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,is study was carried out to explore the diagnostic effect of magnetic resonance imaging (MRI) based on the low-rank matrix (LRM)
denoising algorithm under gradient sparse prior for the tibial plateau fracture (TPF) combined with meniscus injury (TPF+MI). In this
study, the prior information of the noise-free MRI image block was combined with the self-phase prior, the gradient prior of MRI was
introduced to eliminate the ringing effect, and a new MRI image denoising algorithm was constructed, which was compared with the
anisotropic diffusion fusion (ADF) algorithm. After that, the LRMdenoising algorithm based on gradient sparse prior was applied to the
diagnosis of 112 patients with TPF+MI admitted to hospital, and the results were compared with those of the undenoised MRI image.
,en, the incidence of patients with all kinds of different meniscus injury parting was observed. A total of 66 cases (58.93%) of meniscus
tears (MT) were found, including 56 cases (50.00%) of lateral meniscus (LM), 10 cases (8.93%) of medial meniscus (MM), 16 cases
(14.29%) of meniscus contusion (MC), and 18 cases (16.07%) of meniscus degenerative injury (MDI).,e incidences ofMI in Schatzker
subtypes were 0%, 53.33% (24/45), 41.67% (5/12), 76.47% (13/17), 78.94% (15/19), and 23.53% (4/17), showing no statistically significant
difference (P> 0.05), but the incidence ofMTwas 54.46% (61/112), which was greatly higher than that ofMC (15.18% (17/112)), and the
difference was statistically obvious (P< 0.05). ,e diagnostic specificity (93.83%) and accuracy (95.33%) of denoised MRI images were
dramatically higher than those of undenoisedMRI images, which were 78.34% and 71.23%, respectively, showing statistically observable
differences (P< 0.05). In short, the algorithm in this study showed better denoising performance with the most retained image in-
formation. In addition, denoising MRI images based on the algorithm constructed in this study can improve the diagnostic accuracy
of MI.

1. Introduction

Tibial plateau fracture (TPF) is an important and critical
joint fracture or complex fracture of tissue destruction. At
present, due to the popularity of electric vehicles and au-
tomobiles and the increasing aging population, the number
of patients with TPF has generally increased [1]. Among
them, the meniscus is the buffer structure between the
femoral condyle and the tibial plateau articular surface. Its
damage is the most common. Research results show that
meniscus injury (MI) is one of the important factors that
cause arthritis. ,e incidence rate is as high as 49%, which
can cause physical damage and psychological double torture

to patients [2, 3]. ,erefore, improving the diagnostic ac-
curacy of tibial plateau fracture combined with meniscus
injury (TPF +MI) is the top priority of joint medical im-
aging. Magnetic resonance imaging (MRI) examination has
become a common and important means of medical diag-
nosis. However, MRI examination is easily affected by noise
in imaging, so that most of the MRI images obtained have
different intensities of noise, which causes abnormally
blurred medical image tissue edges, greatly affecting the
accurate diagnosis of the disease [4, 5]. In recent years,
denoising methods based on filtering, transform domain,
and statistical learning have sprung up, and many re-
searchers are eager to learn, especially methods based on
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prior knowledge of image blocks. Farkas et al. [6] proved that
the combination of the Gaussianmixture model (GMM) and
maximum A posteriori algorithm based on expectation
maximization (MAP-EM) can solve the inversion in image
processing.

With the development of artificial intelligence (AI) and
information, many researchers apply them to the denoising
of medical images, and using low-rank matrix (LRM) to
denoise medical images has become a new hot spot. Gon-
çalves et al. [7] added the F norm and the total variation
regular term to enhance the stability of the image solution
and then used singular value decomposition (SVD) to solve
it to improve the denoising effect of the LRM denoising
algorithm. Hassan et al. [8] proposed a completely con-
volutional encoding and decoding network model for the
problems in image denoising and super-resolution recon-
struction. But its shortcomings cannot be ignored. It re-
quires a lot of image data to train the parameters of the
network, and the acquisition of medical image data is also a
big challenge [9, 10]. However, medical images based on AI
denoising are rarely reported on the diagnosis of diseases,
and the results are mixed. In this study, the prior infor-
mation of the noise-free MRI image block was combined
with the self-phase prior, the gradient prior of MRI was
introduced to eliminate the ringing effect, and a new MRI
image denoising algorithm was constructed, which was
compared with the anisotropic diffusion fusion (ADF) al-
gorithm. After that, the LRM denoising algorithm based on
gradient sparse prior was applied to the diagnosis of 112
patients with TPF +MI admitted to hospital, and the results
were compared with those of the undenoised MRI image,
hoping to provide some theoretical references for the study
of TPF+MI diagnosis based on MRI images under AI
algorithms.

