
Research Article
A Test Cases Generation Method for Industrial Control
Protocol Test

Wenli Shang ,1 Guanyu Zhang ,2,3 Tianyu Wang ,2 and Rui Zhang 3

1School of Electronic and Communication Engineering, Guangzhou University, Guangzhou 510006, China
2Industrial Control Network and Systems Department, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China
3Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang 110168, China

Correspondence should be addressed to Wenli Shang; shangwl@gzhu.edu.cn

Received 15 October 2020; Revised 8 January 2021; Accepted 4 March 2021; Published 13 March 2021

Academic Editor: Ting Yang

Copyright © 2021 Wenli Shang et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e coverage of test cases is an important indicator for the security and robustness test of industrial control protocols. It is an
important research topic to complete the test with less use cases. Taking Modbus protocol as an example, a calculation method of
case similarity and population dispersion based on weight division is proposed in this paper. ,e method can describe the
similarity of use cases and the dispersion degree of individuals in the population more accurately. Genetic algorithm is used to
generate and optimize test cases, and individual similarity and population dispersion are used as fitness functions of genetic
algorithm. Experimental results show that the proposed method can increase the population dispersion by 3.45% compared with
the conventional methods and effectively improve the coverage of test cases.

1. Introduction

,e industrial control systems control the data collection,
image and sound signal processing, information transmis-
sion, and process control during the entire production
process. ,e safety and reliability during operation are re-
lated to the stability of the entire system. In recent years, with
the rapid popularization and application of computer net-
works, the traditional industrial control system is gradually
developing towards the direction of interconnection and
intelligence, and some new concepts such as Internet of
things, industrial Internet of things, and industry 4.0 are
proposed. However, the Internet has injected new vitality
into the industrial control system but also brought the same
challenges [1–3].

In security system of the industrial control system,
protocol is an important guarantee for the secure trans-
mission of information. Attacks against the protocol are one
of the most common methods because of low cost, and, with
the rapid development of network, remote attack becomes
possible [4, 5]. As the information transmission medium of

industrial control system, it is necessary to mine possible
vulnerabilities of industrial control protocol through auto-
mated testing method to ensure its security and stability.

At present, the commonly used vulnerability mining
techniques are divided into static analysis, dynamic analysis,
binary comparison, fuzzy testing, and so on [6–12]. Fuzzy
testing has the advantages of high automation, low system
consumption, low false-alarm rate, and being independent
of the source code of the object program [7]. ,e key step in
fuzzy testing is test case generation. Traditional fuzzy testing
often blindly mutates a part of normal test cases when
generating test cases; this blind mutation method makes the
scale of test cases reach 100000 or millions, but the test effect
is not ideal. ,erefore, the design and improvement of test
case generation strategy are one of the hot research contents
of fuzzy test technology.

Test case generation algorithms for fuzzer can be divided
into three categories: generation-based method, mutation-
basedmethod, and combination of the twomethods [13–17].
In the current protocol testing, there are some irrationalities
in the coding method and similarity determination of test

Hindawi
Scientific Programming
Volume 2021, Article ID 6611732, 9 pages
https://doi.org/10.1155/2021/6611732

mailto:shangwl@gzhu.edu.cn
https://orcid.org/0000-0001-6022-5381
https://orcid.org/0000-0001-5040-225X
https://orcid.org/0000-0002-3331-2081
https://orcid.org/0000-0001-9384-9991
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6611732

cases, which will affect the coverage of the test, and it needs
to be improved. ,erefore, we compared the advantages and
disadvantages of the three methods, combined with the data
packet structure characteristics of the test protocol, and
propose a new method based on weight division to calculate
the case similarity and the use case average similarity. ,e
goal is to generate use cases with better coverage and im-
prove test efficiency. Compared with the existing literature,
this paper has the following major contributions:

(i) A new method to determine the similarity of use
cases and the concept of population dispersion are
proposed, which provides a new idea and method to
improve the use case coverage in the process of
protocol testing.

(ii) Different weight and distance calculation methods
are set according to different protocol fields, so the
similarity can be determined more accurately
according to the function and data content of the
use case. ,e change of coding method also solves
the problem of inaccurate similarity judgment
caused by data mutation.

(iii) ,e genetic algorithm is used to generate the use
case, and the similarity and the population dis-
persion of the case are used as the fitness function of
the genetic algorithm. Automatic optimization of
the use case generation is realized.

,e rest of this paper is organized as follows: In Section
2, we discuss the related work. In Section 3, we provide an
introduction to Modbus protocol test case design method.
Section 4 is about the computing method for test cases
average similarity and population dispersion. Section 5
contains simulations and results and evaluates the results
based on the requirements, while Section 6 draws conclu-
sions and reviews based on the results.

