distance⟵ { }
For t from 1 to length (centroids)
compute distance of “point” in Z to centroids and store the point P with minimum distance

End centroids� centroids+P
End
L⟵L∪ centroids (annotated the K data by Oracal)
Z⟵Z\centroids
Z_len⟵Z_len –K
L_len⟵ L_len+K
Repeat:

Training random forest with centroids.
If the number of unlabeled data <1/2N:
Break

For t in Z
calculate the minimum confidence using equation (3) and store it in Q

End
P_data⟵ Sort Q and select the smallest 50 data
L⟵ L∪P_data
Z⟵Z\ P_data train random forest use the 50 labeled data
Z_len⟵Z_len – 50
L_len⟵ L_len+ 50

End
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not balanced. Precision and accuracy may seem similar, but
they are two entirely different concepts. Precision represents
the precision of the prediction in the positive sample results,
but the accuracy rate represents the overall correctness of the
prediction, including positive samples and negative samples.
(e recall rate is for our original sample, and it indicates how
many positive examples in the sample are predicted cor-
rectly. F1 scores are a harmonic measure of accuracy and
recall.

4.3. Experiment Setup. As the first step in active learning,
preparing the initial training set is crucial. In most of the
work, the initial training set is selected randomly. One
reason is that they ignored the importance of the training
data at the start point. Another realistic reason is that, in a
real-world situation, the chance of selecting the initial
training data is not always available in many tasks.

(e benchmark classifier maintained in the learning
module must have a certain classification accuracy.
Consequently, the benchmark classifier must be trained
initially before active learning. (e key to solving the
problem is how to construct a high-performance initial
training sample set. Overall, the initial training set se-
lected at random is not representative, and the initial
training set composed of representative samples is a
prerequisite for training a high-precision benchmark
classifier, and it can also speed up the active learning
process more effectively.

A method based on clustering or distance similarity
measurements is a common method for selecting

representative examples. K-medoids form an initial training
set; hierarchical clustering by example selection, K-means,
and other measures have accelerated the process of active
learning to varying degrees. (e classification surface of the
benchmark classifier is not far from the real classification
surface from the beginning, avoiding the situation wherein
the classification surface stays in the wrong direction for a
long time. However,K-medoids construct the initial training
set and hierarchical clustering sample selection is more
suitable for image processing.(e K-means method requires
a manual setting of K, which leads to inaccurate algorithms.

As described in the method section, in this paper, we
aimed to compare the difference between random initiation
and selection using k-means++.

Active learning starts with training the classifier on
initial training data. As with most work, the initial training
data are generated by random selection. In the paper, we
introduced an additional method called k-means++. (e k-
means++ algorithm can select the first K to initiate data
points, which can represent the distribution of the whole
data set, as described in the method section. (e results are
shown in Figure 5, where we observe that there is a difference
between random and k-means++. (e initial training data
size, which is 3000 in our study, is not large enough, which
makes the difference between the two distributions not as
huge as we expected. Another rational reason could be that
only the least confidence was incorporated, which may
introduce bias into this experiment. For the next steps of
active learning in this paper, k-means++ is adapted to
initiate the training data. However, in general, the accuracy,
recall rate, and F1 score of data initialization with the K-
means ++method are better than random initialization. As a
processing feature, in our convolutional autoencoder, the
dimensionality of the hidden space in the hidden layer is
assumed to be 25, which was shown to be sufficient to
represent the original signal of 250 length [5, 33]. We have
already introduced it in the section on convolutional
autoencoders.

Table 4: Confusion matrix of the classification problem.

Test positive Test negative
Condition positive True positive (TP) False negative (FN)
Condition negative False positive (FP) True negative (TN)

4

3

2

1

0

–1

0 50 100 150 200 250

(a)

3

2

1

0

–1

0 50 100 150 200 250

(b)

Figure 4: G Data preview of normal sinus rhythm and PVCs within one beat. (a) Normal beat. (b) PVC beat.
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As the most important part of active learning, different
selection strategies are well investigated in this experiment.
As described in the method section, the three most classical
strategies based on uncertainty sampling have been tested in
this experiment.

