Hindawi

Scientific Programming

Volume 2021, Article ID 6397786, 10 pages
https://doi.org/10.1155/2021/6397786

Research Article

Hindawi

A Fine-Grained Horizontal Scaling Method for

Container-Based Cloud

Chunmao Jiang and Peng Wu

School of Computer Science and Information Engineer, Harbin Normal University, Harbin, Heilongjiang 150025, China
Correspondence should be addressed to Peng Wu; 864782389@qq.com

Received 26 September 2021; Revised 5 November 2021; Accepted 9 November 2021; Published 27 November 2021
Academic Editor: Punit Gupta

Copyright © 2021 Chunmao Jiang and Peng Wu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The container scaling mechanism, or elastic scaling, means the cluster can be dynamically adjusted based on the workload. As a
typical container orchestration tool in cloud computing, Horizontal Pod Autoscaler (HPA) automatically adjusts the number of
pods in a replication controller, deployment, replication set, or stateful set based on observed CPU utilization. There are several
concerns with the current HPA technology. The first concern is that it can easily lead to untimely scaling and insufficient scaling
for burst traffic. The second is that the antijitter mechanism of HPA may cause an inadequate number of onetime scale-outs and,
thus, the inability to satisfy subsequent service requests. The third concern is that the fixed data sampling time means that the time
interval for data reporting is the same for average and high loads, leading to untimely and insufficient scaling at high load times. In
this study, we propose a Double Threshold Horizontal Pod Autoscaler (DHPA) algorithm, which fine-grained divides the scale of
events into three categories: scale-out, no scale, and scale-in. And then, on the scaling strength, we also employ two thresholds that
are further subdivided into no scaling (antijitter), regular scaling, and fast scaling for each of the three cases. The DHPA algorithm
determines the scaling strategy using the average of the growth rates of CPU utilization, and thus, different scheduling policies are
adopted. We compare the DHPA with the HPA algorithm under different loads, including low, medium, and high. The ex-
periments show that the DHPA algorithm has better antijitter and antiload characteristics in container increase and reduction

while ensuring service and cluster security.

1. Introduction

The rapid growth of container technology requires effective
deployment and management strategies for containerized
applications while addressing their runtime adaptability. In
addition, the ability of cloud computing to provide resources
on demand encourages the development of elastic applications
that can accommodate changes in working conditions (e.g.,
variable workloads). Horizontal elasticity allows increasing
(scaling-out) and decreasing (scaling-in) the number of ap-
plication instances (e.g., containers) [1]. Most of the existing
horizontal scaling methods explore resilience, which respond
quickly to small load changes [2-4]. In this study, we build fine-
grained horizontal scaling to cope with sudden load peaks.
As two crucial quantitative metrics, response time and
resource utilization are essential measurements for various

load variations under dynamic environmental conditions
[2]. Container-based virtualization technology can improve
application performance and resource utilization more ef-
ficiently than virtual machines (VM). Many existing scaling
mechanisms employ fixed thresholds, which are based on
cloud platform metrics, in general, such as CPU utilization.
In contrast, such an approach is widely used, including
Amazon’s EC2, a virtual machine-based cloud platform.
However, for applications that are constantly changing their
requirements for CPU, memory, and other resources, their
performance and resource utilization decrease significantly
[5-7].

The adaptation of advanced metrics and dynamic
thresholds may respond more finely to fluctuations in the
workload, so it can improve application performance and get
higher resource utilization. Therefore, we hope to develop a

mailto:864782389@qq.com
https://orcid.org/0000-0002-3775-3802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6397786

new dynamic autoscaling approach that automatically ad-
justs the thresholds based on the state of the execution
environment observed by the monitoring system. In this
way, the monitoring information, including infrastructure
and application-specific metrics, will help the service pro-
vider to accomplish a satisfactory adaptation mechanism to
various operational states. Furthermore, fine-grained scal-
ability thresholds and degrees of scalability can better im-
prove resource utilization and better cope with dynamic
workload variations.

