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Abnormal event detection has attracted widespread attention due to its importance in video surveillance scenarios. +e
lack of abnormally labeled samples makes this problem more difficult to solve. A partially supervised learning method
only using normal samples to train the detection model for video abnormal event detection and location is proposed.
Assuming that the distribution of all normal samples complies to the Gaussian distribution, the abnormal sample will
appear with a lower probability in this Gaussian distribution. +e method is developed based on the variational
autoencoder (VAE), through end-to-end deep learning technology, which constrains the hidden layer representation of
the normal sample to a Gaussian distribution. Given the test sample, its hidden layer representation is obtained through
the variational autoencoder, which represents the probability of belonging to the Gaussian distribution. It is judged
abnormal or not according to the detection threshold. Based on two publicly available datasets, i.e., UCSD dataset and
Avenue dataset, the experimental are conducted. +e results show that the proposed method achieves 92.3% and 82.1%
frame-level AUC at a speed of 571 frames per second on average, which demonstrate the effectiveness and efficiency of our
framework compared with other state-of-the-art approaches.

1. Introduction

With the development of chip technology and cost reedu-
cation of bandwidth and storage equipment cost, etc.,
network digital cameras have replaced traditional analog
cameras and are widely deployed in museums, banks, air-
port, etc. In order to strengthen public safety protection and
prevent crime, the video surveillance has entered the era of
blowout. According to HIS Data Display [1], the new video
surveillance cameras installed in 2016 worldwide will pro-
duce approximately 566GB of data in one day. To 2023, the
data amount is estimated to reach 3500GB. +e rapid
growth of video data puts forward higher requirements for
video understanding. Intelligent surveillance technology has
replaced traditional video surveillance personnel to achieve
real-time structured processing and analysis of massive
video data. As one of the key technologies of intelligent
monitoring technology, abnormal event detection is from
real-time detection in massive surveillance video data, which

are a small number of abnormal events that are inconsistent
with most normal events.

In recent years, abnormal event detection has gradually
become a research hotspot in the field of computer vision
and pattern recognition. +e main difficulty is that the
scenes of abnormal events are diverse. It is difficult to define
an interface covering the boundaries of various possible
abnormal events. A common solution is to define an ab-
normal event as a low probability event relative to a normal
event, which enables statistical processing of abnormal
events, deviated from expectations, and events that are in-
consistent with normal samples are abnormal events. Same
as the most popular ideas in the field of computer vision and
pattern recognition, the existing methods for detecting
abnormal events can be roughly divided into two steps [2–4]:
event representation and anomaly detection model. Event
representation is to extract appropriate features from the
video to represent the event. Due to the ambiguity of event
definition, the event can be characterized by object-level
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features or pixel-level features. +e former often uses object
trajectory features [5] or object appearance characteristics
[6] (such as sports history images and sports energy images)
to indicate an event. However, object-level features rely on
detecting and tracking objects, which is difficult to handle in
a crowded scene, especially for moving objects that block
each other. For pixel-level features, they are often extracted
from two-dimensional image blocks or three-dimensional
video cubes to represent, such as spatiotemporal gradient
(STG) [7], optical histograms of optical flow (HOF) [8, 9],
and mixture of dynamic textures (MDT) [4]. After obtaining
the characteristics that represent the event, the next question
is to build an anomaly detection model. +e anomaly de-
tection model is to establish rules or models for normal
events. +en, the test event that violates the rules or does not
conform to the model is treated as an exception. Common
models are cluster-based detection models [10], detection
model based on state inference [11], and detection model
based on sparse reconstruction [8, 12]. Among them, the
cluster-based detection model clusters similar normal events
together. +erefore, samples far away from these cluster
centers during the testing phase are regarded as abnormal
events. +e state inference model assumes that normal
events will undergo a fixed change over time. And, the
abnormal event does not conform to this change. For de-
tection models based on sparse reconstruction, the main
principle is that the reconstruction of normal events has a
small error relative to the reconstruction of abnormal events.