2. Related Work

2.1. Generation-Based Method. Generation-based method is
to build mathematical model according to the protocol
specification of test object and then generate test cases au-
tomatically. Martins et al. [18] describe a tool called ConData
used as test generation for communication protocols specified
as extended finite state machines. ,e strategy for test gen-
eration combines different specification-based test methods.
Although the values for fields of interactions are automatically
generated, the human intervention is always needed to de-
termine more suitable values for test case purposes. Banks
et al. [19] present SNOOZE, a tool for building flexible, se-
curity-oriented network protocol fuzzers. SNOOZE imple-
ments a stateful fuzzing approach that can be used to
effectively identify security flaws in network protocol imple-
mentations. But SNOOZE is not evaluated using the code
coverage metric. Li et al. [20] present an automatic vulner-
ability discovering method that combines automatic Protocol
Reverse Engineering technology and Fuzz Testing. ,e
method is a four-step program involving packets clustering,
multiple sequences alignment, special fields recognition, and

fuzzer production, which find the structure of network packets
and pursue Fuzz Testing. However, the effectiveness of the
proposed method depends on the diversity of the sampling
packet itself, so it is necessary to sample the network protocol
multiple times and try to ensure that the network protocol is
used with different parameters each time. Voyiatzis et al. [21]
present the design and implementation of MTF, a Modbus/
TCP Fuzzer.,eMTF incorporates a reconnaissance phase in
the testing procedure so as to assist mapping the capabilities of
the tested device and to adjust the attack vectors towards a
more guided and informed testing rather than plain random
testing. ,e disadvantage is that Modbus/TCP Fuzzer should
be redesigned for different implementations of the Modbus
protocol. Liu et al. [22] proposed a heuristic network protocol
fuzzy test case generation method based on the heuristic
search algorithm and classification tree thought. ,e Peach
and FTP are selected as the verification platform and target
protocol, respectively.,e test result verified the feasibility and
effectiveness of fuzzy test case generation method of heuristic
network protocol. However, the coverage of test cases in this
paper depends on the accuracy of network protocol classifi-
cation tree construction. Felix et al. [23] introduced a novel
fuzzer, Policy Generator (PG). PG utilizes a number of
heuristic techniques to improve space coverage over existing
fuzzers. ,e empirical study demonstrates that PG generates
superior coverage compared to current generation techniques.
However, many of the metrics correlate and care needs to be
taken when interpreting the presented data. In addition, while
it is believed that the experimental framework describes this
evaluation accurately, the analysis cannot be safely generalized
beyond the grammatical expression of the generic firewall
policy utilized in this article. Liu et al. [24] propose a vul-
nerability miningmethod combining protocol reverse analysis
and fuzzy method. An improved effective counting method
based on local greedy algorithm is proposed to improve the
accuracy of protocol keyword extraction by 65%. Combining
the lossy counting method to construct a protocol syntax tree
reduces the number of spanning tree nodes by 40%. Although
the performance of the proposed method is better than tra-
ditional method, it still needs to be improved in terms of
operation efficiency and applicability. For example, due to the
NLPmethod, the performance will decrease significantly while
extracting keywords for pure binary protocol reverse analysis.

,e main advantage of generation-based method is that
the same set of test cases can be used directly for the same
test objectives, and the generated test cases have high
coverage [25, 26]. ,e main disadvantage of generation-
based method is that it takes a lot of time and effort to
complete the understanding of file format or protocol
specification and the writing of rules. Different target types
of software differ greatly. It is difficult to reuse and has a
small scope of application [25, 26].

2.2. Mutation-Based Method. Mutation-based method is
that a new generation of test cases is generated by mutation
strategy designed based on the existing input samples. Gu
et al. [27] propose a novel message matrix perturbing mode
to generate test case through data mutation for application