Therefore, this study aims to develop a new fine-grained
dynamic scaling method based on the thought of granular
computation. The major contributions of this study are as
follows: first, we classify the container scaling events into
three categories by establishing two thresholds, i.e., scale-
out, neither scale-out nor scale-in, and scale-in. Second, we
further subdivide the scaling strength into three levels for the
scaling events, i.e., no scaling (to prevent jitter), regular
scaling, and fast scaling. Third, the scalability metric applied
in this study considers not only CPU utilization but also the
growth rate of CPU utilization. We validate the algorithm’s
effectiveness by simulation under low load, medium load,
and high load scenarios, respectively. The results show that
the proposed algorithm in this study can resist high load and
jitter well and effectively guarantee the cluster’s quality of
service (QoS).

The remainder of this study is organized as follows.
Section 2 reviews the horizontal scaling mechanism of
container clouds and presents the limitations that currently
exist in Kubernetes. In Section 3, we present the DHPA
algorithm, which is a dual-threshold horizontal scaling al-
gorithm. And then, a specific example is given to illustrate
the idea and process of the DHPA algorithm. Section 4 gives
the experiment result and analysis. Finally, we conclude this
study and prospective future studies in Section 5.

2. Related Work

Kubernetes [8-10] offers Horizontal Pod Autoscaler (HPA)
[11-13], a built-in horizontal scaling controller, which au-
tomatically scales the ReplicaSet controller, deployment
controller, or pod quantity based on statistical CPU utili-
zation (or other custom metrics). This section presents the
Kubernetes’ horizontal scaling technique, including the
acquisition of HPA metrics, how it works, and its
limitations.

2.1. Horizontal Pod Autoscaler. HPA is a cyclic control
process. The controller manager queries resource utilization
during each cycle based on the metrics specified in each
Horizontal Pod Autoscaler definition.

The controller manager can retrieve data from the fol-
lowing sources: (1) gather CPU utilization and memory
usage data from Heapster, (2) use the Resource Metrics API
to collect data from the Metrics Server that contains resource
metrics for each pod in the cluster, and (3) the Custom
Metrics Adapter provides the data collected by third-party
plug-ins such as Prometheus to the Custom Metrics API,

Scientific Programming

which the cluster then uses to fetch the data. In the latest
version of Kubernetes, the cluster introduces a new data
reporting channel—aggregation layer, an abstract data
reporting interface that third-party plug-ins or adminis-
trators can use to implement this interface themselves. The
approach of HPA to acquire data is shown in Figure 1.

2.2. How HPA Works. 'The principle of HPA is to poll re-
sources of each pod every 30 seconds to determine whether
the number of copies of the target pod needs to be adjusted
by statistically analyzing the changes in the load of the target
pod. There are two approaches to HPA to calculate the
number of targets that the pod needs to scale-out or scale-in.

2.2.1. CPU Utilization Percentage. CPU utilization per-
centage represents the average CPU utilization of all copies
of the current pod. A Pod’s CPU utilization is the Pod’s
current CPU usage divided by the Pod Request value [14].
The calculation of the target number of pods for a scaling
capacity is given by

ER = ceil[cR* (%)] (1)

where ER (expect replicas) represents the expected number
of pods needed for expansion. The cR (current replicas)
represents the number of pods in the current state. The cV
(current value) represents the metrics that are currently be
detected, such as memory usage, CPU utilization, and HTTP
request traffic. The dV (desired value) represents the
threshold for scaling up or scaling down, and Ceil represents
the value, which is the nearest integer that is greater than or
equal to the dV. Suppose the value of CPU utilization
percentage exceeds 80% at a given moment. In that case, it
means that the current number of pod copies is likely in-
sufficient to support more subsequent requests, and dynamic
scaling is required. When the request peak passes, the CPU
utilization of Pod drops again, and HPA will reduce the
number of pod copies to a reasonable level.

2.2.2. Application-Based Defined Metrics. CPU utilization
percentage is implemented by the Heapster plug-in when
calculating the CPU usage of the Pod, but adding a plug-in
increases the complexity of the system while decreasing the
efficiency of HPA’s scaling. Kubernetes supports using
custom metrics as metrics starting with version 1.2, which
requires the given properties such as the metric units and
how the metrics data are obtained. This mechanism is not
widely used yet. The HPA control is illustrated in Figure 2.