Although the above methods have achieved certain re-
sults in previous studies, there is a problem because the event
representation and anomaly detection models are designed
separately. Such operations cause researchers to spend too
much effort to design them separately, but these methods
often fail; when the video scene changes, generalization
ability is poor. Recently, deep learning has achieved excellent
results in the fields of computer vision and pattern recog-
nition and intelligent manufacturing, such as object rec-
ognition [6, 13], object detection [14], behavior recognition
[15], and health diagnosis. +e key to the success of deep
learning methods is that the two steps of feature repre-
sentation and pattern recognition are jointly optimized,
which can maximize the performance of the joint collabo-
ration between them. It can further improve the general-
ization ability of the method for different scenarios. Driven
by the success of deep learning technology, researchers
began to apply it to abnormal event detection [16–18]. In
[16], a three-channel architecture was proposed which used
autoencoder on each channel (Autoencoder) [17]. To learn
features, a single-class support vector machine (SVM) is
employed afterwards to predict the anomaly score of each
channel. Finally, the abnormal scores of the three channels
are merged as the final basis for judging abnormalities.
Sabokrou et al. introduced a cascaded anomaly detection
method, which detected abnormal events based on the re-
construction error of the autoencoder and the sparsity of the
sparse autoencoder. Based on manual features and short
video clips, Hasan et al. adopted the fully connected
autoencoder and fully convolution autoencoder to learn the
time regularity of normal events. +en, according to the

reconstruction error, the time regularity score of normal
events was calculated to detect abnormalities. However,
these methods are based on deep reconstruction treat
samples that are different from normal samples as anom-
alies. It ignores the small probability of abnormal events. A
large number of normal samples that did not appear are
often misjudged as abnormal, leading to false alarms. Unlike
these methods above, in this paper, we propose an end-to-
end deep learning framework for abnormal event detection.
+e proposed method is based on variational autoencoder
(VAE) [19–22], which can map high-dimensional raw input
data to low-dimensional hidden layer representations
through deep learning technology. And, it constrains the
low-dimensional hidden layer representation to conform to
a Gaussian distribution. +erefore, the hidden layer of the
normal sample indicates that the probability value calculated
for the Gaussian distribution is relatively large. +e hidden
layer of abnormal samples indicates that the probability
value calculated for the Gaussian distribution will be rela-
tively small. Actually, obtaining the hidden layer repre-
sentation and constraining to a Gaussian distribution can,
respectively, correspond to the two main steps of anomaly
detection: event representation and anomaly detection
model. In the proposed method, the two main steps are
jointly optimized through an end-to-end deep learning
framework, which can improve the generalization ability.
Experimental results on two public datasets show that the
proposed method has strong generalization ability and the
detection performance reaches the level of current tech-
nology development.

2. VAE for Anomaly Detection

+e overall process of the proposed method can be described
as follows. During the training phase, the space-time cube of
normal samples is densely sampled. +e original pixels are
directly used as the input of the VAE to learn the Gaussian
distribution in the hidden layer representation of the input
data. +en, for a test sample, the hidden layer representation
of the test sample is obtained through the VAE, which
calculates the probability that it belongs to the Gaussian
distribution and uses it as an anomaly score. At last, the
samples with abnormal scores below the threshold are
judged to be abnormal. In this section, we first briefly in-
troduce the principle of the autoencoder.+en, the proposed
method of video abnormal event detection based on vari-
ational autoencoder is elaborated.

2.1. Principle of Autoencoder. Autoencoder [17] maps the
input data to the hidden layer space to get its hidden layer
representation. +rough its hidden layer representation, the
original input data can be reconstructed. Self-encoder by
encoder fw1

(•) and decoder gw2
(•) composition can be

expressed as

z � fw1
(x),

x′� gw2
(z),

(1)
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where x and x′ represent the input of the autoencoder and
the input of the reconstruction, respectively, z is the hidden
representation for x, and W1 and W2 are the parameters of
the neural network. In order to minimize the input x and
reconstruct the input x′, the reconstruction error between is
obtained as follows:

min
w1 ,w2

‖x − x ′‖22. (2)

+e hidden layer representation of the autoencoder is
often used as effective features, which directly enter into the
subsequent pattern recognition model. In order to improve
the expressive ability of hidden layer representation, the
noise reduction autoencoder [23] and sparse autoencoder
[17] were developed by introducing noise and increasing
sparsity constraints. +e hidden layer representation is ro-
bust and sparsity against partial damage of data.