2 Scientific Programming

layer protocol. Additionally, a new statistical keyword
extracting technique with priority recursive splitting pattern
is introduced to provide useful information for intelligent
datamutation.,e work presented in the paper is not perfect
at several aspects. First, the static statistical analysis just finds
a balance between extracting performance and computa-
tional complexity. Second, the keywords with low occur-
rence frequency cannot be grasped through the current
method. Last but not the least, the discrimination on dif-
ferent protocol elements is not explicit enough for intelligent
fuzzing. A test case generation technique based on mutation
algorithm of precaptured IPC data is introduced in [28] in
order to improve the fuzzing test efficiency. Two high-risk
vulnerabilities are detected in Android 5.1.0. Analysis of
these vulnerabilities highlights a critical design issue in the
system services of Binder mechanism. ,e test case gener-
ation algorithm needs to be improved leveraging program
analysis technique. Lai et al. [29] proposed a vulnerability
mining method for industrial control network protocol
based on fuzz testing. Protocol feature values were generated
by testing cases variation factors for industrial control
network protocol, each of which represented a type of ICS
vulnerability features. Different test cases were generated by
Modbus TCP features and variation factors. ,rough bypass
monitoring method and Modbus TCP features relation
between request and response, the difficult problem of de-
termining the validity of testing cases was solved. However,
the learning results of industrial control private protocol
feature learning method will produce uncertainty due to
different data sets. If the characteristics of private protocol
need to be analyzed deeply, some manual analysis needs to
be done. Cai et al. [30] give a fuzzy security test method
based on the grammatical model and propose a grammar
model for industrial control protocol based on high-order
attribute grammar. ,e model proposes a fuzzy security test
algorithm, combined with the characteristics of the indus-
trial control protocol, and elaborates on the analysis tree
structure, test case generation, and mutation strategy. ,e
model performs comparative experiments by simulating
Modbus/TCP communication which verifies that anoma-
lous results can still be found at a lower time cost when
generating fewer test cases. Accuracy of description model
for the industrial control protocol based on subjective un-
derstanding will impact test case coverage. Xu et al. [31]
proposed the use of deep learning technology to assist test
case generation. Using the advantage of recurrent neural
network to deal with character text sequences, it learnt
training structure features through sample data, predicted
new data that conformed to structural features, and con-
structed an automatic generation model to combine with
random mutation algorithm. In order to make the test case
generation more targeted and easier to trigger exceptions,
the appropriate deep learning network should be studied to
learn the auxiliary weight knowledge such as the charac-
teristics of vulnerable points and the oriented distribution of
anomalies. A fuzzing test data generation method was
proposed in [32] based on dynamic construction of muta-
tion strategy. ,e method was designed to use the feedback
information of instrumentation to dynamically construct the

control mutation strategy and the keyword mutation
strategy and to guide the fuzzer to generate test data with
high coverage. However, the test effect of this method is not
ideal for the target program with large input. Dynamic
construction mutation method needs repeated exploration
of test data and program structure. If the test data is large, it
will increase the exploration time and reduce the efficiency
of test data generation. Lyu et al. [33] present a novel
mutation scheduling scheme MOPT, which enables muta-
tion-based fuzzers to discover vulnerabilities more effi-
ciently. MOPT utilizes a customized Particle Swarm
Optimization (PSO) algorithm to find the optimal selection
probability distribution of operators with respect to fuzzing
effectiveness and provides a pacemaker fuzzing mode to
accelerate the convergence speed of PSO. Yue et al. [34]
present a knowledge-learn evolutionary fuzzer based on
AFL, which is called LearnAFL. LearnAFL does not require
any prior knowledge of the application or input format.
Based on our format generation theory, LearnAFL can learn
partial format knowledge of some paths by analyzing the test
cases that exercise the paths. ,en LearnAFL uses this
format information to mutate the seeds, which is efficient to
explore deeper paths and reduce the test cases exercising
high-frequency paths compared to AFL.

,e main advantage of the mutation-based method is
that this method does not need to understand the structure
and format of the current sample file, so it can be widely used
[25, 26]. ,e main disadvantage of the mutation-based
method is that it is highly dependent on the initial samples.
Different initial samples will bring different code coverage,
test depth, and test effect, so the efficiency is low [25, 26].

2.3. Combination of Two Methods. Hodován et al. [35]
present Grammarinator, a general-purpose test generator
tool that is able to utilize existing parser grammars as
models. Since the model can act both as a parser and as a
generator, the tool can provide the capabilities of both
generation-based and mutation-based fuzzers. ,e pre-
sented tool is actively used to test various JavaScript engines
and has found more than 100 unique issues. Grammarinator
can exploit the fact that the same grammar that can generate
new tests can also be used to parse existing test suites and
then create new content resulting from their recombination
or mutation. ,e tool has proven its usefulness in the
hardening of real-life projects by revealing more than 100
valid unique issues. Atlidakis et al. [36] introduced Pythia,
the first fuzzer that augments grammar-based fuzzing with
coverage-guided feedback and a learning-based mutation
strategy for stateful REST API fuzzing. Pythia’s mutation
strategy helps generate grammatically valid test cases and
coverage-guided feedback helps prioritize the test cases that
are more likely to find bugs. Pythia is the first fuzzer that
augments grammar-based fuzzing with coverage-guided
feedback and a learning-based mutation strategy for stateful
REST API fuzzing.

A new test case generation method based on the ad-
vantages of the above methods is proposed in this paper.
Firstly, the characteristics of general transmissionmessage of

Scientific Programming 3

industrial control protocol are analyzed, test cases are
designed based on the construction of description model,
and coding method of use cases is designed for genetic
algorithm. Secondly, genetic algorithm is used to generate
and optimize use cases, which realizes the automatic iter-
ation and update of use case population. Finally, in order to
improve test coverage and vulnerability discovery rate, the
concept of dangerous point is proposed, and, based on this, a
composite fitness function is designed to monitor and adjust
the state of use case population.

3. Modbus Protocol Test Cases Design

3.1. Message Feature Analysis and Encoding. Choosing ap-
propriate encoding method of use cases for protocol testing
can reduce the time complexity of generating test cases and
complete the conversion from encoding files to data packets
faster. Figure 1 shows the data fields contained in the data
packets of Modbus communication protocol and the byte
length of each field [37].