The workflow of HPA can be summarized as follows.
HPA will fetch the metrics data in the cluster every 30
seconds. Suppose the fetched metrics exceed the initial
threshold. In that case, the HPA starts counting the number
of target pods, and the HPA controller sends a command to
the corresponding controller of the pods (ReplicaSet and
deployment). The controller recycles or scales out the
number of pods according to the number of target pods.
After the operation of the pod is completed, the service layer

Scientific Programming

Horizontal Pod Autoscaler Metrics Metrics
aggregator server
] i]
Denl nt Prometheus cAdvisor
eployme adapter Kubelet
) i
ReplicaSet prometheus
¥ ¥]
Pod Pod Pod

1 L) L]

FicUre 1: Flowchart of HPA collective data.

| Poat | [o2 | | .. || poan |

RS (Depolyment)

A
| HPA Controller |

FiGUure 2: HPA system.

inside Kubernetes will automatically perform load balancing
operations for the scaled-up or scaled-down pods. At this
point, HPA has completed the entire horizontal scaling
operation, and the scaling flowchart is shown in Figure 3.

2.3. Limitations Analysis of HPA. By analyzing the Kuber-
netes source code, we found that the HPA system imple-
mentation is relatively simple and has some limitations.

(1) The algorithm used by HPA for expansion and
contraction is based on equation (1), which is simple
to implement and inflexible. For example, suppose
there are many network requests instantaneously. In
that case, HPA will scale out, but it needs time and
resources to start a pod service. Suppose the scale-out
is not timely, or the number of scale-out is insuffi-
cient. It may seriously crash service and even
threaten the cluster’s security.

(2) Due to HPA’s antijitter mechanism, the cluster will
not be rescaled within 3 minutes after an expansion,
which may result in an inadequate expansion. The
number of containers cannot meet the subsequent
service requests. The quality of service will be se-
verely degraded or even collapse, which significantly
affects the user experience and even cluster security.
Simultaneously, there will not be any scaled opera-
tions within 5 minutes. If the scale occurs when
traffic peaks to arrive again, the pod copy is not
enough, which will eventually lead to a decline in the
quality of service, cluster crash, and other issues.

(3) HPA fixes the time of data sampling to save resource
consumption. The data reporting interval is the same
during regular and high load periods, seriously af-
fecting the cluster’s access to information about the
entire load during high load. The mechanism makes

HPA 1: Get metrics in Metrics -
2: Calculate the number <":|
of target Pods

3: Change the
number of traget
copies

4: Controller retracts
Pod count

RS (Deployment)
Pod Pod

Figure 3: HPA flow chart.

the cluster unable to correctly estimate the current
pod load, prone to untimely and inadequate capacity
expansion.

A summary of the related work is shown in Table 1.

3. Dual-Threshold Horizontal
Scaling Algorithm

In this section, we present a dual-threshold-based scaling
algorithm (DHPA) and analyze the algorithm through an
example.

3.1. The Basic Idea of DHPA. The basic idea of the DHPA
algorithm is to divide the container scaling into finer
granularity by introducing the idea of granular computation.
First, a threshold is set for scale-out and scale-in, respec-
tively, and the two thresholds divide a scaling event into
three parts: scale-out, no scale-in, and scale-in. The scaling
strength is also subdivided as follows: no scale-out, normal
scale-out and scale-in, and fast scale-out and scale-in. This
fine-grained division of the container scale-out and scale-in
capacity problems can be an excellent solution to the
problems mentioned above, and the algorithm imple-
mentation steps are as follows:

(1) In the DHPA algorithm, there will be no longer
mechanisms such as no more expansion within 3
minutes and no more expansion within 5 minutes of
shrinkage. DHPA will use dynamic antijitter mea-
sures in place with the original static antijitter
mechanism.

(2) The DHPA algorithm dynamically adjusts the
reporting time of cluster monitoring pod data, which
is subdivided into three granularities, i.e., at low load,
the reporting time is 30 seconds. For medium load, it
is 10 seconds. For high load, the data uptime is once
every 1 second. This mechanism improves the
mastery of the pod load situation of this algorithm
under different load cases, allowing for better control
of the system’s scaling operations.