2. Materials and Methods

2.1. Research Objects. In this study, 112 TPF patients who
were admitted to the hospital from February 14, 2019, to
April 23, 2020, were selected as the research subjects. ,ere
were 68 males and 44 females, aged 24–78 years (with an
average age of 46.30± 11.49 years). ,ere were 6 cases of
crushing injuries, 58 cases of traffic injuries, 12 cases of drop
injuries, and 36 cases of fall injuries. All patients underwent
MRI examinations for the diagnosis of their injuries. ,e
study had been approved by the Medical Ethics Committee
of the hospital, and the patients and their families had
understood the situation of the study and signed the in-
formed consent forms.

,e inclusion criteria were defined as follows: patients
with TPF and normal lower extremity activities before in-
jury, patients aged 24–78 years, patients without a history of
ipsilateral knee fracture before, and patients who agreed to
surgery.

,e exclusion criteria were defined as follows: patients
with severe knee joint disease, patients who did not agree to
undergo surgery, patients with systemic diseases, patients
with fractures around the knee joint on the same side, and
patients who cannot cooperate to sign the informed consent.

2.2. LRM Denoising Algorithm of MRI Based on Gradient
Sparse Prior. ,e denoising of images based on LRM
showed excellent performance and had been widely used in
the denoising of medical images. In order to reduce the noise
of MRI images, the prior information of noise-free MRI
image blocks was combined with the self-phase prior, which
was mixed with the GMM to guide the clustering of noisy
MRI image blocks in this study to enhance the denoising
effect. In addition, the gradient prior of the MRI was in-
troduced to eliminate the ringing effect, so as to construct a
gradient sparse prior-based MRI LRM denoising algorithm.

An image A was divided into several image blocks, and the
collection of which could be expressed as RA � (R1A, ... ,

RaA, ... ,RmA). ,ese image blocks were divided into N cate-
gories, then the probability of any one image block RaA can be
expressed byGMM, and its expressionwas given as follows [11]:

P RaA|λ(  � 
N

n�1
ωnPn RaA | μn, 

n

⎛⎝ ⎞⎠. (1)

In equation (1), λ � (μ1, . . . , μn, 1, . . . , n,ω1, . . . ,ωn)

referred to the set of all kinds of μ, , and ω in GMM. ,e
probability density function of the n-th Gaussian class was
written as follows:

Pn RaA |μn,
n

⎛⎝ ⎞⎠ � c · exp −
RaA − μn( 
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n RaA − μn( 
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,e normalization constant in equation (2) was c; the
negative exponent overcame the defect of the Euclidean
distance and described the relationship between RaA and μn.
,e Gaussian class to RaA was B � (b1, b2, . . . ,

bm), ba ∈ 1, 2, . . . , N{ }; the probability of the n-th
Gaussian class was RaA(a � 1, . . . , m); and the probability
of clustering image blocks into N category was given as
follows:

P(RA, B|λ) � 
m

a�1
P RaA, ba|λ( . (3)

,e following equation could be obtained by taking
logarithms on both sides of equation (3):
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m
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(4)

,e following equation could be obtained by combining
equations (1) and (4):
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(5)

,e image block collection of noisy MRIC was expressed
as RC � (R1C, . . . , RaC, . . . , RmC); based on the λ of GMM
prior, the image block collection was divided into N
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categories, the matrix of the image blocks of the n-th cat-
egory was R

−

nC � (Rn1
, . . . , Rnd(n)

), and the number of similar
image blocks was d(n); then, the decomposition of the
matrix was expressed as follows:

R
−

nC � Zn + zn. (6)

In equation (6), Zn referred to the LRM, and zn repre-
sented the noise matrix; if the noise was distributed inde-
pendently, the minimized E(Zn) is written as follows:

E Zn(  � υ Zn
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R
−
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2

f

σ2
σ,

(7)

where σ is the noise standard deviation, υ is the normal
number, and ‖ · ‖∗ and ‖ · ‖f are the matrix kernel and the
Frobenius norm of the matrix, respectively. We can adopt
the norm minimization to optimize the solution, SVD of
R
−

nC was decomposed as U  VT, and the following equation
can be obtained:

Zn

−

� USO  V
T
. (8)