In Modbus protocol packets, because the transmission
identifier and protocol identifier are independent of the
packets’ content, these two fields cannot be considered when
constructing test cases [38], so each test case can be
mathematically expressed as in the following equation:

case � l u f d􏼂 􏼃, (1)

where l is the length of the data field, and its value matches
the data length contained in the following three fields. u is
the address identifier, and value range is 0 to 255. f is the
function code, which is divided into public function code
and user-defined function code in Modbus, and its value
range is 1 to 127. d is a data field, and the data information of
this field depends on the function code.

When encoding test cases, binary encoding is the most
common encoding method, and Hamming distance can be
used to measure similarity between two test cases, as shown
in the following equation:

d(A, B) � 􏽘
n

i�0
Ai ⊕Bi, (2)

where Ai and Bi denote the i-th characters of the strings A

and B; ⊕ means to judge whether Ai and Biare the same;
when they are the same, Ai ⊕Bi � 0; when they are not,
Ai⊕Bi � 1.

However, when comparing the similarity of two test
cases to calculate the Hamming distance, the Hamming cliff
problemmay occur [39].,erefore, Gray code is used in this
paper, which can effectively avoid the Hamming cliff
problem and realize a more accurate description of the
similarity of protocol packets. Assuming that there is a
binary code of B � BnBn−1Bn−2 . . . B1B0 and its corre-
sponding Gray code is G � GnGn−1Gn−2 · · · G1G0, then the
value of the two codes satisfied the following equation:

Gi � Bi, i � n,

Gi−1 � Bi−1 ⊕Bi, i � 1, 2, · · · , n − 1,
􏼨 (3)

where Gi are the i-th bits of binary code and Gray code and ⊕
is XOR operation.

Figure 2 shows the effect of clustering on the same set of
data when calculating distance using two different encoding
methods. It can be seen from the figure that some data may
not be able to find the cluster center accurately when using
binary code (Figure 2, left) to calculate the distance, while
Gray code (Figure 2, right) can effectively avoid this problem.

In summary, Gray code avoids the Hamming cliff
problem in binary coding, so the similarity between two
Gray-coded strings can be described by the number of
different bits, namely, Hamming distance.

3.2. Method for Calculating Similarity of Test Cases with
Weights. In the Modbus protocol, the length of each field of
the message sequence is basically fixed, but the length of the
data storage field is dynamic, and the function of each field
and the impact on the security of the message are different.
Some fields are related to each other. If the Hamming
distance is directly used as the similarity determination
between the encoded strings of the two test cases, there is a
certain irrationality.

In order to solve these problems, a weight distance
calculation method based on internal classification is pro-
posed in this paper. ,e weight of different fields is set in
different value, and the distances of different fields are
calculated according to corresponding functions. ,e data
segment is special, because it is related to other fields, and a
unique design is required to calculate the relevant distance.
,e weight coefficient of each field is determined by Analytic
Hierarchy Process (AHP).

Assuming that there are test cases A and B, first calculate
the corresponding distances of each functional field of them,
then combine the weights of the fields, and calculate their
overall similarity. ,e final calculation formula is shown in
following equation:

disAB � 􏽘
4

i�0
wi.d Avi, Bvi(􏼁, (4)

where w � [w1, w2, w3, w4] is the weight of each field. Avi

and Bvi are the corresponding fields of the two test cases, and
d(Avi, Bvi) is the distance between the two corresponding
fields. ,e distance calculation method for different fields is
slightly different.

Transaction
identifier

Protocol
identifier Length Unit

identifier
Function

code Data

Byte 2/3Byte 0/1 Byte 4/5 Byte 6 Byte 7 Other

Figure 1: Modbus data packets structure.

4 Scientific Programming

,e pairwise comparison matrix determined by Analytic
Hierarchy Process is shown in the following equation:

A �

1 3
1
3

1
2

1
3

1
1
5

1
3

3 5 1 3

2 3
1
3

1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (5)

Consistency of the pairwise comparison matrix was
checked. If test coefficient CR � 0.0386< 0.9, then consis-
tency check is passed. ,e calculated weight of each field is
shown in the following equation:

w � 0.1682 0.0769 0.5167 0.2382􏼂 􏼃. (6)

According to the characteristics of theModbus test cases,
the length of length field, address identifier field, and
function code field are fixed, while the length of the data field
is dynamically variable and is associated with other fields.
,erefore, when calculating the distance between the cor-
responding fields of the two use cases, two different methods
are used to calculate the distance of the fixed-length and
variable-length fields. For fixed-length fields, the Hamming
distance can be directly used.

,e length of the data field is dynamically variable.When
describing the distance, Hamming distance will have a large
deviation, and Levenshtein distance can solve this problem.
Levenshtein distance is to find the minimum number of
transformations required to convert string A to string B. It
can more describe the difference between two strings of
different lengths accurately. ,e calculation method is
shown in the following equation:

levA,B(i, j) �

max(i, j), min(i, j) � 0,

min

levA,B(i − 1, j)

levA,B(i, j − 1)

levA,B(i − 1, j − 1) + 1Ai ≠ Bj

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, min(i, j)≠ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where i and j are the subscripts of string A to string B.
max(i, j) is the maximum value. min(i, j) is the minimum
value.