Suing error-based reconstruction [18, 24, 25] or directly
extracting the hidden layer representation as a feature [16],
autoencoders have been successfully used to solve anomaly
detection tasks. However, these methods ignore the prob-
ability model in which normal samples occur with high
probability and abnormal samples occur with low proba-
bility. To solve this problem, we assume that the hidden layer
representation of the normal sample conforms to the
Gaussian distribution, and a video abnormal event detection
method based on variational autoencoder is proposed.

2.2. Anomaly Detection Model Based on VAE. Given n

normal training samples x � xi ∈ Rs􏼈 􏼉
n
i�1, where the di-

mension of the sample is s, then the VAE [19–22] learns that
the hidden layer represents the Gaussian distribution in the
space. In the hidden layer representation space, assuming
that the training samples conform to the Gaussian distri-
bution, which means that all training samples are clustered
into one cluster center, the samples far from the cluster
center are abnormal samples.

Specifically, the hidden layer representation z satisfies

z ∼ N(0, I), (3)

where I is the identity matrix. Similar to the reconstruction
process of the autoencoder, VAE makes the data generated
by the model very similar to the input data. Similar to the
architecture of traditional autoencoders, VAE also includes
two neural networks:

(1) Inferred network: a probabilistic encoder qϕ(z|x) w

will enter x mapped to hidden representation z close
to reality posterior distribution p(z|x)

(2) Generate network: a generative decoder pθ(x|z),
which expresses the hidden layer without relying on
any specific input prior z reconstruction to original
training data x

Among them, ϕ and θ represent the parameters of the
two networks, respectively. Denote the network as “En-
coder,” the training data x is mapped to hidden layer rep-
resentation z. +e generative network can be seen as
“decoder,” and the hidden layer z refactors to training data x.

According to the theory of VAE [20], the loss function
can be expressed as

L(θ, ϕ, x) � Ez∼qϕ(z|x) log pθ(x|z)􏼂 􏼃 − DKL qϕ(z|x􏼐 􏼑‖p(z).

(4)

In (5), the first item x is the expected log likelihood of the
training data, which facilitates the decoder pθ(x|z) to rebuild
training data x. It can be considered as reconstruction error.
When the reconstruction effect is good, the value of this item
is smaller. According to the principle of Monte Carlo
sampling, for each sample in the training data
x � xi ∈ Rs􏼈 􏼉

n

i�1, for qϕ(z|x) collection n a zi, 1≤ i≤ n, there
is

Ez∼qϕ(z|x) log pθ(x|z)􏼂 􏼃 ≈
1
n

􏽘

n

i�1
log pθ xi|zi( 􏼁, (5)

where zi is the hidden layer representation for xi.
+e second item is Kullback–Leibler divergence between

qϕ(z|x) and p(z) [9], which represent the distribution that
the encoder wants to learn and the prior distribution rep-
resented by the hidden layer. Kullback–Leibler divergence
can measure the difference between two probability distri-
butions. For two similar probability distributions, the
Kullback–Leibler divergence is very small. Based on the
hypothesis, qϕ(z|x) is the normal distribution N(μ, δ), and
there is

qϕ(z|x) �
1
���
2π

√
σ

· e
− (z− u)2/2σ2

. (6)

According to (3), p(z) can be further expressed as

p(z) �
1
���
2π

√ · e
− z2/2

. (7)

According to (6) and (7), the second term of (4) can be
expressed as

− DKL qϕ z|x′( 􏼁‖p(z)􏼐 � − 􏽚 qϕ z|x′( 􏼁log
qϕ z|x′( 􏼁

p(z)
dz � − 0.5 1 + log σ2 − μ2 − σ2􏼐 􏼑. (8)

+rough the reparameterization method [24], the net-
work parameters can be adjusted by (4), suing STD [26]. +e
VAE is essentially based on the autoencoder, which adds a

Kullback–Leibler divergence. +e hidden layer representa-
tion obtained by the encoder not only can reconstruct the
input samples but also conforms to a Gaussian distribution.
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+erefore, it is possible to detect abnormal events through
the learned VAE.