(3) The DHPA algorithm dynamically adjusts the pod’s
expansion by triangulating the pod expansion situ-
ation. It performs no expansion operation when the
fluctuation of the pod load changes little. When the
fluctuation variation is moderate, it performs the
regular expansion operation. If the pod’s load

4 Scientific Programming
TaBLE 1: Overview of various HPA for container.
Virtualization Basis Metrics Method Ability
Container CPU and memory Time and throughput Control theory Dynamic
Container CPU Nothing Rule-based Static
VM and container CPU and bandwidth Application throughput Rule-based Static
VM and container CPU Nothing Rule-based Static
Container CPU, memory, and bandwidth Time and throughput Rule-based Dynamic

fluctuation varies sharply, the algorithm will perform
a robust expansion operation to meet the pod’s load
demand. This case will reduce the number of ex-
pansion resources wasted because of jitter and fully
consider the expansion under different load
conditions.

(4) During capacity reduction, the DHPA algorithm
also dynamically adjusts the capacity reduction
range of pods. It can effectively reduce the frequent
expansion and reduction problems caused by the
sudden increase in the load after the load drop and
reduce the business crash caused by the antijitter
problem.

3.2. Scheduling Algorithm

Definition 1. (base threshold). Let a and f3 represent two
thresholds, which are used to adjust the capacity of provided
pods.

When the DHPA monitors the current pod’s CPU
utilization U over a, it changes the monitoring time from 30
seconds to 10 seconds and starts the capacity expansion
judgment. If the CPU utilization U of the monitored pod
exceeds 3, we change the refresh rate to 1 second.

Definition 2. A pod’s CPU utilization queue is set, where n is
customizable and in this study is provisionally defined as 3.
The larger the value, the better the antijitter effect, but the
more stringent the scaling conditions will be.

Definition 3. Two thresholds § and f3 are defined, satistying
0.1 <6<p, and ¢ and d are the two critical granularity
thresholds used by the DHPA algorithm to determine the
strength of the expansion and contraction. We suggest that a
and b take 40% of their range of values, while d and e are
suggested to be 70% of their range of values. The developer

can determine the most appropriate threshold value by
conducting experiments in their cluster.

Let A, = (x,, — x,_,)/x,_, be the growth rate between
two neighboring CPU utilization rates in the CPU utilization
queue. ¢, = (A, + Ay +---+A,_; +A,)/n is the average of
the growth rate of CPU utilization. The DHPA algorithm as
follows addresses the above scaling problem and formulates
scheduling algorithms for each of the three granularities in
the scaling case.

The process of scaling up a container can be outlined as
follows. For a given CPU utilization history queue
P ={x;,x,,...,x,}, we first compute each item A; in queue
P, if not all of A; are greater than 6, or one x; is not greater
than «, i.e., 3A; < § or Ix; < a; then, the cluster will not be
scaled up because the algorithm will determine it to be a
normal jitter for pod services. If each A, is greater than J, but
there is one A; is not greater than «, or each utilization x; in
the queue is greater than a, i.e., VA;<§ and JA;<e or
Vx; > &, then the DHPA algorithm determines it as a normal
cluster load rise and performs the normal scaling up, and the
number of scaled-up pod copies is computed according to
the following equation:

ER = ceil[cR * (ﬂ)] (2)
o
If the growth rate of each is greater than ¢, and each xi in
the queue is greater than a, that is, e<A, <A;< ... <
A, <A, VA;<g and VA, <a, then the algorithm deter-
mines that the traffic peak is about to come; therefore, this
strategy adopts emergency expansion. The number of
needed to expansion copies of the pod according to equation

is as follows:.
ER = ceil[cR * (%) % || 10]. (3)

The scaling-up strategy of the DHPA algorithm is
summarized in the following equation:

3A; <6, or, Ix; <« no expansion
IVA; >3, and, 3A;<e, or, Vx;>a normal expansion (4)
e<A, <A< ... <A, and, VA;<e and, Vx;>a rapid expansion

Similarly, we give the following procedure for container
scaling down. If there is a A, that is greater than 0, or thereisa A;
greater than -4, i.e, 3A; > — & or IA; >0, the algorithm de-
termines that this is a normal cluster load fluctuation and does

not perform a scale-down operation. If each A, is less than -4,
there is one A; that is greater than —¢, or each utilization x; in
the queue is less than «, ie, VA, < =& and 3A, > —¢ or
Vx; < . The algorithm determines that this is a normal cluster

Scientific Programming

load drop and performs a normal scaling-down operation, and
the number of shrunken pods is calculated according to the
following equation:

ER = ceil[cR * (%)] (5)