,erefore, the similarity calculation equation (4) of the
two test cases can be further optimized into the following
equation:

disAB � 􏽘

3

i�1
wi · d Avi, Bvi(􏼁 + levAd,Bd

(m, n), (8)

where levAd,Bd
(m, n) is the Levenshtein distance between the

two data fields of m and n.

4. Average Similarity and Population
Dispersion of Test Cases

In the test case generation process, the iteration is based on
the population, so it is necessary to describe first-generation
population from the perspective of the whole population.
Here, the average similarity of population test cases is
designed to describe the population state. ,e average
similarity of test cases refers to the overall degree of dis-
persion among individuals in a population. When the av-
erage similarity of test cases is low, it means that the overall
similarity of individuals within the population is too high,
and the coverage of test cases is low [40]. At this time, the
parameter information in the test cases generation process,
such as the mutation probability and the similarity
threshold, can be appropriately changed to adjust the

0.0

0.0

0.0

0.2
0.2

0.2

0.4
0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1.0

1.0

1.0

X
Y

Z

(a)

0.0 0.2 0.4 0.6 0.8 1.0X 0.0
0.2

0.4
0.6

0.8
1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0

Z

(b)

Figure 2: Clustering results of two encoding methods.

Scientific Programming 5

distribution of the generated test cases and improve the
coverage of the test cases.

When describing the average similarity of test cases of
individuals in the entire population, it can be described by
the average distance between individuals. ,is method is
feasible to some extent, but each individual needs to cal-
culate the distance between itself and all other individuals.
As a result, this method has a lot of repeated calculation and
low efficiency. In addition, if an extremely uniform edge
distribution occurs, it will also lead to misjudgment.
,erefore, the concept of average similarity of test cases is
proposed in this paper, and a new calculation method is
designed to accurately reflect the distribution of individuals
in the population and reduce the amount of calculation.

Firstly, values of individual fields in the population are
normalized, which is expressed mathematically in the fol-
lowing equation:

vn �
cn − cn min

cn minn max
, (9)

where cn max is the maximum value of the field in the
population; cn min is the minimum value of the field in the
population.

,e sum of each field is averaged to calculate the mean
center test case, as shown in equation (10), and the calcu-
lation method of each field is as in equation (11).

case � lv uv fv dv􏽨 􏽩, (10)

v �
1
m

· 􏽘
m

i�1
vi, (11)

where m is the total number of test cases in the population
and vi is the current field of the test cases.

,e similarity between the test cases and the central test
case can be used to indicate the outlier degree of the test
cases, as shown in the following equation:

s � 􏽘

3

i�1
wi · d Avi, Cvi(􏼁 + lev

Av4 ,Cv4
(m, n). (12)

,e calculation time complexity of the average similarity
of the test cases is 2n; compared with the time complexity nlgn

of the general method, there will be a significant efficiency
improvement when n is larger. ,en the dispersion of the
whole population can be described by the following equation:

sca �
1
n

· 􏽘
n

i�1
si. (13)

5. Experimental Evaluation

By designing the encoding method and the similarity cal-
culation method between test cases, combined with the
description of the average similarity of test cases in the test
cases population, theoretically, it can effectively improve the
efficiency of test cases generation and increase the coverage
of test cases. In order to verify the correctness of the pro-
posed method, a set of comparative experiments are

designed, and genetic algorithm is used as the core algorithm
for test case generation. ,e encoding method, individual
similarity, and average similarity of test cases are calculated
by the proposed method and the conventional method,
respectively, and the test cases generated by the two methods
are compared and analyzed.

Genetic algorithm is an intelligent optimization algo-
rithm, which is often used to find the global optimal solution,
and we adjust the population optimization direction by de-
signing the corresponding fitness function. In the test case
generation method designed in this paper, the population
convergence direction of genetic algorithm is a suspicious case
in historical data. Suspicious test cases are cases that cause test
target anomalies during the test process. Taking these cases as
the convergence center of next genetic algorithm can effec-
tively reduce the randomness of test case generation. ,ese
test cases are called “suspicious points.” Based on this, the
fitness function of the genetic algorithm designed for two sets
of experiments is shown in the following equation:

fp sA(􏼁 � 1 −
sA

smax
, suspocious points exist,

fp(A) � 1 −
dis dpp, Ai􏼐 􏼑

max dis dpp, Ai􏼐 􏼑􏼐 􏼑
, else,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where dis is the similarity between the test case and the
suspicious point; the calculationmethod is shown in formula
(3). sA is the average similarity of the test case.