It was supposed that SO() referred to the singular value
contraction operator in equation (8). Comprehensive
analysis showed that the low-rank decomposition denoising
model combining the GMM prior and the MRI image
similarity prior was expressed as follows:
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Since the different distribution of noise signals in MRI
increases the difficulty in denoising, and there was a devi-
ation between the two, the MRI image leveling method was
proposed, which can be expressed as follows:

Afinal � A
2

−

− 2σ2E 

− 1/2

. (10)

In equation (10), E referred to a matrix with the same
type of A

−

. ,e alternate minimization was adopted in this
study to obtain the estimated class label:

B � argmin
n
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In the equation above, n � 1, 2, . . . , N; a � 1, 2, . . . , m.
,e estimated LRM was expressed as
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,e following equation (13) could be obtained by solving
equation (12):
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And, the following equation could be obtained by
reconstructing the MRI A

−

:
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Equation (14) used the following equation to find the
result for the second optimization:
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However, a ringing effect would be generated during the
aggregation operation. In order to solve this problem, the
gradient prior of MRI was introduced. By finding the
horizontal and vertical gradients of a noise-free MRI image,
it was found that its gradient was sparse, and the Plath
distribution was used to describe this characteristic [12]:

F(X|α, β) �
1
2β

exp −
|X − α|

ε

β
 , (16)

where α refers to the position parameter and β is the scale
parameter; equation (16) is the Gaussian distribution if ε� 2,
and it is the Laplace distribution if ε� 1. α� 0; the super
Laplacian prior of A based on gradient sparsity was given as
follows:

F(A)∞ exp − |ΓA|ε( . (17)

,us, the final model was expressed as
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In the above equation, υ, η, and φ are all regularization
parameters. ,en, the algorithm applied in this study was
constructed.

,e schematic diagram of the constructed algorithm is
shown in Figure 1.

2.3. Simulation Experiment. ,e simulation environment
was described as follows: the platform was MATLAB, the
operating system was Windows 10, and the processor was
Intel(R) Core (TM) 3 CPU (70GHz), with a memory of
8GB. According to experience, the parameter Gaussian
category number N� 100; υ, η, and φ were set to 0.18, 1, and
0.75, respectively; and the image block size was 15×15. ,e
constructed algorithm was compared with the ADF method
to verify the superiority.

Scientific Programming 3



,e convergences, the peak signal-to-noise ratio (PSNR),
and the structural similarity (SSIM) of the two algorithms
were compared under the noise intensity of 4, 8%, 12%, 16%,
and 22%.

2.4. Imaging Examination of Knee Joint. MRI scanning
system (GE7Discovery MR750W) was adopted. During the
scan, the patient was required to maintain a supine posture
and the knee joints were kept straight. After that, a sandbag
was used to fix the calf while the knee joints were naturally
rotated at an angle of 20°∼30°. ,e patient’s knee joints were
placed in the center of the MRI examination coil and
maintained still. ,e scan parameters were given as follows:
(1) proton density weighted (PDW) (sagittal): time of rep-
etition (TR) was 1400ms, and time of echo (TE) was 40ms;
(2) selective partial inversion recovery (SPIR) (sagittal): TR
was 1148.23ms, and TE was 7.4ms; (3) T2-weighted
(T2W)—turbo spin-echo (TSE) (coronal): TR and TE were
2763.21ms and 60ms, respectively; and (4) T1-weighted
(T1W)—TSE (coronal): TR and TE were 453.56ms and
25ms, respectively. ,e layer spacing was 4mm, the interval
was 1mm, and the matrix was 245× 245. During the scan,
the sagittal and coronal positions were the main ones, and
the center of the scan was the joint space. Two experienced
senior physicians in the radiology department were invited
to read and evaluate the images.

2.5. Diagnostic Criteria and Surgical Treatment. Kfuri and
Schatzker subtype and surgical treatment of TPF were
performed based on the MRI results of the patient’s knee
[13]. ,e specific classification indexes are as follows: type I
fracture was manifested as simple collapsed fractures of the
lateral platform; type IV fracture was manifested as medial
platform fractures; type V fracture was featured with bi-
lateral platform fractures; and type VI fracture was com-
bined with a plateau fracture with complete metaphysis.
Among them, type IV fracture was mostly local high-energy
violent impact injuries and accompanied by knee ligament
dislocation, leading to joint injuries such as lateral collateral
suture, anterior femoral cruciate ligament, and LM, whereas
the local spine fractures in type V and VI fractures were
mostly caused by small local bone and high-energy bone

injury lesions, causing serious large local bone and soft tissue
injuries at the same time.