If each of A, is less than —¢, and at the same time each x;
in the queue is less than a, that is, at this point, the cluster
load drops faster, this time you can do a quick scaling down,
in order to save resources, scaling down the number of
copies of the pod according to the following equation:

ER = ceil[cR * (%) * || * 10]. (6)

The time complexity of the DHPA algorithm is mainly
focused on the polling step of the cluster load. Suppose the n
represents the number of copies of each pod in the container
cluster and u represents the cluster load at each moment. In
the scaling process, each time needs to traverse the n copies
of the cluster, so the time complexity of the DHPA algorithm
is O (N). The DHPA algorithm has a CPU utilization list and
a pod list, each with a finite number of internal objects, so the
space complexity of the DHPA algorithm is O (N).

3.3. AnIllustrative Example. This section gives an example of
the DHPA algorithm. In the example, we use sin function to
simulate the CPU utilization of a set of pods per second as
shown in equation

U, =200 =* sin(t), (7)

where t represents the times (second), the entire experiment
lasts 180 seconds t ={1, 2,...,180}, and then, the utilization
for each second is U, = {0, 3, ...,200} U {200,.. ., 3,0}, thus
simulating the trend of the pod’s CPU utilization. Suppose
a =50 and f3 = 70; these two basic thresholds are used to
dynamically adjust the data reporting time of CPU utili-
zation. Suppose 6 = 0.1 and & = 0.3; these two granularity
thresholds are used to determine the increase or decrease in
the CPU utilization queue to determine the scaling effort.
The RT can be used to represent the cluster data reporting
interval. p = {x,x,,...,x,} represents the queue that holds
the CPU utilization history. Then, n = 3 in this case.

(1) The experiment starts from 1 second, and U, = 3.49
according to equation (7). According to the algo-
rithm, we derive the current CPU utilization data
reporting time RT = 30, which U, is not reached « at
this time, and the historical rate of change in the
utilization has not reached & or ¢, therefore, not
scaling up and scaling down.

(2) After an interval of 30 seconds, U =99, and
P ={3.49,99.9}, the CPU utilization exceeds «, but
the rate of change of the historical CPU utilization
has not yet reached & or ¢ so do not perform a
capacity scaling up. The RT is modified by 1
becauseU = 99> f.

(3) At 31 seconds, U, =103, and P = {3.49,99.9,103},
the CPU utilization exceeds «, but the rate of change

of the historical CPU utilization in the middle has
not reached § or ¢, so do not perform a capacity
scaling up.

(4) At 32 seconds and P ={99.9,103,105}, the CPU
utilization has exceeded «, but the rate of change in
the historical CPU utilization has not reached ¢, so
normal expansion. According to equation (2), the
approach to calculate the number of copies of the
pod should be expanded to 3, and then expansion
starts.

(5) Since it takes 5 seconds to expand a container, the
container is expanded to 3 copies at 42 seconds, so
the expansion operation is completed.

(6) At 150 seconds, U, = 99, and P = {105, 103, 99}, the
CPU utilization is over a, but the rate of change in
CPU utilization is less than 0, so the normal shrink
operation is performed at this time according to
equation (5). The number of copies of the shrink pod
should be 2.

(7) Since it takes 5 seconds to shrink one container, at
160 seconds, the container will be shrunk to two, at
which point the shrink operation is completed.

4. Experiments and Data Analysis

This section conducts comparative experiments on the
DHPA algorithm’s effectiveness in low, medium, and high
load cases. The number of containers produced by the
DHPA algorithm is compared with the number of con-
tainers produced by the HPA algorithm and the number of
containers theoretically required to analyze the actual per-
formance of the DHPA algorithm in the three load cases.

The experiment was conducted based on a simulator
program written in Java. The specific environment was as
follows: operating system Windows 10 1909 version, JDK
version 1.8, data analysis program using Python language for
writing, the data analysis tool Matplotlib version 3.1.1, and
NumPy version 1.16.5. In the simulation experiments, the
CPU utilization of a single pod was simulated using the sin
function as the base data and multiplied by the corre-
sponding multiplier to simulate the CPU utilization under
different pressures. Ten experiments were performed for
each of three cases, and the average of the experimental data
was taken as a sample value.