,e meaning of fitness function is that when there are
suspicious points in the population, the population con-
verges to the suspicious case. When there is no suspicious
point, the population with higher average similarity of test
cases is preferred. Other parameter settings of genetic al-
gorithm are mutation probability Pm � 0.2 and crossover
probability Pc � 0.6.

,e whole experimental procedure designed is shown in
Figure 3. Firstly, the initial test case population for the two
experiments is constructed manually, and the initial pop-
ulation is encoded according to the encoding method
mentioned above. Secondly, the initial population is input
into the test case generation module, and two different
fitness function calculation methods are used to generate
and optimize the test cases. Finally, the result monitoring
module records the operation results.

,e script development language of the experiment is
Python 3, and Modbus communication simulation software
used in the test is Modbus Poll and Modbus Slave. Firstly,
Modbus Poll is used to establish data communication with
Modbus Slave, Wireshark packet capture tool is used to
obtain normal communication messages, and representative
data messages are selected to analyze the data characteristics
and construct the initial population. Secondly, the initial
population is sent to the test cases generation and optimi-
zation module to iterate, optimize, and update test cases.
Finally, each generation of population is sent to the target for
testing. Statistical analysis was performed on the test cases

6 Scientific Programming

data generated by the two methods. During the experiment,
the average similarity of the first 5000 generations of pop-
ulation test cases was calculated. ,e results are shown in
Figure 4.

In two groups of experiments using different methods,
during the population iteration process, the dispersion
gradually increased and eventually stabilized. At the be-
ginning of the experiment, since the same initial population
was used, the dispersions of two groups were the same.
However, with the iteration of the population, when both of
them are stable, the dispersion of the population produced
by the improved method is 3.45%, which is higher than that
of the conventional method. It is generally believed that the
higher the dispersion between individuals within a pop-
ulation, the higher the coverage of test cases [21]. ,erefore,
it can be considered that the coverage of test cases generated
by the improved method is higher than the conventional
method, and it also proves that the method proposed in this
article has certain advantages over the conventional method.
Based on the proposed method, we design a fuzzy tester [41].

6. Conclusion

A new test cases similarity determination method and the
concept of population dispersion are proposed in this paper,
which provides a new idea and method for improving the
test cases coverage in the protocol testing process. In the
determination of test cases similarity, different weights and
distance calculation methods are set according to different

protocol fields, which can more accurately determine the
similarity according to the function of the test cases and data
content, and the change of the encoding method effectively
resolves the problem of inaccurate similarity determination
caused by data mutation. ,e genetic algorithm is intro-
duced into the test cases generation algorithm, and the test
cases similarity and population dispersion are used as the
basis for constructing the fitness function of the genetic
algorithm, and the automatic optimization of the test cases
generation is realized. ,e test cases data generated in the
experiment shows the effectiveness of the method. Our
planned future work is twofold. First, we plan to improve the
applicability of the method and apply it to the generation of
test cases for other protocols. Second, we plan to optimize
the time complexity of the algorithm.

Data Availability

,e data used to support the findings of this study have not
been made available because the generated test cases were
not backed up in time.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported in part by “National Key R&D
Program of China” (2018YFB2004200), the open project of
Zhejiang Lab “Construction Technology of Local High Se-
curity Trusted Execution Environment for Edge Intelligent
Controller” (2021KF0AB06), and the National Natural
Science Foundation of China “Research on anomaly de-
tection and security awareness method for industrial
communication behaviours” (61773368).

References

[1] O. E. Idrissi, A. Mezrioui, and A. Belmekki, “Cyber security
challenges and issues of industrial control systems–some
security recommendations,” in Proceedings of the IEEE

Test case encoding and
decoding

Construct initial population

Test case encoding

Protocol character analysis

Protocol analysis

Test case mutation

Test case similarity
determination

Protocol model composition

Data Data

Call Call

Test case generation
and optimization

Response message
identification

Update test case information

Exception test backtracking

Test result record

Results monitor

Figure 3: ,e whole experimental procedure designed.

0.13

0.135

0.14

0.145

0.15

0.155

0

D
isp

er
sio

n

Iterations

Method of this article
Normal method

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 4: Trend of population dispersion.

Scientific Programming 7

International Smart Cities Conference (ISC2), pp. 330–335,
Casablanca, Morocco, April 2019.

[2] M. R. Asghar, Q. Hu, and S. Zeadally, “Cybersecurity in
Industrial control systems: issues, technologies, and chal-
lenges,” Computer Networks, vol. 165, Article ID 106946, 2019.

[3] T. Miyachi and T. Yamada, “Current issues and challenges on
cyber security for industrial automation and control systems,”
in Proceedings of the SICE Annual Conference (SICE),
pp. 821–882, Sapporo, Japan, October 2014.

[4] D. Myers, K. Radke, S. Suriadi, and E. Foo, “Process discovery
for industrial control system cyber attack detection,” ICT
Systems Security and Privacy Protection 2017, Proceedings
(IFIP Advances in Information and Communication Tech-
nology, Springer, vol. 502, pp. 61–75, , Switzerland, 2017.

