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To automatically detect plastic gasket defects, a set of plastic gasket defect visual detection devices based on GoogLeNet Inception-
V2 transfer learning was designed and established in this study.*e GoogLeNet Inception-V2 deep convolutional neural network
(DCNN) was adopted to extract and classify the defect features of plastic gaskets to solve the problem of their numerous surface
defects and difficulty in extracting and classifying the features. Deep learning applications require a large amount of training data
to avoid model overfitting, but there are few datasets of plastic gasket defects. To address this issue, data augmentation was applied
to our dataset. Finally, the performance of the three convolutional neural networks was comprehensively compared. *e results
showed that the GoogLeNet Inception-V2 transfer learning model had a better performance in less time. It means it had higher
accuracy, reliability, and efficiency on the dataset used in this paper.

1. Introduction

Compared with metal gaskets, plastic gaskets have excellent
insulation, corrosion resistance, and nonmagnetic proper-
ties, and they are lightweight, which make them very
common in semiconductor, automobile, and aerospace
industries, interior decoration, and other fields. However, in
the production process, it leads to defective products because
of immature processes or imperfect production conditions.
To ensure the quality of their products, the manufacturer
needs to sort out the plastic gaskets and remove unqualified
products. Traditional plastic gasket sorting is mainly per-
formed by human eyes. Artificial visual observation and
sorting not only have low detection efficiency and high labor
intensity but are also prone to be affected by the subjective
factors of the testing personnel, resulting in false detection
and missing detection. Moreover, long-term manual de-
tection will cause certain damage to vision. In addition,
using a manual method is not conducive to database
management and storage.

Currently, noncontact detection is widely adopted with
great advances in imaging technology [1]. Surface defect
detection technology has been used in pharmaceutical

packaging, textile, leather, steel plate surface, and machine
part testing. Convolutional neural networks (CNNs) have
already been widely used in image recognition and classi-
fication because they can effectively extract data features [2].
In this respect, it is a bit like a soft sensor [3–5]. However, it
becomes a challenge to apply convolutional neural network
to directly detect and classify plastic gaskets for the wide
variety of plastic gasket defects, as shown in Figure 1. To
solve this problem, a pretrained network is applied to our
dataset which is composed of two types of plastic gaskets,
namely NG (the defective product) and OK (the undefective
product) based on the known technology transfer learning
[6, 7]. To meet the industrial requirements and realize the
automatic detection of the plastic gasket, one of the first
popular pretrained networks, “GoogLeNet Inception-V2
[8],” was applied. In this work, data augmentation [9] was
applied to our data (Section 5.1) to generate new images
from the original pictures. *e hyperparameters of this
model were then modified to fit our data. *e use of transfer
learning also saves a lot of model training time and reduces
the probability of model overfitting due to the few datasets.
In this paper, a GoogLeNet [10] classification network for
plastic gasket images is proposed (Section 4).
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In the following section, the current research status of
combining convolutional neural networks with various
disciplines to solve problems in the corresponding fields will
be discussed. *en, the design of the defect detection device
is introduced in Section 3. In Section 4, the software research
methods used in this study are described. In Section 5, the
experimental process is described, the experimental results
are analyzed, and the GoogLeNet Inception-V3 [11] and
MobileNet-V1 [12] are compared with the chosen deep
convolutional neural network (DCNN). Finally, Section 6
provides the conclusion.

2. Related Work

Research on image classification using the DCNN to solve
specific needs has been prominent [13–21], as shown in
Table 1. In Zhou et al.’s paper [15], a visual perception
technology (VPT) framework based on deep learning was
proposed, which relied on the image preprocessing (IP)
scheme and the DCNN WR-IPDCNN. *e framework was
based on the improved DCNN [22] of LeNet-5 [23] to mine
the newly established WR dataset, which significantly im-
proved the automation and intelligence level of steel wire
surface damage detection. *e work reported in

Apostolopoulos et al.’s paper [16] implemented VGG-19
[24], MobileNet-V2 [25], Inception [10], Xception [26], and
Inception ResNet-V2 [27] as a pretrained CNN [28] to detect
COVID-19 from X-ray images. Using COVID-19, bacterial
pneumonia, viral pneumonia, and health status images as
datasets, the pretrained DCNN was applied to case di-
chroism and triad classification. In Alqahtani et al.’s paper
[17], an autonomous method for the detection and classi-
fication of fatigue crack damage and the associated risk
assessment of machinery components that are often made of
ductile materials was proposed. *e underlying algorithms
in the proposed method were built upon the concept of the
DCNN, where the execution time is much less than the time
in visual inspection, and the detection and classification
process is expected to be significantly less error-prone than
that of visual inspection. In Fujioka et al.’s paper [18], the
DCNN was used to distinguish between benign and ma-
lignant lesions on the maximum intensity projection of
dynamic contrast-enhanced breast magnetic resonance
imaging (MRI), and the model showed comparable diag-
nostic performance. In Alencastre-Miranda et al.’s paper
[19], computer vision and deep learning networks were used
to select and plant healthy billets, which increased the plant
population and yield per hectare of sugarcane planting. In