4.1. Analysis of Experimental Data under Low Load
Conditions. This experiment carries out a comparison by
simulating the DHPA algorithm and Kubernetes’ own HPA
algorithm under low load, simulated node 4, node CPU
cores for 4 cores, single-core processing power of
2,252 MIPS, node RAM of 16 GB, hard disk capacity 1T,
bandwidth 1,000 MB/s. In this experiment, CPU utilization
ranges between 0% and 200%. We set that every second the
CPU utilization of the pod is

U, =200 = sin(t), (8)

where ¢ is the number of seconds, the whole experiment lasts
180 seconds, and the initial number of pods is set to 1. Part of
the experimental data is shown in Table 2, where field time
represents the time, BeforeUtil represents the real-time CPU
utilization, CalPod represents the theoretical calculation of
the number of pods, RealPod represents the actual number
of pods after the expansion of the algorithm, AfterUtil
represents the expansion of the calculation, and IsBreak
represents whether the cluster crashes or not (a single pod
crashes if its CPU utilization exceeds 100%).

It can be seen from Table 2 that the DHPA algorithm can
perform expansion and contraction operations efficiently at
all time points under low load.

The simulated experimental data for HPA are shown in
Table 3. The HPA algorithm has a gap between the number
of pods and the number of computed pods in most of the
time points under low load and cannot promptly perform
the scaling operation.

As shown in Figure 4, most of the time, the actual
number of pods for the HPA algorithm is lower than the
number of pods required, and this problem is largely due to
the inadequate prediction of the HPA algorithm at the time
of capacity expansion and the cooldown time after the ex-
pansion and contraction operation. The DHPA algorithm
can efficiently expand and contract capacity after a short
delay, which is very close to the theoretical number of pods
needed by the cluster, which shows that the DHPA algo-
rithm has a great advantage over the HPA native algorithm
low load situations.

4.2. Analysis of Experimental Data under Low Load
Conditions. In the medium load experiment, we assume that
the number of nodes is 20, the number of CPU cores per
node is 4, the single-core processing power of 2,252 MIPS,
node RAM is 16 GB, hard disk capacity 1 T, and bandwidth
1,000 MB/s. We expand the multiples of the sin function to
simulate the CPU utilization of the pod. The experimental
CPU utilization ranges between 0% and 1,000%. We set the
CPU utilization per second as follows:

U, =200 sin(t), 9)

where t is the number of seconds, the entire experiment lasts
360 seconds, the initial pod number is set to 10, and some of
the experimental data are shown in Table 4.

There is a small difference between the number of pods
scaled by the DHPA algorithm and the theoretical number of
pods under medium load, proving that the DHPA algorithm
also has good performance under medium load. As shown in
Table 5, the HPA algorithm scales out the number of pods
that are needed under medium load and the total number of
pods that are needed.

From Figure 5, it can be seen that HPA algorithm has a
large gap between the number of pods and the actual
number of pods needed, so there were several cluster
crashes, which show that the HPA algorithm has a large
defect in scaling up and scaling down under medium load.

Scientific Programming

TaBLE 2: Experimental data of the DHPA algorithm under low load.

Time (s) BeforeUtil CalPod RealPod AfterUtil IsBreak
30 100 2 2 50 False
60 173 4 4 43 False
90 200 4 4 50 False
120 173 4 4 43 False
150 100 2 3 33 False

TaBLE 3: Experimental data of the HPA algorithm under low load.

Time (s) BeforeUtil CalPod RealPod AfterUtil IsBreak
30 100 2 1 100 False
60 173 4 3 58 False
90 200 4 3 67 False
120 173 4 3 58 False
150 100 2 3 33 False

The number of pods produced by the DHPA algorithm is
very similar to the actual number of pods needed, so it can be
seen that DHPA algorithm performs relatively well in scaling
under medium load.

4.3. Analysis of Experimental Data under High Load
Conditions. In the high load experiment, we assume that the
number of nodes is 40, the number of CPU cores per node is
4, the single-core processing power of 2,252 MIPS, node
RAM is 16GB, hard disk capacity 1T, and bandwidth
1,000 MB/s. We expand the multiples of the sin function to
simulate the CPU utilization of the pod. The experimental
CPU utilization ranges between 0% and 2,000%. We set the
CPU utilization per second as follows.

U, = 1000 * sin (t), (10)

where t is the number of seconds, the entire experiment lasts
360 seconds, the initial pod number is set to 15, and some of
the experimental data are shown in Table 6.