Uncertainty sampling is one important aspect in the
design of selection strategies. In this paper, we investigated
three classic uncertainty sampling methods: least confidence
sampling, margin sampling, and entropy sampling. Besides,
random sampling was also included as a control approach.
(e performance of each method is reported in Figure 6.
One thing worth noting is that there is an imbalance
problem in both training and testing data, in which normal
sinus rhythm has a higher prevalence. Instead of being
measured by accuracy, the F1 score is more appropriate in
this situation. We can observe that the least confidence and
margin sampling have similar performance across all

metrics. In terms of F1 score and sensitivity, the least
confidence and margin sampling have the best performance
than random sampling and entropy sampling. (is phe-
nomenon demonstrates that selecting a more informative
sample can help achieve a better performance than random
selection. Among all the four selection strategies, entropy
sampling has the least performance and is even worse than
random selection. (e most plausible reason is that entropy
sampling is more vulnerable to multiclass classification.
From a theoretical perspective, the least confidence and
margin sampling only focus on the classes with the best or
the second-best prediction probability. However, the en-
tropy sampling takes care of all the possible classes, which is
a huge imbalance in our data set.(is problem can be further
alleviated by narrowing down the task from multiclass
classification to binary because these three strategies were
proven to be theoretically equal in the binary tasks.
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Figure 5: Performance comparison of different data initialization methods.
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In addition to the uncertainty sampling, two geometry-
based selection strategies were also investigated in this paper,
k-center-greedy and representative cluster sampling.

Another important aspect of the active learning se-
lection strategy is diversity. We studied two different
approaches, k-center-greedy and its advanced version,
representative clustering sampling, as described in the
method section. (e results are reported in Figure 7. We
can observe that the representative clustering sampling
outperforms k-center-greedy in all the metrics, which is
expected. However, both methods are sampling K points
that can represent the whole original distribution. (e k-
center-greedy selects points from all the data sets, which
makes it more vulnerable to the outlier points. However,
the representative clustering sampling would calculate the
margin of each class and only select samples near the
margins, by which the outlier problem could be heavily
alleviated.

Uncertainty and diversity are two important aspects that
active learning methods are trying to capture. In this paper,
we studied five different selection strategies that cover both
uncertainty and diversity. In Table 5, we list the performance
of each strategy at the level of half of the original data being
trained.

As discussed before, the ultimate goal of active
learning is trying to reduce human annotation effort by
keeping a similar performance at the same time. In this
paper, we compared all the applied strategies trained on
half the size of the original data set with the performance
of the same classifier trained on the full data set. (e
results are displayed in Table 5. (e best F1 score is
achieved with the least confidence, which is even better
than training on the full data set, which demonstrates that
active learning can help reduce human annotation
without compromising on the performance. In terms of
sensitivity, the classifier trained on the full set has the
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Figure 6: Performance comparison between different uncertainty selection strategies.

10 Scientific Programming



lowest sensitivity value. One possible reason is that there
are too manypositive samples in the data set and too few
negative samples. (is reason is also proven by the
highest specificity achieved by the full set training. (is
phenomenon indicates that the classifier is better at
detecting normal sinus rhythms than PVCs.

(e fundamental idea behind active learning is to find
out the most informative samples from the original training
data, which can help the classifier achieve similar

performance with much less human effort involved. In the
study, as the comparison factor, we first train our model on
the whole training data set to be the reference for the
downstream experiment. Following the same strategy de-
scribed above, we can get similar results as [5]. (e results
are shown in Tables 6 and 7. Table 6 shows the represen-
tation of the two methods in the whole data set, and Table 7
shows the confounding matrix of the two methods on
different data sets. As shown in Table 6, our accuracy and
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Figure 7: Performance comparison between different diversity selection strategies.