Figure 1: *e first and second rows are the images without defects, whereas the third and fourth rows are the images with defects.
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this study, the DCNN and transfer learning were used to
process image datasets to extend the results to different
sugarcane varieties.

*e aforementioned studies proved that using the
DCNN for feature extraction and classification can be an
effective method that can be applied to different pro-
duction and living needs. In this study, based on machine
vision technology, DCNN transfer learning was used to
identify and classify plastic gasket surface defects to
produce automatic and intelligent detection of the
product.

3. Design of the Detection Device

*e front and left views of the plastic gasket are shown in
Figure 2. Plastic gasket products are prone to defects such as
scratches, cracks, unfilled corner, and pits. *ey are different
in form and have no obvious distribution. To improve the
detection efficiency and accuracy of the defect characteristics
and determine the actual detection requirements of the
products, a set of software and hardware devices for auto-
matic online detection and sorting of plastic gaskets based
on the machine vision was designed.

*e device was composed of a hardware and software
part.*e hardware part was divided into the main test bench
and subtest bench. *e details of the device are presented in
Figure 3 and Table 2. *e software part mainly includes the
software platform, image acquisition, and image processing
algorithms.

*e lower end face of the gasket was taken as the
detection object, and the detection method of the upper
end face was the same, so it was not repeated. Because the
image features collected from defective gaskets were
numerous and inconsistent, GoogLeNet [10] transfer
learning was used for image feature recognition and
sorting to meet the detection requirements. *e entire
process of plastic gasket defect detection and classification
is shown in Figure 4.

4. Gasket Defect Classification Based on
Transfer Learning

4.1. Problem Statement. *e original dataset used in this
study is shown in Figure 1. It was characterized by a wide
variety of defects, and some of them were difficult to dis-
tinguish from normal products. *erefore, the accuracy and
efficiency of the original manual detection method were
extremely low. However, deep learning can easily solve this
problem by automatically extracting features for image
recognition and classification. In addition, the transfer
learning method can greatly shorten the training model’s
time, make the model converge faster, and improve effi-
ciency. However, deep learning requires the use of a large
number of datasets for training, and because of the limi-
tations of conditions, the datasets were insufficient. *ere-
fore, we used the expanded the dataset (Section 5.1). In
addition, the amount of data in the expanded dataset was still
not enough. To prevent network overfitting caused by this,
the parameter of the dropout layer was set to 0.5.

4.2. Overview of the GoogLeNet Inception-V2 Structure.
GoogLeNet is a new deep learning structure proposed by
Szegedy in 2014 [10]. Prior to this, AlexNet [29], VGG-19,
and other structures all increased the depth of the network to
achieve better training, but the increased number of layers

Table 1: *e classification of the related works.

Characteristics Title
DCNN semantic segmentation
ecological protection

Semantic segmentation of major macroalgae in coastal environments using high-resolution
ground imagery and deep learning

Pretrained DCNN transfer learning
medical diagnosis

Detection of epileptic seizure using pretrained deep convolutional neural network and transfer
learning

COVID-19: automatic detection from X-ray images utilizing transfer learning with
convolutional neural networks

Deep learning enabled multiwavelength spatial coherence microscope for the classification of
malaria-infected stages with limited labeled data size

DCNN defect detection risk assessment

Automatic detection of industrial wire rope surface damage using deep learning-based visual
perception technology

Classification of fatigue crack damage in polycrystalline alloy structures using convolutional
neural networks

Developing machine learning-based models for railway inspection

DCNN medical diagnosis Deep learning approach with convolutional neural network for classification of maximum
intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging

Pretrained DCNN transfer learning
quality assurance

Convolutional neural networks and transfer learning for quality inspection of different
sugarcane varieties
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Figure 2: Structure of a plastic washer (units: mm).
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brought many downsides, such as overfit, gradient disap-
pearance, and gradient explosion. *e Inception model is
proposed to improve training results from a different per-
spective, namely the ability to use computational resources
more efficiently and extract more features with the same
amount of computation, thereby improving training results.

