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In order to accurately identify targets such as insulators, shock hammers, bird nests, and spacers on high-voltage transmission
lines, this paper proposes a multitarget detection model for transmission lines based on DANet and YOLOv4. First, the DANet
and YOLOv4 are fused to solve the difficulty in understanding the scene and the discrimination of pixels caused by the complex
and diverse scenes of UAV’ (unmanned aerial vehicle) aerial images (lighting, viewing angle, scale, occlusion, and so on) so as to
improve the significance of the detection target. Gaussian function and KL (Kullback–Leibler) divergence are used to improve the
nonmaximum suppression in YOLOv4 so as to improve the recognition rate of occluded targets; the focal loss function and the
balanced cross entropy function are used to improve the loss function of YOLOv4 in order to reduce the impact of not only the
imbalance between the background and the detection target but also the imbalance among the samples, which is aimed at
improving the accuracy of the detection.0en, a data set is made for the experiment by using the UAV inspection image provided
by a power grid company in Eastern Inner Mongolia. Finally, the algorithm proposed in this paper is compared with other target
detection algorithms. Experimental results show that the average detection accuracy of the proposed algorithm can reach 94.7%,
and the detection time of each image is 0.05 seconds. 0e method has good accuracy, real-time, and robustness.

1. Introduction

0e insulators, shock hammers, and spacers are all im-
portant components on high-voltage transmission lines,
which are vital to the stable operation of high-voltage
transmission lines [1]. Because high-voltage transmission
lines adopt overhead transmission, insulators and other
important power components are exposed to the natural
environment for a long time, so they are easily affected by the
weather and natural environment. In order to ensure the
stable operation of the power system, it is necessary to carry
out regular inspection of transmission lines, insulators, and
other electrical equipment for timely maintenance. Cur-
rently, the use of unmanned aerial vehicles for transmission
line inspection has become an important way which mainly
uses drones to take a large number of pictures and relies on
professional inspectors to inspect these pictures. Due to the
use of artificial picture identification, with the increase in the

number of pictures, this approach will not only spend a lot of
manpower and resources but will also cause misses and
unable to detect existence of faults. With the rapid devel-
opment of deep learning in the field of image recognition, it
has become a trend and research hotspot to apply image
recognition technology to power inspection [2].

Target detection algorithms based on deep learning can
be divided into two categories according to different de-
tection stages. 0e first type is the two-stage algorithm. 0is
type of algorithm needs to generate the region proposal of
the candidate region that may contain the object and then
further classify and calibrate the candidate region to obtain
the final detection result. 0e representative algorithms
mainly include RCNN [3], Fast RCNN [4], Faster RCNN [5],
and RFCN [6]. 0e recognition accuracy of this algorithm is
high, but the training time of the model is long, and the
detection speed is slow. For transmission line inspection, it is
necessary to find and eliminate hidden dangers in time to
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ensure the stable operation of the power system, so the
detection speed must be improved. 0e second type is the
one-stage algorithm. 0is type of method directly trains the
network end-to-end and directly gives the final detection
result without going through the steps of candidate regions.
0e representative algorithms mainly include SSD [7],
YOLOv1 [8], YOLOv2 [9], and YOLOv3 [10]. 0is kind of
algorithm is characterized by fast detection speed and little
interference of background to target recognition but low
accuracy of recognition, especially for small target recog-
nition. Power line inspection must be able to accurately
identify all kinds of power equipment. 0is kind of algo-
rithm has low recognition accuracy for small power
equipment such as screws and pins, so it needs to be further
optimized. Zhao [11] et al. proposed a method called
AVSCNet for pin-missing in transmission lines, which only
optimized the network based on the structural character-
istics of bolts in a certain background, without verifying the
detection effect in different shooting angles and different
natural environments. Tao [12] et al. proposed a novel deep
CNN cascading architecture for performing localization and
detecting defects in insulators, but the speed of this method
is relatively slow. Liu [13] et al. used YOLOv3 to identify
insulators with an accuracy of only 88.7%. Wang [14] et al.
proposed an insulator detection algorithm based on
Gaussian YOLOv3. Experimental results show that the
improved YOLOv3 algorithm can accurately locate the
position of the object.0e detection accuracy of insulators in
the test set reaches 93.8%.