2.3. Prediction. After learning the network weights of the
VAE, for a test sample y, the hidden layer representation z′
from the inferred network qϕ(z|x) can be obtained.
According to (6), the probability of z′ belonging to the
Gaussian distribution is

p z′( 􏼁 �
1
���
2π

√
σ

· e
− z′− u( )

2/2σ2
. (9)

If the test sample y is a normal sample, it must appear in
the high probability area of the Gaussian distribution. In
contrast, the hidden layer of the abnormal sample indicates
that the probability value calculated for the Gaussian dis-
tribution will be relatively small. +erefore, in order to infer
whether the test sample is an abnormal sample, the threshold
to make judgments can be set for p(z′) as follows:

p z′( 􏼁 ≷
normal

ab normal
δ, (10)

where δ determines the threshold of the sensitivity of the
detection method in this paper.

3. Experiment

In order to verify the effectiveness of the proposed method,
experiments were conducted on two data sets, i.e., UCSD
Ped1 dataset [8] and Avenue dataset [26]. And, the results
are compared with several existing methods. Afterwards, we
will introduce the experimental data, evaluation index, ex-
perimental details, and experimental results in detail.

3.1. Experimental Data and Evaluation Indicators. UCSD
Ped1 dataset: the dataset records scenes on the sidewalk
through a fixed camera, and the lens angle is slightly tilted. It
contains 34 normal and 36 anomaly samples with the size of
238 × 158. Each video clip contains 200 frames. Normal
events are pedestrians on the sidewalk. +e abnormal events
mainly include bicycles, skate, small car, and pedestrians
walking on the lawn.

Avenue dataset: the dataset uses a fixed camera to record
the scene in front of the school corridor and the lens angle is
slightly tilted. It contains 15 normal and 21 anomaly samples
with the size of 360 × 240. +e dataset has a total of 30,652
frames. Normal events include pedestrians walking parallel
to the camera. And, abnormal events include people run-
ning, throwing objects, and loitering. In Figure 1, some
examples of events in two datasets are given, in which the
upper pictures from each figure are normal ones while those
on the bottom are anomalies.

Frame-level evaluation index and pixel-level evaluation
index [11] are used to evaluate the performance of the
detection method. For frame-level evaluation indicators, if a
frame in the test sample contains at least one abnormal pixel,
it is determined that the frame is an abnormal frame. For
pixel-level evaluation indicators, if the anomalous area
overlaps with the real anomaly marked area by more than

40％, it is determined that the frame is an abnormal frame.
Whether it is a frame-level evaluation index or a pixel-level
evaluation index, the detection rate (True Positive Rate,
TPR) and false alarm rate (False Positive Rate, FPR) are
calculated at first. +en, by changing the threshold δ in (10),
the area under the curve (AUC) can be plotted.

3.2. Experimental Setup. For the two datasets, every frame is
resized as 160×120. Each normal sample video clip is divided
into the size of 10×10× 5 with nonoverlapping space-time
cubes.+en, these space-time cubes are converted into vectors
with the size of 500×1 and normalized as the network input
to train the weight of the variational autoencoder. In the
proposed network, there are four hidden layers with 500, 500,
2000, and 30 neurons respectively. It uses a completely
symmetrical network structure. +e optimizer chooses the
Adam Optimizer [8], and the initial learning rate is set to be
0.001. And, after every 1000 iterations, the learning rate re-
duces to 1/10 and the process stops at 10,000 iterations. +e
parameters are set as ρ1 � 0.9 and ρ2 � 0.999 and the batch
size is 100. In the testing phase, the test video is also divided
into sizes of 10×10×1 with nonoverlapping space-time
cubes. +ey are input into the proposed network to obtain its
hidden layer representation. +en, based on (10) whether the
area is abnormal can be determined. +e experimental
hardware platform is NVIDIA GTX1070TI with video
memory 8GB. +e software environment is Tensorflow and
Python. In order to fully evaluate the performance of the
proposed method, several comparison methods are drawn
from current literatures, i.e., [7, 10, 17] and [22]. For sim-
plicity, there are denoted as “Method 1,” “Method 2,”
“Method 3,” and “Method 4,” respectively.