GoogLeNet Inception is currently available in four versions,
the classic being Inception-V2. Inception-V2 was derived
from the original Inception-V1, which changed the con-
volution from a size of 5× 5 in the third branch to two
convolutions of sizes 3× 3, as shown in Figure 5. Owing to
the introduction of batch normalization (BN), the network

(a)

White bowl-shaped
light source

The ring light
source

Vibration Table

Camera 1

Camera 2

(b)

Figure 3: *e setup of the device. (a) 3D modeling diagram. (b) 3D physical drawing.

Table 2: *e components of the detecting device.

Sequence Name Parameter Brand Amount

1 Vibration plate Working power: ≤ 1500W Weft lang 1Work pressure: 0.4–0.65MPa
2 PLC Model: CPU 1215C Siemens 1

3 Cameras

Resolution: 659 px × 494 px

Basler 2Frame rate: 120 ps
Color: black and white

Pixel size: 3.75 dpi × 3.75 dpi

4 Lens

Target surface size: 2/3″

Computar 2

*e focal length: 35mm
Aperture range: F1.6 ∼ F16

Minimum object distance: 0.3m
Minimum object distance field of view: 2/3″ 8.1mm × 6.0mm

Interface: C Interface
Deformation rate: −0.8%(y � 5.5)

5 White bowl-shaped light source

Size: W140mm × H73mm

Weft lang 1
Angle: 30∘

Voltage: 24V
Power: 5.6W

Color: white, 6600K (color temperature)

6 Ring light source

Size: OD100mm × ID65mm × H24mm

Weft lang 1Voltage: 24V
Power: 12W

Color: white, 6600K (color temperature)
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Figure 4: Flowchart of the device.
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Figure 5: *e structure of Inception-V2.
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can set a higher learning rate and make the model converge
faster. Furthermore, the training samples can be more
thoroughly disturbed so that the network can achieve a
higher verification accuracy.

4.3. Pretraining and Fine-Tuning Learning. Transfer learning
computer vision technology [30] is widely used for it can
accelerate the convergence of models. Using migration
parameters to initialize the network can improve the gen-
eralization performance, even if the target task has been
significantly adjusted. Many studies have demonstrated the
feasibility of the approach [31]. *ey showed how to transfer
the trained model parameters to the new model to help with
the new model training. In this study, the initial weight
parameters came from the pretrained GoogLeNet network
model, and we only changed the last layer such that it
corresponded to our label number. In addition, although the
softmax cross-entropy loss function degenerates into a
sigmoid cross-entropy loss function in a binary classification
problem, the two are completely equivalent mathematically.
However, in various materials used in our network model
training process, we found that the effect of the sigmoid
cross-entropy loss function was better than that of the
softmax cross-entropy loss function.*erefore, we chose the
sigmoid cross-entropy loss function for training and chose
the sigmoid function for the output layer. *en, depending
on the network training situation, we adjusted the choice of
the optimizer (Section 4.4). We chose a learning rate of 0.01,
which remained unchanged in subsequent iterations. *e
batch size selected in the training process was 16, and the
maximum number of iterations was 20 000, which was 320
epochs.

4.4. Choice of Optimizer. *e goal of the DCNN training
process is to minimize the loss value, and after we define the
loss function, the optimizer becomes useful. *ere are many
different types of optimizers that can be chosen. *is study
focused on comparing the two types of optimizers, namely
the gradient descent method and the momentum optimi-
zation method. *e mathematical formulas for the two
optimizers are as follows:

(1) Gradient descent:

Wt+1 � Wt − ηtΔJ Wt( 􏼁. (1)

(2) Momentum:

vt � αvt−1 + ηtΔJ Wt, X
is( ), Y

is( )􏼒 􏼓,

Wt+1 � Wt − vt.

(2)

By comparing the formulas, it can be found that for the
GDA optimizer, the update adjustment of model param-
eters is related to the gradient of the loss function on the
model parameters. *erefore, the training speed of the
model using this optimizer is relatively slow, and it is easy
for the model to fall into the local optimal solution. *e
momentum optimization algorithm introduces

momentum-accumulating historical gradient information,
which can solve the aforementioned problems adequately.
In the actual training process, the model did occasionally
fall into the local optimal solution, resulting in a low ac-
curacy and a loss value that could not be reduced. Finally,
using the momentum optimization method, the model
jumped out of the local optimal solution. *e momentum
was set to 0.9.

4.5. Indicators for Model Evaluation. *e seven indicators
used to evaluate the performance of the DCNN were ac-
curacy (AC), sensitivity (SE), specificity (SP), F1 score, re-
ceiver operating characteristic (ROC) curve, precision-recall
(PR) curve, and area under curve (AUC) values [32].