In the actual transmission line inspection, the back-
ground of drone aerial images is complex, the light intensity
is different, and some targets are blocked. 0erefore, there
are certain difficulties in accurately identifying the targets of
the transmission line, which need to be resolved.

Based on the above analysis, this paper integrates DANet
(dual attention network) for scene segmentation [15] and
YOLOv4 [16] to detect insulators, spacers, and others in
transmission lines. 0is article mainly improves YOLOv4
according to the following three aspects. (1) DANet is fused
in the YOLOv4 algorithm. It can improve the recognition
accuracy of targets in complex backgrounds and reduce the
impact of different light intensities and camera angles on
recognition accuracy. (2) 0e Gaussian function and KL
divergence are used to improve nonmaximal suppression of
YOLOv4 as well as improve the detection rate of the target
occlusion. (3) 0e focal loss [17] function and the balanced
cross entropy function are used to improve the loss function
of YOLOv4. It can reduce the impact of not only the im-
balance between the background and the detection target but
also the imbalance of the samples, which will improve the
accuracy of the detection.

2. Algorithm Principle

2.1. &e Main Structure of YOLOv4. Compared with
YOLOv3, YOLOv4 has many improvements, which are
mainly reflected in the input terminal, backbone network,
and the neck part of the network. In terms of input, YOLOv4
uses Mosaic data enhancement, CmBN (Cross min-Batch

Normalization), and SAT (self-antagonism training). Mo-
saic data enhanced random zoom by using 4 pictures, then
randomly distributed, and greatly enriched the detection
data set.0e random scaling added a lot of small goals so that
the robustness of the network is better. When mosaic en-
hances training, the data of 4 images can be directly cal-
culated, so the minibatch size need not to be large, a GPU
can achieve a better effect, and it is reduced greatly.
YOLOv4’s backbone feature extraction network uses
CSPDarkNet53, which is improved on the basis of YOLOv3
backbone network DarkNet53, which contains 5 CSP
modules. 0e volume nuclear size in front of each CSP
module is 3 × 3, and the step size stride equals to 2; therefore,
it can play the role of down sampling. 0e use of
CSPDarkNet53 enhances the learning ability of the model so
that the accuracy is maintained while lightweight, and the
main network structure of the CSPDarkNet53 is shown in
Figure 1. 0e neck structure of YOLOv4 mainly adopts the
SPP (spatial pyramid pooling) [18] module and the way of
FPNs (feature pyramid networks) [19] + PAN (path ag-
gregation network). 0e SPP module uses a maximum
pooling mode of k � 1 × 1, 5 × 5, 9 × 9, 13 × 13{ } and then
performs the concatenate operation of different scales. 0is
approach increases the receiving range of the backbone
characteristic than a simple method using k × k largest
pooling. 0e most important context feature is remarkably
separated. YOLOv4 also adds a feature pyramid from the
bottom to the top after the FPN. FPN layer conveys strong
semantic features from top to bottom, while feature pyramid
conveys strong location features from bottom to top. By
combining the two of above, parameters of different de-
tection layers can be aggregated from different backbone
layers, so as to extract features better.

In order to solve the impact of complex and diverse
scenes (illumination, perspective, scale, occlusion, and so
on) of UAV aerial images on detection targets, this article
integrates the dual attention network on the basis of
YOLOv4 network, and the Gaussian function is used to
improve the nonmaximum suppression. It uses the focal loss
function and the balanced cross entropy function to improve
the loss function of the network so that the recognition
accuracy can be improved. 0e detection flow chart of the
algorithm of this paper is shown in Figure 2.

0e first step is to label the aerial image taken during the
drone inspection with labelImg and then adjust the input
size of the image to 608× 608.0e second step is to input the
processed pictures into the improved YOLOv4 network for
training and perform multiple rounds of training to obtain
the training weights of the transmission line insulator de-
tection model. 0e final step is using the test set to verify this
model.

2.2. &e Structure of Dual Attention Networks. 0e overall
framework of DANet is shown in Figure 3. ResNet is de-
formed; that is, after the down sampling of the last two
modules is removed, an output feature map with the size of
1/8 of the input image is obtained by using void convolution,
and then the output feature map is input to the two attention
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modules, respectively, to capture global semantic informa-
tion (some relationship established between pixels). In the
positional attention module, firstly, a positional attention
matrix is used to model the relationship between any two
points. 0en, the attention matrix is multiplied by the
characteristic matrix, and the multiplied results and the
original feature matrix are elements’ additions resulting in
the final result of a certain characteristic ability to global
semantics. 0e operation of the channel payment module is
similar, but multiplication is calculated at the channel di-
mension. Finally, the results of the two modules are ag-
gregated to get a better characterization result for the next
pixel prediction.