,e patient was required to keep supine, tied with an air
tourniquet on the thigh, and then anesthetized and dis-
infected. ,e patient had to bend the knee joint at 30° to
install a homeopathic traction quick reducer, so as to check
whether the connection was correct. Next, the patient was
performed with the homeopathic traction to observe the
fracture reduction. If there was no articular surface col-
lapse, it was fixed after reduction. Unilateral platform
fractures were fixed with unilateral anatomical bone plates,
and bilateral platform fractures or complex platform
fractures with metaphyseal fractures were fixed with bi-
lateral anatomical plates. If there was articular surface
collapse, a push rod was adopted to press against the
collapsed fracture, and then, a double cortical iliac strip was
implanted in the bone defect below the joint. If the patient
had not recovered the width of the platform after the re-
duction, a compression bolt can be used to restore the
platform width. After the patient’s arthroscopy, conser-
vative treatment was adopted for meniscus combined with
contusion or partial laceration. For complete tears (lon-
gitudinal tears on the side of the joint capsule and barrel-
handle tears), they were repaired or removed. Degenerative
changes (rough free margins, brush-like changes) should be
trimmed; combined cruciate ligament parenchymal frac-
tures or start and end avulsion fractures should be left for
secondary reconstruction and plaster fixed. ,e chief
physician was required to perform the TPF surgery and
meniscus injury detection and repair surgery [14].

2.6. Observation Indicators. ,e MI situation was recorded,
and the sensitivity, specificity, and accuracy of denoisedMRI
diagnosis and undenoised MRI diagnosis were calculated
according to the equations: sensitivity� true positive/(true
positive + false negative); specificity� true negative/(true
negative + false negative); and accuracy� (true positive + -
true negative)/total.

2.7. Statistical Analysis. ,e data processing of this study
was analyzed by SPSS 22.0 version statistical software.
Measurement data were expressed as mean± standard de-
viation (x± s), and count data were expressed as percentage.
Different types of injuries and differences between MRI
diagnoses and actual injuries were expressed by χ2 and
compared with the square test. ,e difference was statisti-
cally significant at P< 0.05.

3. Results

3.1. Algorithm Simulation Results. Figure 2 shows the con-
vergences of the two algorithms on the simulated brain
database (SDB) under 12% noise conditions. It illustrated
that the curve of the ADF algorithm basically remained at
4.044×108 at about 25 iterations, while the algorithm
constructed basically tended to be flat at about 15 iterations,
maintaining at 4.038×108. It was said that the convergence

Image block
ensemble 

Denoising image
data 

Image similarity
prior 

Image denoising

GMM prior

Gradient sparsity

Reconstruction

Block

Super Laplacian
prior 

Noise image 

Figure 1: Schematic diagram of the constructed algorithm.

4 Scientific Programming



effect of the constructed algorithmwas better than that of the
ADF algorithm.

Figure 3 shows the PSNR values of the two algorithms
under different noise intensities. It disclosed that compared
with the algorithm constructed, the PSNR value of the ADF
algorithm had increased by 3.267∼7.184 dB, and the PSNR
values of the algorithm constructed at 4% noise (30.068 dB)
and 22% noise (15.845 dB) were greatly higher than those of
the ADF algorithm, which were 4% noise (22.884 dB) and
22% noise (9.241 dB), showing statistically obvious differ-
ences (P< 0.05).

Figure 4 shows the SSIM values of the two algorithms
under different noise intensities. Compared with the algo-
rithm in this study, the ADF algorithm showed an increased
SSIM value by 0.189∼0.542, and the SSIM values of the
algorithm constructed at 12% noise (0.86), 16% noise
(0.809), and 22% noise (0.763) were much higher in contrast
to those of ADF algorithm at 12% noise (0.404), 16% noise
(0.336), and 22% noise (0.221), showing statistically re-
markable differences (P< 0.05).

3.2. Denoising Results. ,e denoising results of the two al-
gorithms at 22% noise intensity are given in Figure 5. ,e
denoising effect of the ADF algorithm was not obvious, and
the proposed algorithm was the closest to the image without
noise after denoising, so it had achieved better denoising
results compared with the ADF algorithm.

3.3. Schatzker Subtypes and MI Status of All Patients.
Figure 6 shows the Schatzker subtypes of all patients. It
illustrated that in the Schatzker subtypes, type I accounted
for 1.79% (2 cases), type II accounted for 40.18% (45 cases),
type III accounted for 10.71% (12 cases), type IV accounted
for 15.18% (17 cases), type V accounted for 16.96% (19
cases), and type VI accounted for 15.18% (17 cases).