Table 5: Each strategy was trained to perform at the level of half of the original data.

Random Least confidence Margin sampling Entropy sampling K-center-greedy Rep-cluster Train on the full data set
Accuracy 0.9068 0.8621 0.8485 0.8738 0.8648 0.8852 0.9385
Sensitivity 0.786 0.8470 0.8232 0.77267 0.81279 0.786 0.7704
Specificity 0.9106 0.8626 0.8493 0.8769 0.8663 0.8883 0.9562
F 1 score 0.8237 0.8547 0.8360 0.8215 0.8387 0.8341 0.8533
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specificity are both higher than the existing algorithms, and
the F1 score is not far from the existing algorithm. (e
experimental results show that our algorithm can indeed
play a significant role in PVCs detection of small samples.

5. Discussion

Since active learning engages with a large number of
unlabeled samples and a small number of labeled samples,
its advantages are evident in the advantages of traditional
supervised learning. (is paper conducts research on
MITʼs ECG data set. Research findings show that active
learning techniques can effectively reduce the number of
high-quality training samples required to build a classi-
fier. On the basis of not affecting the generalization
performance of the classifier, it can effectively reduce the
burden of human experts.

Nonetheless, the results of this research have certain
limitations. (ere are still many problems to be solved in the
design of sampling strategies, algorithm theory, and prac-
tical applications. First, from the perspective of the algo-
rithm architecture of this article, for new tasks how to select
new instances and label instances and which features are
selected to be labeled by human experts, in order for a highly
versatile selection strategy.

(ese problems are worthy of further study, and sec-
ondly, whether the classifier proposed in this article can be
replaced by a deep learning algorithm remains to be further
studied. An in-depth study of feature selection [34] and
classification algorithms will effectively improve the accu-
racy of recognition. Consequently, improvements to feature
algorithms are also our next research focus.

6. Conclusions

In the medical research area, massive human annotation
efforts are necessary in order to achieve higher detection
performance from supervised machine learning algorithms.
Active learning is a promising technique that utilizes the
output of a trivial classifier to select the most informative

samples for the request of annotation. By active learning,
similar performance could be achieved with much less
human annotation.

In this work, two main aspects of selection strategy,
uncertainty and diversity, were well explored in the task of
PVCs detection on beat-level ECG data. One convolu-
tional autoencoder was trained to extract the features
automatically. (ese data-driven features are then fed into
a random forest classifier. During each iteration of active
learning, the same algorithm is trained on the updated
training data. It can be seen from the experimental
resultsthat the F1 value of the least confidence sampling
algorithm is better thanother algorithms. In addition, by
comparing different active learning methods trained on
half of the original data size with the same classifier
trained on the full set, the performance of least confidence
is still better than the full set one, which demonstrates that
active learning works perfectly for the task.

Overall, the experimental effect and the sensitivity of
our method are higher than the existing algorithms,
demonstrating the superiority of active learning in PVC-
detecting techniques. In F1, active learning and existing
methods can fundamentally improve the efficiency of
relevant work. We will continue to improve our feature
engineering in the coming period, deeply studying the
distribution of data as we design our self-encoder, and
working to ensure that the impact of active learning ex-
ceeds that of the existing work.
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Table 6: (e performance of our method in the whole training data.

Accuracy PVCs sensitivity PVCs specificity PVCs F1 score

Full database Work at [5] 98.43 85.64 98.90 0.9179
Our approach 96.49 81.50 97.56 0.8881

Test set Work at [5] 87.80 86.65 88.09 0.8736
Our approach 93.85 77.04 95.62 0.8533

Table 7: Confusion matrix of two methods on different data sets.

Full data set Test data set
Work at [5] Our approach Work at [5] Our approach

True normal True PVC True normal True PVC True normal True PVC True normal True PVC
Detected normal 50483 299 93734 1266 50542 810 49943 1266
Detected PVC 559 3334 2283 5595 501 2823 2283 4249
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