2.3. PositionAttentionModule. 0eDANet is a network that
applies self-attention. It introduces a self-attention mecha-
nism to capture the feature dependency in the spatial di-
mension and the channel dimension, respectively. As you

can see from its structure diagram, it is composed of two
parallel attention modules.0e first one gets the dependency
relationship between any two positions in the feature map,
which is called position attention module (PAM). Its
structure is shown in Figure 4.

As illustrated in Figure 4, a local feature A ∈RC×H×W is
given; we firstly feed it into a convolution layers to generate
two new feature maps B and C, respectively, where{B,
C} ∈RC×H×W. 0en, we reshape them to RC×N, where N �

H× W is the number of pixels. After that we perform a
matrix multiplication between the transpose of C and B and
apply a softmax layer to calculate the spatial attention map
S ∈RN×N:

Sj,i �
exp Bi · Cj 


N
i�1 exp Bi · Cj 

, (1)

where sji represents the elements in the ith column and jth of
S. 0e more similar feature representations of the two po-
sition contribute to greater correlation between them.

Meanwhile, we feed feature A into a convolution layer to
generate a new feature map D ∈RC×H×W and reshape it to
RC×N. 0en, we perform a matrix multiplication between D
and the transpose of S and reshape the result to RC×H×W.
Finally, we multiply it by a scale parameter α and perform an
element-wise sum operation with the features A to obtain
the final output E ∈RC×H×W as follows:

Ej � α
N

i�1
sjiDi  + Aj, (2)

where Di is the ith column and α is the training parameter.
It can be inferred from Equation (2) that the result

feature Ej of each position is the feature and weighted sum of
all positions. 0erefore, it has a global context characteristic
and selectively aggregates contexts according to spatial at-
tention graphs. 0e similar semantic features reinforce each
other, thus promoting the semantic consistency of the same
category of objects and greatly improving the characteristic
information of insulators, shock hammer, and spacers af-
fected by background interference.

2.4. Channel Attention Module. Another attention module
represents the dependency between any two channels, called
channel attention module (CAM), and its structure is shown
in Figure 5.

Different from the position attentionmodule, we directly
calculate the channel attention map X ∈RC×C from the
original features A ∈RC×H×W. Specifically, we reshape A to
RC×N and then perform a matrix multiplication between A
and the transpose of A. Finally, we apply a softmax layer to
obtain the channel attention map X ∈RC×C:

xj,i �
exp Ai · Aj 


C
i�1 exp Ai · Aj 

, (3)

where xji measures the ith channel’s impact on the jth
channel. In addition, we perform a matrix multiplication
between the transpose of X and A and reshape their result to
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Figure 1: CSPDarknet53 network structure diagram. 0e multi-
objective detectionmethod of transmission line is based onDANet-
YOLOv4.
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RC×H×W. 0en, we multiply the result by a scale parameter β
and perform an element-wise sum operation with A to
obtain the final output E ∈RC×H×W:

Ej � β
C

i�1
xjiAi  + Aj, (4)

where β is the training parameter.
Each feature channel map is corresponding to a different

category. Equation (4) shows that the final feature of each

channel is a weighted sum of the features of the original
channel with the features of all feature channels, helping to
improve the identifiability of features and thus the confi-
dence of categories.

2.5.DetectionModelFusedwithDANet. In order to make the
improved algorithm have higher recognition accuracy and
reduce the influence of DANet on the recognition rate of
YOLOv4 network, the DANet model was introduced only
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after the residual module in each set of convolution and
residual layer of YOLOv4 network. 0e improved network
structure is shown in Figure 6.

DANet adopts spatial attention module and channel
attentionmodule, which establish semantic interdependence
of spatial dimension and channel dimension, respectively,
andmakes use of feature information in global view, which is
crucial for scene segmentation and can more accurately
distinguish targets of different categories. 0erefore, the
fusion of DANet in YOLOv4 can greatly improve the sa-
liency of insulators, shock hammers, spacers, and bird nests
in complex background, thus improving the accuracy of
identification. 0e experimental data in Table 1 prove that
DANet can improve the average accuracy of the model.