Figure 7 shows the MI situation of all patients. ,ere
were 66 cases (58.93%) suffered fromMT, including 56 cases
(50.00%) of LM and 10 cases (8.93%) of MM; there were 32

cases (28.57%) of edge tearing, including 30 cases (26.79%)
of LM and 2 cases (1.79%) of MM; there were 8 cases (7.14%)
of barrel-handle tearing, with all being LM; there were 8
cases of oblique laceration (7.14%), including 6 cases of LM
(5.36%) and 2 cases of MM (1.79%); there were 12 cases of
radiation tear (10.71%), including 8 cases of LM (7.14%) and
4 cases of MM (3.57%); there were 6 cases of horizontal
tearing (5.36%), including 4 cases of LM (3.57%) and 2 cases
of MM (1.79%); there were 16 cases of MC (14.29%), with all
being LM; and there were 18 cases of MDI (16.07%), in-
cluding 4 cases of LM (3.57%) and 14 cases of MM (12.50%).

3.4.MI in Schatzker Subtype Patients. Figure 8 shows the MI
of patients with Schatzker subtypes. Among Schatzker type
I–VI fractures, the number of MC patients was 0, 8, 0, 6, 3,
and 0, respectively, and that of MTpatients was 0, 16, 5, 7, 12,
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and 4, respectively.,e incidence of MI was 0%, 53.33% (24/
45), 41.67% (5/12), 76.47% (13/17), 78.94% (15/19), and
23.53% (4/17), respectively.,erefore, the incidence ofMI in
the Schatzker subtype patients was not statistically

significant (P> 0.05), but the incidence of MT was 54.46%
(61/112), which was much higher in contrast to that of MC.
,e incidence of 15.18% (17/112) shows statistically great
difference (P< 0.05).

(a) (b) (c) (d)

Figure 5: ,e denoising results of the two algorithms at 22% noise intensity. (a, c) ,e clear MRI image and the MRI image denoised with
the ADF algorithm, respectively. (b) ,e MRI image under 22% noise intensity. (d) ,e MRI image after denoising with the proposed
algorithm.
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3.5. Diagnosis Results of Two Algorithms on MI. ,e diag-
nostic sensitivity, specificity, and accuracy of the two
methods were compared, and the results are given in Fig-
ure 9. ,e diagnostic sensitivity of the denoising MRI image
was 97.11%, the specificity was 93.83%, and the accuracy was
95.33%; the diagnostic sensitivity, specificity, and accuracy
of MRI images without denoising were 89.31%, 78.34%, and
71.23%, respectively. Among them, the diagnostic specificity
and accuracy of the denoised MRI images were higher
greatly than those of undenoised MRI images, and the
differences were statistically visible (P< 0.05).

4. Discussion

TPF is a complex fracture in which important and critical
joints are fractured or tissues are destroyed. ,ere are many
types of fractures, among which meniscus injuries are the
most common. ,e meniscus is an important part of the
human body, and it acts as a buffer between the femoral
condyle and the articular surface of the tibial plateau [15]. A
large number of domestic and foreign studies have proved
that MI is one of the important factors that cause arthritis,
and its incidence is as high as 49% [16]. ,erefore, the
diagnosis of TPF +MI is particularly important for the
postoperative functional recovery of patients and reducing
the incidence of knee joint pain. MRI imaging diagnosis
plays an important role in the determination of TPF
combined with meniscus injury. Among them, the accuracy
and resolution of the image are extremely high, and AI-
based MRI image denoising has emerged [17]. In this study,
the prior information of the noise-free MRI image block was
combined with the self-phase prior, added with GMM to
cluster the MRI image block; the gradient prior of MRI was
introduced to eliminate the ringing effect, and a new MRI
image denoising algorithm was constructed and compared
with the ADF algorithm. ,e results revealed that the
convergence effect of the constructed algorithm was better
than that of the ADF algorithm. Compared with the ADF
algorithm, the PSNR value and SSIM value of the

constructed new algorithm were improved by
3.267∼7.184 dB and 0.189∼0.542, respectively. Among them,
the PSNR value (15.845 dB) and SSIM value (0.763) of the
algorithm at 22% noise were significantly higher compared
with those of ADF, which were 9.241 dB and 0.221, re-
spectively, showing statistically great differences (P< 0.05).
Compared with the ADF algorithm, the algorithm con-
structed achieved better denoising results, and the corre-
sponding redundant images hardly contained image detail
information, indicating that the denoising results retained
the most image information.