[5] C. Lin, S. Wu, and M. Lee, “Cyber attack and defense on
industry control systems,,” in Proceedings of the IEEE Con-
ference on Dependable and Secure Computing, pp. 524–526,
Taipei, Taiwan, August 2017.

[6] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability
analysis and discovery using Machine-Learning and Data-
Mining techniques,” ACM Computing Surveys, vol. 50, no. 4,
pp. 1–36, 2017.

[7] Y. X. Lai, H. Gao, and J. Liu, “Vulnerability mining method
for the modbus TCP using an anti-sample fuzzer,” Sensors,
vol. 20, no. 7, p. 2040, 2020.

[8] C. Wang, Q. Li, X. H. Wang et al., “An android application
vulnerability mining method based on static and dynamic
analysis,” in Proceedings of the IEEE 5th Information Tech-
nology and Mechatronics Engineering Conference (ITOEC),
IEEE, June 2020.

[9] T. Tu, H. Zhang, B. Qin et al., “A vulnerability mining system
based on fuzzing for IEC 61850 protocol,” Advances in En-
gineering Research (AER) in Proceedings of the 5th interna-
tional conference on frontiers of manufacturing science and
measuring technology (FMSMT 2017), vol. 130, pp. 589–597,
Taiyuan, China, June 2017.

[10] W.-N. Kim, M.-S. Jang, J. Seo, and S. Kim, “Vulnerability
discovery method based on control protocol fuzzing for a
railway SCADA system,” 7e Journal of Korea Information
and Communications Society, vol. 39C, no. 4, pp. 362–369,
2014.

[11] S. J. Kim and T. Shon, “Field classification-based novel fuzzing
case generation for ICS protocols,” Journal of Super-
computing, vol. 74, no. 9, 2018.

[12] T. Wang, Q. Xiong, H. Gao et al., “Design and imple-
mentation of fuzzing technology for OPC protocol,” in
Proceedings of the Ninth International Conference on Intelli-
gent Information Hiding and Multimedia Signal Processing,
pp. 424–428, Beijing, China, October 2013.

[13] X. Zhang and Z. J. Li, “Overview of fuzzy testing technology,”
Computer Science, vol. 43, no. 5, pp. 1–8, 2016, in Chinese.

[14] T. L. Munea, H. Lim, and T. Shon, “Network protocol fuzz
testing for information systems and applications: a survey and
taxonomy,” Multimedia Tools and Applications, vol. 75,
no. 22, pp. 14745–14757, 2016.

[15] T. Kitagawa, M. Hanaoka, and K. Kono, “AspFuzz: a state-
aware protocol fuzzer based on application-layer protocols,”
in Proceedings of the IEEE Symposium on Computers and
Communications, pp. 202–208, Riccione, Italy, June 2010.

[16] Y. J. Zhang, Z. J. Li, X. K. Liao et al., “Survey of automated
whitebox fuzz testing,” Computer Science, vol. 41, no. 2,
pp. 7–10, 2014.

[17] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across
configurations,” ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 6, pp. 1–9, 2006.

[18] E. Martins, S. B. Sabiao, and A. M. Ambrosio, “ConData: a
tool for automating specification-based test case generation
for communication systems,” in Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences,
vol. 8, Maui, HI, USA, January 2000.

[19] G. Banks, M. Cova, V. Felmetsger et al., “SNOOZE: Toward a
stateful network protocol fuzzer,” in information security,” in
Proceedings of the International Conference, Isc, Samos Island,
Greece, Samos Island, Greece, August 2006.

[20] W.-M. Li, A.-F. Zhang, J.-C. Liu, and Z.-T. Li, “An automatic
network protocol fuzz testing and vulnerability discovering
method,” Chinese Journal of Computers, vol. 34, no. 2,
pp. 242–255, 2011, in Chinese.

[21] A. G. Voyiatzis, K. Katsigiannis, and S. Koubias, “A Modbus/
TCP Fuzzer for testing internetworked industrial systems,,” in
Proceedings of the IEEE 20th Conference on Emerging Tech-
nologies & Factory Automation (ETFA), pp. 1–6, Berlin,
Germany, September 2015.

[22] J. J. Liu and Y. D. Yuan, “Research on network protocol fuzzy
test case generation method based on heuristic search and
classification tree,” Modern Electronics Technique, vol. 39,
no. 21, pp. 36–39, 2016, in Chinese.

[23] A. Felix, A. F. Tappenden, and J. Miller, “Policy generator
(PG): a heuristic-based fuzzer,” in Proceedings of the 49th
Hawaii International Conference on System Sciences (HICSS),
pp. 5535–5544, Koloa, HI, USA, March 2016.

[24] H. X. Wang, C. Y. Zhu, H. Ying et al., “A fuzzy testing method
of industrial control protocol based on reverse analysis,”
Electric Power Information and Communication Technology,
vol. 17, no. 4, pp. 5–13, 2019, in Chinese.