2.6. Improvement of Nonmaximum Suppression. Due to the
complex background and camera angles of aerial image,
some detected targets will be blocked. 0e standard NMS
(nonmaximum suppression) [20] determines the fraction of
the bounding box through the relation between the Inter-
section over Union and the size of the threshold. 0e cal-
culation formula of NMS is as follows:

si �
si iou M, bi( <Nt

0 iou M, bi( ≥Nt

 , (5)

where Si represents the score of each bounding box; M
represents the current bounding box with the highest score;
bi represents a bounding box; and Nt is the threshold value
set.

By the above formula, it can be found that when IoU
(Intersection over Union) is greater than Nt, the score of the
bounding box is directly 0, which is equivalent to discarding
the bounding box. 0is will cause a missed inspection on the
target of the occlusion.

0e score used by NMS is only the classification con-
fidence score, which cannot reflect the positioning accuracy
of the prediction box; that is, classification confidence and
localization confidence do not have consistency.

In order to solve the above problem, this paper adds a
prediction of a positioning confidence based on NMS,
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Table 1: Comparison of test results of different models.

Algorithm mAP (%) Test time (sec/img)
RetinaNet 90.5 0.14
Faster RCNN 95.2 0.26
SSD 89.9 0.19
FCOS 93.8 0.09
YOLOv4 91.3 0.04
Ours 94.7 0.05
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making the border position with high classification confi-
dence become more accurate, thereby effectively improving
the performance of the detection. First, the Gaussian
function model is used to predict the coordinate position
distribution of the bounding box, as shown in formula (6)
[21]. Dirac delta distribution was used to model the position
distribution of coordinate points of the ground truth
bounding box. As shown in formula (7) [21],

PΘ(x) �
1

����
2πσ2

 e
− x− xe( )2/2σ2 , (6)

where Θ represents a collection of training parameters; xe
represents the predicted bounding box position; and σ is the
standard deviation of the predicted box position.

PD(x) � δ x − xg , (7)

where xg is the location of ground truth bounding box.
0e closer the distribution of the prediction box is to the

distribution of the ground truth bounding box, the more
accurate the target positioning of the model is. In this paper,
KL (Kullback–Leibler) divergence is introduced to measure
the similarity of probability distribution PΘ(x) and PD(x).

In this paper, the border regression loss function (KL
Loss) based on KL divergence is used to minimize the di-
vergence between the training process and the model. 0e
lower loss indicates that the prediction boundary distribu-
tion is closer to the real object distribution.0e expression of
KL loss is shown in the following equation [21]:

Lreg � e
− α

xg − xe



 −
1
2

  +
1
2
α, (8)

α � log σ2 , (9)

where xe represents the predicted bounding box position, xg

is the location of ground truth bounding box, and σ is the
standard deviation of the predicted box position.

2.7. Improvement of the Loss Function. 0is paper uses the
focal loss function and the balanced cross entropy function to
improve the function of YOLOv4 loss. When YOLOv4 cal-
culates the loss value, the model will divide the prediction
boxes into positive samples and negative samples based on the
value of CIoU. In the images taken by UAV, some insulator
targets have a small size, and their proportion in the image is
much smaller than that of the background, which will lead to
the imbalance of positive and negative samples in the data set,
as shown in the left figure in Figure 7. In the problem of
insulator target detection, the insulator to be positioned is
called the foreground and the other parts are called the
background. 0ere is a phenomenon of unbalanced com-
plexity between foreground and background in the aerial
insulator image sample, as shown in the middle of Figure 7.
With a large number of insulators and a large number of
disturbances in the background, it belongs to an

indistinguishable sample with complex foreground and
background. In the right of Figure 7, the number of insulators
is small; the background is simple, which makes the sample
easy to divide. One of the reasons for the relatively low ac-
curacy of the one-stage algorithm is that there is a serious
imbalance of the samples in the data set. Toomany samples of
a certain type in the data set will make it difficult for themodel
to learn the information of other types of samples [22].

To solve the above problems, the equilibrium cross
entropy function and focal loss function were used to im-
prove the standard cross entropy (CE) in YOLOv4 loss
function. 0e original loss function of YOLOv4 consists of
three parts: bounding box regression loss, confidence loss,
and classification loss.