*e accuracy of classification (AC) is defined as follows:

AC �
TP + TN

P + N
× 100%

�
TP + TN

TP + FN + TN + FP
× 100%,

(3)

where TP refers to the number of correctly classified de-
fective products, FP refers to the number of incorrectly
labeled nondefective products, TN refers to the number of
correctly classified nondefective products, FN refers to the
number of incorrectly labeled defective products, P refers to
the number of defective products, and N refers to the
number of nondefective products.

Sensitivity (SE) is defined as the percentage of the
product correctly identified as defective and is expressed as
follows:

SE �
TP
P

× 100%,

�
TP

TP + FN
× 100%.

(4)

Specificity (SP) is defined as the percentage of a non-
defective product that is correctly classified as nondefective.

SP �
TN
N

× 100%,

�
TN

TN + FP
× 100%.

(5)

F1 score is defined as the harmonic mean of precision
and sensitivity:

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 � 2 ×
precision × recall
precision + recall

�
2TP

2TP + FN + FP
,

(6)
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where the precision rate is defined as the proportion of
correctly classified defective products to all defective
products divided by the classifier, and the recall rate is
defined as the proportion of correctly classified defective
products to the number of defective products.

ROC is a curve connected by points of the false-positive
rate (FPR) (7) and true-positive rate (TPR) (8). For the ROC
curve, the closer the curve is to the upper left of the graph,
the better the performance of the model is. AUC is the area
formed between the ROC curve and the horizontal axis. *e
larger the value, the better the model, and its optimal value is
1. *e PR is a curve connected by the points of recall and
precision. For the PR curve, the closer the curve is to the
upper right of the graph, the better the performance of the
model is. In general, when a model’s performance evaluation
is better than that of another model under both ROC and PR
curves, it can be proved that the performance of that model
is better than that of the other models.

FPR �
FP

FP + TN
, (7)

TPR �
TP

TP + FN
. (8)

5. Experimental Results

5.1. ImagePreprocessing. In deep learning, a large amount of
data must be used for training to suppress model overfitting.
Generally, geometric transformations can be used to en-
hance datasets. *is paper uses the Python language and the
“opencv” library to expand the dataset in Visual Studio. *e
main methods used were brightness enhancement, contrast
enhancement, angle rotation, and image flipping, and the
transformations are shown in Figure 6. Because some pic-
tures lost their original features after having their brightness
enhanced, they could not be used as training samples, so they
were removed. In addition, because the picture contained
many blank parts, it did not contain any useful information,
and it increased the amount of calculation of the neural
network and slowed down the training speed. *is also
caused the program to occupy too much video memory,
which could easily cause video memory overflow and
crashing of the program. When the image angle was rotated
and transformed, black bars appeared on both the sides of
the image, which could easily cause a neural network feature
extraction error and reduce the accuracy of the neural
network. Moreover, the length and width dimensions of the
pictures were not consistent. *us, when the subsequent
picture size was modified, it could easily cause distortion of
the picture. To solve these problems, all pictures were
cropped. Indeed, in the actual training process, we found
that the accuracy of the model in the validation set improved
after data enhancement. *erefore, we concluded that when
the dataset was too small, proper data enhancement could
improve network performance and reduce overfitting. In
total, there were 1666 processed images.

Because the input image channel of the neural network
must be three channels, the size requirement was

224 dpi × 224 dpi. *erefore, when reading a picture, a
single-channel picture was copied to generate a three-
channel RGB picture, and the picture size was modified to
meet the network input picture size requirements. In ad-
dition, to prevent the neural network from overfitting, the
accuracy of the neural network in the training set was high at
the beginning. However, this led to another problem because
the gradient could not fall. *erefore, the picture was
randomly scrambled when making and reading TFRecord
files.

5.2. Results and Discussion. *e final number of pictures
used in the experiment was 1666, including 1350 NG pic-
tures and 316 OK pictures. *ey were divided into training,
validation, and test sets (Table 3) with a ratio of 8 : 2:2.
During training, verification, and testing, the computer
configured was a 64-bit Windows 10 operating system, the
GPU is NVIDIA GeForce GTX 1050 Ti, the deep learning
framework was TensorFlow, and the programming language
was Python.