[25] C. Miller and Z. Peterson, “Analysis of mutation and gen-
eration-based fuzzing,” 2007, https://www.defcon.org/
images/defcon-15/dc15-presentations/Miller/Whitepaper/
dc-15-miller-WP.pdf.

[26] K. Chen, C. Song, L. M. Wang et al., “Using memory
propagation tree to improve performance of protocol fuzzer
when testing ICS,” Computers & Security, vol. 87, Article ID
101582, 2019.

[27] S. J. Gu, Y. Y. Song, X. Zhao et al., “Fuzzing test data gen-
eration based on message matrix perturbation with keyword
reference,” in Proceedings of the IEEE MILCOM 2011 Military
Communications Conference, pp. 1115–1120, Baltimore, MD,
USA, November 2011.

[28] K. Wang, Y. Q. Zhang, Q. X. Liu et al., “A fuzzing test for
dynamic vulnerability detection on Android Binder mecha-
nism,” in Proceedings of the IEEE Conference on Communi-
cations and Network Security (CNS), pp. 709-710, Florence,
Italy, December 2015.

[29] Y. X. Lai, K. X. Yang, J. Liu et al., “Vulnerability mining
method for industry control network protocol based on
fuzzing test,” Computer Integration Manufacturing System,
vol. 25, no. 9, pp. 2265–2279, 2019, in Chinese.

[30] J. Cai, Q. Li, Y. Chen, Y. Liu, Y. Xia, and S. Rahmany,
“Troubleshooting test method based on industrial control
grammar model,” in Proceedings of the IEEE International
Conference on Computational Science and Engineering (CSE)
and IEEE International Conference on Embedded and Ubiq-
uitous Computing (EUC), pp. 404–409, New York, NY, USA,
August 2019.

8 Scientific Programming

https://www.defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf
https://www.defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf
https://www.defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf

[31] P. Xu, J. Y. Liu, B. Lin et al., “Generation of fuzzing test case
based on recurrent neural networks,” Application Research of
Computers, vol. 36, no. 9, pp. 2679–2685, 2019, in Chinese.

[32] L. L. Jiao, S. L. Luo,W. Cao et al., “Fuzzing test data generation
method based on dynamic construction of mutation strategy,”
Transactions of Beijing Institute of Technology, vol. 39, no. 5,
pp. 539–544, 2019, in Chinese.

[33] C. Y. Lyu, S. L. Ji, C. Zhang et al., “MOPT: optimizedmutation
scheduling for fuzzers,” in SEC’19,” in Proceedings of the 28th
USENIX Conference on Security Symposium, pp. 1949–1966,
Berkeley, CA; USA, August 2019.

[34] T. Yue, Y. Tang, B. Yu, P. Wang, and E. Wang, “Learn AFL:
greybox fuzzing with knowledge enhancement,” Institute of
Electrical and Electronics Engineers Access, vol. 7,
pp. 117029–117043, 2019.

[35] R. Hodován, K. Kiss, and T. Gyimóthy, “Grammarinator: a
grammar-based open source fuzzer,” in Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation, pp. 45–48, Lake Buena
Vista, FL, USA, November 2018.

[36] V. Atlidakis, R. Geambasu, P. Godefroid et al., “Pythia:
Grammar-Based Fuzzing of REST APIs with Coverage-
Guided Feedback and Learning-Based Mutations,” 2020,
https://arxiv.org/pdf/2005.11498v1.pdf.

[37] I. N. Fovino, A. Carcano, M. Masera et al., “Design and
implementation of a secure modbus protocol,” in Proceedings
of the International Conference on Critical Infrastructure
Protection, pp. 33–36, Springer, Arlington, VA, USA, March
2009.

[38] J. Luswata, P. Zavarsky, B. Swar et al., “Analysis of SCADA
security using penetration testing: a case study on Modbus
TCP protocol,” in Proceedings of the 29th Biennial Symposium
on Communications (BSC), Toronto, CA, USA, June 2018.

[39] R. A. Caruana and J. D. Schaffer, “Representation and
hidden bias: Gray vs. Binary coding for genetic algorithms,”
in Proceedings of the Fifth International Conference on
Machine Learning, pp. 153–161, Ann Arbor, MI, USA, June
1988.

[40] A. Arrieta, S. Wang, U. Markiegi et al., “Search-based test case
generation for Cyber-Physical Systems,” in Proceedings of the
Institute of Electrical and Electronics Engineers Congress on
Evolutionary Computation (CEC), pp. 688–697, Donostia-San
Sebastian, Spain, June 2017.

[41] G. Zhang, W. Shang, B. Zhang, C. Chunyu, and Z. Rui, “Fuzzy
test method for industrial control protocol combining genetic
algorithm,” Computer Application Research, vol. 38, no. 3,
2021, in Chinese.

Scientific Programming 9

https://arxiv.org/pdf/2005.11498v1.pdf