Equalization cross entropy loss function and focal loss
function are modified on the basis of the standard cross
entropy loss function. 0e standard cross entropy loss
function is shown as follows:

CE(p, y) �
− log(p) if(y � 1)

− log(1 − p) if(y � 0)
 , (10)

where p is the predicted probability of the sample in this
category and y is the sample label.

Equilibrium cross entropy loss function is based on the
standard cross entropy loss function by multiplying a co-
efficient β to balance the weight of positive and negative
samples as shown in the following formula:

CE(p, y) �
− β log(p) if(y � 1)

− (1 − β)log(1 − p) if(y � 0)
 (11)

Focal loss is similar to balanced cross entropy. In order to
improve the imbalance between positive and negative
samples, weight α is introduced to improve the accuracy.
Meanwhile, weight (1− p)c is introduced to adjust the weight
of difficult and easy samples, as shown in the following
formula:

FL �
− α(1 − p)

clog(p) if(y � 1)

− (1 − α)(p)
clog(1 − p) if(y � 0)

 , (12)

where α is the coefficient of the number of positive and
negative samples and c is a modulation factor that the
greater the c, the lower the contribution of simple sample
loss. Focal loss acts on all prediction boxes during training,
for both super parameters α and c; in general, when α in-
crease, c should be appropriately reduced. In the experi-
ment, the best effect was obtained when α of 2 and c of 0.25
were selected.

In this paper, the focal loss function is used to replace the
standard cross entropy function in the confidence loss in the
YOLOv4 loss function; the category loss function in the
YOLOv4 loss function is replaced by a balanced cross en-
tropy loss function; the bounding box regression loss
function remains unchanged. 0e improved loss function
expression is shown as follows:
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LOSS � Lciou + Lconf + Lclass,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where S2 represents the number of grids; B represents the
number of prediction boxes in each cell; I

obj

i,j and I
noobj

i,j

indicate whether there is an object in the ith prediction box
of the jth unit; if there is an object, both take 1 and 0,
respectively, and if there is no object, both take 0 and 1,
respectively; λnoobj represents the confidence penalty
weight when the target is not included; ρ represents Eu-
clidean distance; c represents the diagonal distance of the
smallest closure area that contains both the prediction box
and the ground truth box; b represents the canter coor-
dinates of the prediction box; wand h, respectively, rep-
resent the width and height of the prediction box; bgt is the

canter coordinates of the ground truth box; wgt and hgt,
respectively, represent the width and height of the ground
truth box; C represents the true confidence of the target in
the ith grid; Ci represents the reliability of the prediction
box of the target in the ith grid; pi(c) represents the category
probability value of the ground truth box; and pi(c)

represents the category probability value of the prediction
box.

According to the experimental data in Table 2, it can be
found that after focal loss improved YOLOv4’s loss function,
the average accuracy of the model was significantly
improved.

Figure 7: Unbalanced samples.
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3. Model Training and Experimental
Results Analysis

3.1.&eExperimentalData. 0e drone aerial image used in
this article was provided by a power grid in eastern
Mongolia. A total of 2600 images were collected. 0e
experiment detects five types of targets in the trans-
mission line: insulators, insulator defects, bird nests,
spacer, and shock hammers. 0e various targets are
shown in Figure 8.

LabelImg is used to label the collected 2600 aerial
images, and a VOC data set is made. 85% of the data (2210
images) were randomly selected as the training set and the

remaining 15% (390 images) as the test set. 0e resolution
of each original image is 4000 × 3000. Due to the limi-
tation of computing resources, this article preprocesses
the size of all training set and test set sample images so that
the resolution of each image after processing is 608 × 608.
0e numbers and labels of the above five detection targets
are shown in Table 3.

3.2. &e Experimental Parameters. 0e experimental envi-
ronment configuration of this article is as follows: processor
model is i9-10900K@3.7GHz; graphics card is NVIDIA
2∗RTX3090 24GB GDDR6; operating system is

Table 2: Comparison of experimental results of different optimization methods.

NMS DANet Improved NMS Improved loss function mAP (%)
√ 90.8
√ √ 93.7

√ 92.4
√ √ 92.0
√ √ √ 93.9

√ √ √ 94.7

(a) (b) (c)

(d) (e)

Figure 8: Detection target: (a) insulator, (b) insulator defect, (c) spacer, (d) shock hammer, and (e) bird nest.
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Ubuntu18.04: deep learning framework Pytorch1.81. 0e
experimental parameters are shown in Table 4.