3.3. Results and Discussion. Figure 2 gives the results on the
UCSD Ped1 dataset, where Figures 2(a) and 2(b) show the
frame-level and pixel-level ROC curves. Figure 2 also pro-
vides the ROC curves of the proposed method and com-
parison ones. In the first three methods, the two steps of
event representation and the establishment of the anomaly
detection model are carried out separately. Among them,
Method 1 extracts mixed dynamic texture features and then
establishes a statistical inference anomaly detection model.
Method 2 extracts spatiotemporal gradient features and then
adopts sparse reconstruction method for anomaly detection.
Method 3 uses autoencoder to extract features and single-
class support vector machine for anomaly detection. Method
4 is an end-to-end deep learning method.+e results of these
four methods are obtained from the corresponding papers,
among them Method 4 does not provide ROC curve.

As can be seen from Figure 2, the proposed method
achieved the best results on the frame-level evaluation
criteria. On the pixel-level evaluation standard, the results of
the proposed method are not much different from those of
the other two methods, i.e., Method 2 and Method 3, but
obviously better than that of Method 1. Table 1 shows the
comparison results of different algorithms on the UCSD
Ped1 dataset at the frame level and the pixel level. +e
proposed method achieves 92.3% frame-level AUC and
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71.4% pixel-level AUC, which are better than all other
comparison methods. It is worth noting that learning
temporal regularity is also an end-to-end deep learning

method. However, the experimental results are clearly lower
than the proposed method. +is is because the method uses
each frame of the video as the input of the neural network.

(a)

(b)

Figure 1: Examples of some events in the abnormal event detection dataset. (a)Examples from the UCSD Ped1 dataset. (b)Examples from
the Avenue dataset.
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Figure 2: ROC curves for the UCSD Ped1 dataset. (a)Frame-level ROC. (b) Pixel-level ROC.
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Table 2 shows the frame-level detection results on the
Avenue dataset. On the Avenue dataset, only Method 2 and
Method 4 are tested. And, Method 4 does not give the
corresponding ROC curve. Compared with the other two
methods, the proposed method achieves 82.1% results in
frame-level AUC, which is higher than the other two
methods by 1.3% and 3.8%, respectively. +e results prove
that the proposed method achieves high detection accuracy
and good generalization on the Avenue dataset.

Figure 3 shows examples of partially correct detection
results on two datasets. Among them, (a) and (b) are the test
results of the USCD Ped1 dataset and (c) and (d) are the test
results from the Avenue dataset. It can be observed from
Figure 3 that the proposed method can detect different types

of abnormal events, including bicycle, trolley, skateboard,
and trolley. So, its performance for anomaly detection can be
further validated.

Table 3 shows the comparison of detection speed be-
tween the proposed method and other one on the UCSD
ped1 dataset. +e results of the comparison methods come
from their corresponding articles. +e hardware environ-
ment of the whole experiment process is Intel Core i7-8700 k
3.7GHz CPU, NVIDIA GeForce GTX 1070Ti (8GB video
memory) GPU and 16GB RAM memory. +e computing
platform is Python 3.7 and Tensorflow 1.7. As can be seen
from Table 3, the detection speed of the proposed method is
571 fps, which obviously surpasses the detection speed of
other comparison methods.

Table 1: Comparison with the existing methods in terms of AUC% for the UCSD Ped1 dataset.

Method type Frame-level AUC (%) Pixel-level AUC (%)
Proposed 93.1 66.4
Method 1 82.3 45.1
Method 2 92.2 64.1
Method 3 91.9 65.2
Method 4 82.3 63.7

Table 2: Comparison with the existing methods in terms of frame-level AUC% for the Avenue dataset.

Method type Frame-level AUC (%)
Ours 82.5
Method 2 81.1
Method 4 78.6

(a) (b)

(c) (d)

Figure 3: Examples of the detection results.
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4. Conclusion

In this paper, a method of video anomaly detection and
location based on VAE is proposed using an end-to-end
deep learning framework. +e method assumes that all
normal samples conform to a Gaussian distribution. +e
probability value of the abnormal sample in the Gaussian
distribution is relatively small. In the proposed method, the
two steps of event representation and establishment of
anomaly detection model are, respectively, converted into
the hidden layer representation and Gaussian distribution
constraint in the VAE. In addition, the two steps are jointly
optimized to improve the accuracy and generalization ability
of the method. +e quantitative results in the two public
datasets show that the proposed method has reached the
current technological development level.+e next step of the
research will consider the realization of the proposed
method on more complex datasets.
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