After that, the MRI LRM denoising algorithm based on
gradient sparse prior was applied to the diagnosis of 112
TPF +MI patients admitted to hospital, and the diagnostic
sensitivity, specificity, and accuracy of MRI images without
denoising were compared. ,e results showed that, in the
Schatzker subtypes, the numbers of patients with types I, II,
III, IV, V, and VI were 1.79% (2 cases), 40.18% (45 cases),
10.71% (12 cases), 15.18% (17 cases), 16.96% (19 cases), and
15.18% (17 cases), respectively. ,ere were 66 cases (58.93%)
suffered fromMT, including 56 cases (50.00%) of LM and 10
cases (8.93%) of MM; there were 32 cases (28.57%) of edge
tearing, including 30 cases (26.79%) of LM and 2 cases
(1.79%) of MM; there were 8 cases (7.14%) of barrel-handle
tearing, with all being LM; there were 8 cases of oblique
laceration (7.14%), including 6 cases of LM (5.36%) and 2
cases of MM (1.79%); there were 12 cases of radiation tear
(10.71%), including 8 cases of LM (7.14%) and 4 cases of MM
(3.57%); there were 6 cases of horizontal tearing (5.36%),
including 4 cases of LM (3.57%) and 2 cases of MM (1.79%);
there were 16 cases of MC (14.29%), with all being LM; and
there were 18 cases ofMDI (16.07%), including 4 cases of LM
(3.57%) and 14 cases of MM (12.50%). Such results were
consistent with the findings of Almaawi et al. [18], who
selected 103 patients with TPF examined by MRI and found
that the incidence of soft tissue injury was as high as 99%,
and 91% of patients had LM injury. ,e incidences of MI in
the Schatzker subtypes were 0%, 53.33% (24/45), 41.67% (5/
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Figure 8: ,eMI of patients with Schatzker subtypes.Note. ∗ suggests
that the incidence of MI in Schatzker subtype patients was not statis-
tically significant (P> 0.05).
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Figure 9: ,e diagnostic sensitivity, specificity, and accuracy of the
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obvious in contrast to the diagnostic effect of the undenoised MRI
image (P< 0.05).

Scientific Programming 7



12), 76.47% (13/17), 78.94% (15/19), and 23.53% (4/17),
showing statistically remarkable differences (P> 0.05); but
the incidence of MT was 54.46% (61/112), which was much
higher in contrast to that of MC. ,e incidence of 15.18%
(17/112) shows statistically great difference (P< 0.05). Such
results were consistent with the descriptions of Polat et al.
[19], which revealed that if the lateral platform collapses too
much, the risk of LM injury would increase exponentially,
indicating that there was a great relationship between the
meniscus edge tear and the collapse of the tibial plateau
articular surface. ,e diagnostic specificity (93.83%) and
accuracy (95.33%) of denoised MRI images were higher
obviously than those of undenoised MRI images (78.34%
and 71.23%, respectively), and the differences were statis-
tically observable (P< 0.05). It suggested that denoisingMRI
images based on this algorithm can improve the accuracy of
MI diagnosis in patients with TPF+MI. Such outcomes were
consistent with the results of Zivanovic et al. [20], who
proposed an image denoising algorithm based on LRM,
which constrained the sparseness of the noise to ensure the
sparsity to restore the image in order to achieve the purpose
of denoising.

5. Conclusion

In this study, the prior information of the noise-free MRI
image block was combined with the self-phase prior, the
gradient prior of MRI was introduced to eliminate the ringing
effect, and a new MRI image denoising algorithm was con-
structed, which was compared with the anisotropic diffusion
fusion (ADF) algorithm. After that, the LRM denoising al-
gorithm based on gradient sparse prior was applied to the
diagnosis of 112 patients with TPF+MI admitted to hospital,
and the results were compared with those of the undenoised
MRI image. It was found that the MRI LRM denoising al-
gorithm based on gradient sparse prior showed better
denoising performance, and the denoising results had the
most retained image signals. Denoising MRI images based on
the algorithm constructed in this study can improve the
accuracy of MI diagnosis. ,e shortcoming of this study was
that the research sample was small and the type was diverse,
so that the applicability of the results was limited. ,erefore,
the sample size can be expanded in the follow-up. In short, the
results of this study provided a reliable theoretical reference
for the study of TPF+MI diagnosis based on MRI images
under the intelligent algorithms.
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