As seen in Table 6, under high load, the DHPA algorithm
falls short of the actual number of pods needed because of
the container expansion time limit. However, there is a high
overlap with the actual number of pods in the overall ex-
pansion and contraction trend.

Table 7 shows that the antijitter delay mechanism still
constrains the HPA algorithm, and the number of pods
scaled out differs significantly from the theoretical number
of pods, thus leading to multiple cluster crashes.

As shown in Figure 6, on the one hand, the DHPA
algorithm has a lag in the trend of scaling-down capacity
compared to the theoretical pod curve, but the overall trend
remains consistent. The HPA algorithm, on the other hand,
always maintains a lower number of pods, much lower than
the actual number of pods needed. Hence, the DHPA al-
gorithm still has a more significant scheduling advantage
over HPA in high load situations and can properly schedule
the number of containers to ensure the regular operation of
the cluster.

Scientific Programming

Comparison of DHPA and HPA

4.0 4 - —-i
! !
! 1
! 1
: 1
! 1
! 1
s 1
. 1
! i
! 1
! 1
3.0 4 - endissississsstrsssstsatantnisstssiatsanistsntsatatsantsns '
| B %
;i
. Is
i = v
P ;
o 1 b4 ':
o) s
a 1 ™
I -
K
' I
i {
2.0 4 T ged
H 2
!
1
]
]
1
]
1
1
i
04 —
Time
—— Num of theoretical pod
Num of HPA pod
--- Num of DHPA pod
F1GURE 4: Comparison of the DHPA and HPA algorithms.
TaBLE 4: Experimental data of the DHPA algorithm under medium load.
Time (s) BeforeUtil CalPod RealPod AfterUtil IsBreak
60 866 18 16 54 False
100 984 20 21 21 False
160 342 7 11 31 False
230 766 16 11 69 False
280 984 20 21 46 False
TaBLE 5: Experimental data of HPA algorithm under medium load case.
Time (s) BeforeUtil CalPod RealPod AfterUtil IsBreak
60 866 18 9 96 False
100 984 20 9 109 Ture
160 342 7 9 38 False
230 766 16 4 191 Ture
280 984 20 4 246 Ture

8 Scientific Programming

Comparison of DHPA and HPA

21.0 1
20.0
19.0 1
18.0
17.0
16.0 1
15.0 1
14.0 1
13.0 1
12.0 1
2 11.0 1
2410.0 1
9.0 1
8.0 1
7.0 1
6.0 1
5.0 1
4.0 1
3.0 1
2.0 1
1.0 1
Time
—— Num of theoretical pod
Num of HPA pod
- -~ Num of DHPA pod
Figure 5: Comparison of the DHPA and HPA algorithms.
TaBLE 6: Experimental data of the DHPA algorithm under high load.
Time (s) BeforeUtil CalPod RealPod AfterUtil IsBreak
60 1732 35 22 78 False
100 1969 40 30 65 False
160 684 14 30 22 False
230 1509 31 22 68 False
280 1969 40 32 61 False
TaBLE 7: Experimental data of HPA algorithm under high load conditions.
Time (s) BeforeUtil CalPod RealPod AfterUtil IsBreak
60 1732 35 10 173 Ture
100 1969 40 15 131 Ture
160 684 14 15 45 False
230 1509 31 7 215 Ture

280 1969 40 32 281 Ture

Scientific Programming

Comparison of DHPA and HPA

pod
[
=1
(=]

— Num of theoretical pod
Num of HPA pod
=== Num of DHPA pod

Time

FiGURE 6: Comparison of the DHPA and HPA algorithms.

5. Conclusions

For highly dynamic workloads in cloud environments, this
study proposes a fine-grained horizontal scaling mechanism
that can apply dynamic rules to automatically increase or
decrease the total number of compute instances to adapt to
different workloads. The expansion and contraction oper-
ations of the DHPA algorithm are in a dynamic equilibrium
state. Because of the pod expansion and contraction time lag,
the queue cannot be updated in real time. Each time it scales,
it is placed inside the message queue as a single task, so the
number of pods dispatched by the algorithm deviates
somewhat from the theoretical calculation, but the overall
balance is dynamic.