3.3. Experimental Results and Analysis. 0e loss curve of the
model is shown in Figure 9. 0e blue curve represents the
change in the loss value of YOLOv4, and the red curve
represents the change in the loss value of the improved
model.

According to Figure 9, it can be found that the initial loss
value of YOLOv4 is 2.55 and the initial value of the improved
model is 1.73. With the continuous increase in epoch, the
loss value is constantly decreasing. After 470 rounds of
training, the loss value of YOLOv4 is reduced to about 0.5,

and the loss value is finally stabilized at about 0.28. After 130
rounds of improved model training, the loss value dropped
to about 0.5, and the loss value finally stabilized at about 0.12.
0rough the comparison of experimental results, it can be
found that the loss value of the improved model decreases
faster and the loss value is lower.

0e mean average precision curve of all categories of the
model is shown in Figure 10. 0e blue curve represents the
change in mAP (mean average precision) value of YOLOv4,
and the red curve represents the change in mAP value of the
improved model.

According to Figure 10, it can be seen that with
continuous increase in model training rounds, the mAP
value of YOLOv4 continues to rise, eventually reaches
about 0.9. 0e mAP value of the improved model can
finally reach about 0.92, with an increase of 2%. By
comparing the loss value and the mAP value, it can be
found that the improved YOLOv4 model has improved
recognition accuracy and recognition effect compared
with the original YOLOv4 model.

0e detection results of the improved algorithm for
various targets in the test set are shown in Table 5.

0e experimental results of different optimization
methods based on YOLOv4 are shown in Table 2.

0e detection results of various targets by YOLOv4 are
shown in Figure 11. 0e detection results of various targets
by the improved algorithm are shown in Figure 12.

Table 3: Number of samples.

Label Number
Insulator 5121
Insulator defect 506
Spacer 3530
Shock hammer 1570
Bird nest 158

Table 4: Experimental parameters.

Parameter name Parameter value
CPU 2∗24GB
Input image size 608∗608
DIoU 0.6
Momentum factor 0.9
Epoch 3000
First stage learning rate 0.001
Second stage learning rate 0.0001
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Figure 9: Loss curve.
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Figure 10: mAP value curve.

Table 5: Various target detection results.

Type Precision AP
Insulator 0.960 0.962
Insulator defect 0.950 0.948
Spacer 0.936 0.940
Shock hammer 0.912 0.908
Birdhouse 0.974 0.978
mAP 0.947
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Comparing Figure 11 with Figure 12, it can be found that
YOLOv4 has lower recognition accuracy for various types of
targets in different backgrounds and misses detection of
small targets and occluded targets. 0e improved algorithm
can accurately identify various targets in different
backgrounds.

3.4. Comparison of Different Algorithms. In order to verify
the advantages of the proposed algorithm in multitarget
detection of transmission lines, four traditional algorithms,
such as Faster RCNN, SSD, RetinaNet, and YOLOv4, were

selected for comparison. 0e loss curves of various models
are shown in Figure 13.

0e detection results of the above various algorithms are
shown in Table 1.

According to the detection results in Table 1, it can be found
that Faster RCNN has the highest mAP, which can reach 95.2%,
but the detection speed is the lowest. YOLOv4 has the highest
detection speed, but the accuracy is low.0e detection accuracy
of the algorithmproposed in this paper is slightly lower than that
of Faster RCNN, but the detection speed is much higher than it.
Taking the detection accuracy and real-time performance into
account, it is more suitable for transmission line target detection.

Figure 11: YOLOv4 algorithm detection results.
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Figure 12: Improved algorithm detection results.
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Figure 13: Loss value comparison.
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4. Conclusions

(1) In order to solve the impact of the complex back-
ground of aerial images of transmission lines on
target recognition, the fusion of DANet and
YOLOv4 is adopted which can improve the detection
accuracy by 3.7%

(2) In this paper, Gaussian function is used to optimize
the nonmaximum suppression of the model, which
can improve the detection accuracy of the occluded
target

(3) 0is paper uses the focal loss function and the
balanced cross entropy function to improve the loss
function of YOLOv4, which reduces the imbalance
between the background and the detection target as
well as the impact of the imbalance of the sample on
the target detection and improves the accuracy of the
detection
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