In general, the network model parameters used for
comparison were set according to those recommended in
GoogLeNet Inception-V2. It can be seen from Figure 7 that
when the three models reached the 1000th iteration, that is,
the 16th epoch, the accuracy rate on the verification set
reached approximately 80%. At the end of the training, the
loss values converged to 0%, the accuracy rate on the training
set converged to 100%, and the accuracy rate on the veri-
fication set reached approximately 90%. It can be seen that
GoogLeNet Inception-V3 converged the fastest.

Figures 8(a)–8(c) correspond to the confusion ma-
trices of GoogLeNet Inception-V2, GoogLeNet Inception-
V3, and MobileNet-V1, respectively. Figure 9(a) shows
the ROC curves corresponding to the three DCNNs. It can
be seen from the figure that the ROC curves of the three
networks are projected to the upper left corner, among
which GoogLeNet Inception-V2 is closest to the upper left
corner of the graph and completely surrounds the ROC
curves of GoogLeNet Inception-V3 and MobileNet-V1,
whereas the ROC curves of GoogLeNet Inception-V3 and
MobileNet-V1 intersect. Figure 9(b) shows the corre-
sponding PR curves of the three DCNNs. It can be seen
from the figure that the PR curves of the three networks
project to the upper right corner of the graph, among
which GoogLeNet Inception-V2 is closest to the upper
right corner of the graph and completely surrounds the PR
curves of GoogLeNet Inception-V3 and MobileNet-V1,
whereas the PR curves of GoogLeNet Inception-V3 and
MobileNet-V1 intersect.

Table 4 shows the accuracy, sensitivity, specificity, F1
score, AUC indexes, network training time, and test time of
recognition obtained by the three DCNNs. It can be seen
from the table that in terms of accuracy, specificity, F1 score,
and AUC, GoogLeNet Inception-V2 had the highest values,
the accuracy was as high as 95.495%, and the specificity value
reached 100%. *e second was GoogLeNet Inception-V3,
whereas MobileNet-V1 was always the lowest, even with a
specificity value of only 44.444%. In terms of sensitivity, the
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Figure 6: *e first row contains the original NG images and the images transformed by brightness enhancement, contrast enhancement,
angle rotation, and image flip. *e second row includes the cropped images of the first row. *e third and fourth rows are OK pictures
arranged like NG pictures.

Table 3: Image quantity allocation table.

Train Verification Test
NG 810 270 270
OK 190 63 63
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Figure 7: Continued.
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MobileNet-V1 value reached the highest value, followed by
GoogLeNet Inception-V2 and GoogLeNet Inception-V3.
Owing to the application of transfer learning, all three

network models converge in a very short time. MobileNet-
V1 had the shortest identification time, followed by Goo-
gLeNet Inception-V2 and GoogLeNet Inception-V3. *e
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Figure 7:*e loss values and accuracy on the training set and accuracy on the validation set of (a) GoogLeNet Inception-V2, (b) GoogLeNet
Inception-V3, and (c) MobileNet-V1.
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Figure 8: *e confusion matrix of (a) GoogLeNet Inception-V2, (b) GoogLeNet Inception-V3, and (c) MobileNet-V1.
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recognition time of GoogLeNet Inception-V2 for each image
was 12.455ms, which was only 7.795ms longer than that of
MobileNet-V1 and could fully meet the requirements of
industrial production.

Based on the above analysis, it can be found that al-
though GoogLeNet Inception-V3 is an improvement of
GoogLeNet Inception-V2, such an improvement only re-
flects the advantage of faster convergence in our dataset
because our dataset features were not complicated. In the
overall performance evaluation, GoogLeNet Inception-V2
was better than the other two networks.

6. Conclusion and Future Work

In this study, a surface defect visual classification device
for plastic gaskets was designed based on GoogLeNet
Inception-V2 transfer learning. *e results show that
when the datasets are few, the training effect can still be
achieved through the network model transfer learning.
*is proves that under the restriction of conditions, when
sufficient training sets cannot be obtained, the mode of
transfer learning can be used to solve the dilemma. Using
the test set to compare the performance indexes of the
three types of networks, it is shown that the GoogLeNet
Inception-V2 network model had higher accuracy, reli-
ability, and efficiency on the dataset used in this paper.
*is indicates that the device designed in this study can
fully meet production needs and obtain higher profits for
manufacturers in this industry.

Since our experimental results basically meet the
current industrial production testing requirements, we
will not perform extensive research on the defect detec-
tion of plastic gaskets. In the next stage, we plan to
conduct research on the surface defects of the camshaft. In
this study, we will classify each defect to achieve subse-
quent automatic repair and elimination. In future studies,
CNNs can be integrated with different disciplines (such as
environmental science and biomedical science) to solve
key problems in corresponding disciplines and make such
research more socially valuable.
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