The original HPA algorithm counts how many pods the
entire cluster has each time and determines whether to
expand or shrink based on the calculated expected pod value.
This approach consumes many system resources. In this
study, the proposed DHPA algorithm’s expansion or con-
traction operation is based on calculating the growth rate of
CPU utilization and on whether the CPU utilization exceeds
the threshold to decide by introducing the idea of granularity
calculation. Therefore, the DHPA algorithm is to traverse all
pods each time in the cluster after calculating whether ex-
pansion is needed or not. If there is no expansion or con-
traction at this point, then there is no need for further
operations, which nicely reduces the cluster’s performance

pressure with each poll. Simultaneous use of two metrics to
comprehensively control the expansion and contraction
trigger has better stability. The experiments also show that
the DHPA algorithm has better antijitter performance in
container spreading and shrinking capacity, ensuring the
cluster’s quality of service and security. In the future, we will
try to extend the proposed approach to multi-instance ar-
chitectures and high-level service customization.

Data Availability

All data used during the study are available in a repository or
online in accordance with funder data retention policies
(https://archive.ics.uci.edu/ml/datasets.php and http://cs.
uef.fi/sipu/datasets/).

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Natural Science
Foundation of Heilongjiang Province (LH2020F031).

https://archive.ics.uci.edu/ml/datasets.php
http://cs.uef.fi/sipu/datasets/
http://cs.uef.fi/sipu/datasets/

10

References

[1] A.J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon,

(10

(11

[12

(13

(14

]
]

and W. Carithers, “Efficient resource management for cloud
computing environments,” in Proceedings of the International
Conference on Green Computing, pp. 357-364, IEEE, Chicago,
IL, USA, August 2010.

F. Al-Haidari, M. Sqalli, and K. Salah, “Impact of cpu utili-
zation thresholds and scaling size on autoscaling cloud re-
sources,” in Proceedings of the IEEE 5th International
Conference on Cloud Computing Technology and Science,
pp- 256-261, Bristol, UK, December 2013.

D. Merkel, “Docker: lightweight Linux containers for con-
sistent development and deployment,” Linux Journal,
vol. 2014, no. 239, p. 2, 2014.

D. Bernstein, “Containers and cloud: from LXC to docker to
Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84,
2014.

D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging
microservices architecture by using docker technology,” in
Proceedings of the SoutheastCon 2016, pp. 1-5, IEEE, Norfolk,
VA, USA, April 2016.

F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and
vertical scaling of container-based applications using rein-
forcement learning,” in Proceedings of the 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD),
pp- 329-338, IEEE, Milan, Italy, July 2019.

K. M. Patel, R. Kandula, B. R. Vempati, H. M. Negalaguli, and
P. Chandana, “System and method for elastic scaling using a
container-based platform,” US Patent 9,462,427, 2016.

E. Casalicchio and V. Perciballi, “Auto-scaling of containers:
the impact of relative and absolute metrics,” in Proceedings of
the 2017 IEEE 2nd International Workshops on Foundations
and Applications of Self = Systems (FAS = W), pp. 207-214,
IEEE, Tucson, AZ, USA, September 2017.

E. A. Brewer, “Kubernetes and the path to cloud native,” in
Proceedings of the Sixth ACM Symposium on Cloud Com-
puting, p. 167, Kohala, HI, USA, August 2015.

Z. Zhong and R. Buyya, “A cost-efficient container orches-
tration strategy in kubernetes-based cloud computing infra-
structures with heterogeneous resources,” ACM Transactions
on Internet Technology, vol. 20, no. 2, pp. 1-24, 2020.

T. Menouer, “KCSS: Kubernetes container scheduling strat-
egy,” The Journal of Supercomputing, pp. 1-27, 2020.

T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim,
“Horizontal pod autoscaling in Kubernetes for elastic con-
tainer orchestration,” Sensors, vol. 20, no. 16, p. 4621, 2020.

S. K Lin, U. Altaf, G. Jayaputera et al., “Auto-scaling a defence
application across the cloud using docker and kubernetes,” in
Proceedings of the 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Com-
panion), pp. 327-334, IEEE, Zurich, Switzerland, December
2018.

F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical scaling of
microservices in Kubernetes,” in Proceedings of the 2020 IEEE
International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), pp. 28-37, IEEE, Washington,
DC, USA, August 2020.

Scientific Programming

