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Topic modeling is a probabilistic generation model to find the representative topic of a document and has been successfully
applied to various document-related tasks in recent years. Especially in the supervised topic model and time topic model, many
methods have achieved some success.(e supervised topic model can learn topics from documents annotated with multiple labels
and the time topic model can learn topics that evolve over time in a sequentially organized corpus. However, there are some
documents with multiple labels and time-stamped in reality, which need to construct a supervised time topic model to achieve
document-related tasks. (ere are few research papers on the supervised time topic model. To solve this problem, we propose a
method for constructing a supervised time topic model. By analysing the generative process of the supervised topic model and
time topic model, respectively, we introduce the construction process of the supervised time topic model based on variational
autoencoder in detail and conduct preliminary experiments. Experimental results demonstrate that the supervised time topic
model outperforms several state-of-the-art topic models.

1. Introduction

Nowadays many kinds of text information like news, blogs,
books, and social network accompany the daily lives of
people. Some traditional methods are difficult to get effective
information from an increasingly large amount of data. (e
probabilistic topic model is a new technology that can help
people to organize, index, search, and browse these kinds of
large data automatically.

Latent Dirichlet allocation (LDA) [1] is a classical topic
model to find the representative topic of a document. During
the past decade, LDA has been successfully applied to
various document-related tasks, such as text classification
[2], clustering [3], and summarization [4]. However, as a
static topic model, LDA has two limitations.

Firstly, the number of topics is hard to determine in the
static topic model. To select the best number of topics, most
of the methods use the lowest perplexity or the largest
likelihood estimate value of the topic model by comparing

different numbers of topics [1, 5, 6]. In fact, these methods
lead to the fact that the latent topic content is difficult to
interpret. Secondly, the text information can be exchanged
in the static topic model [1]. Moreover, the static topic model
assumes that the text information is unordered with each
other [7]. (is simplified assumption is inappropriate and
unrealistic [8].

In order to overcome these limitations, the supervised
topic model and time topic model are proposed, respectively.
In recent years, methods of the supervised topic model and
time topic model have a variety of applications.

(e objective of the supervised topic model is to learn
topics from documents annotated with multiple labels. To
the best of our knowledge, labeled LDA [9] is the classical
supervised topic model that matches the multiple topics to
the labels in the document. (e number of topics is de-
termined by the metadata of the document (such as labels),
and topic terms have a better way to interpret topics [10]. In
addition, the supervised topic model supports a variety of
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applications, such as social event analysis [11], abnormal
event detection [12], document classification [13], and tag
recommendation [14].

(e objective of the time topic model is to construct a
topic model that evolves over time in a sequentially orga-
nized corpus. To the best of our knowledge, the dynamic
topic model is the first time topic model that captures the
evolution of topics in a sequentially organized corpus of
documents [7]. Based on the time topic model, a series of
applications are researched, for example, dynamic features
extraction [15], automated behaviour analysis [16], travel
recommendation [17], and tracking urban geotopics [18].

However, there are some documents with multiple labels
and time-stamped in reality, for example, a scientific paper
has keywords and is time-stamped. Park et al. proposed a
similar supervised time topic model, the main idea of which
is on generating the numerical time-series variables as su-
pervised metadata that is a single topic of each time slice
[19]. (is model is not considered as a supervised time topic
model which can learn a topic from documents with mul-
tiple labels and which are time-stamped and apply the topic
to various document-related tasks. As a result, it is necessary
to propose a method to construct a supervised time topic
model. To the best of our knowledge, this is the first work of
constructing a supervised time topic model. (e contribu-
tions of this paper are as follows.

We reveal and discuss the limitations of the main current
relevant works on the topic model, and thus to construct a
supervised time topic model is very necessary. We propose a
method for constructing a supervised time topic model
based on variational autoencoders, denoted by ST-TM,
which is designed to deal with documents that have multiple
labels and are time-stamped. (e reasoning and con-
structing process of ST-TM is presented in detail. For a
preliminary evaluation, we compare ST-TM with the state-
of-the-art methods in the experiments. (e results show that
our proposed method is more effective.

(e rest of the paper is organized as follows: we firstly
review related research works. Secondly, the method for
constructing a supervised time topic model based on vari-
ational autoencoders is described in detail. (en, the ex-
periments of our proposed method are conducted. Finally,
this paper is concluded.

2. Related Works

In this section, we review some representative works on the
supervised topic models and time topic models in detail,
respectively. Based on analysing the limitations of related
works, we present a supervised time topic model to address
these limitations.

2.1. Supervised Topic Model. To the best of our knowledge,
supervised latent Dirichlet allocation is the first supervised
topic model that adds to a topic associated with each
document and uses variational methods to handle intrac-
table posterior expectations [20]. Since then, several su-
pervised topic models have been proposed, for example,

discriminative LDA [21] and maximum entropy discrimi-
nation LDA [22]. (e above methods train only a single
topic for each document.

It is well known that a document with only a single topic
is inappropriate. For example, a document on social edu-
cation includes both social and educational topics. Based on
this fact, some supervised topic models with multiple topics
are proposed. Labeled LDA matches the multiple topics to
the labels in the document [9]. (e number of topics is
determined by the metadata of the document (such as la-
bels), and topic terms have a better way to interpret topics
[10]. Partially labeled LDA learns latent topic structure
within the scope of observed, human interpretable labels
[23]. Nonparametric labeled LDA uses the Dirichlet process
with mixed random measures as a base distribution of the
hierarchical Dirichlet process framework [24]. Dependency-
LDA further considers the label frequency and label de-
pendency observed in the training data for constructing the
supervised topic model [2].

We review Labeled LDA (L-LDA) that is representative
work on the supervised topic model. In order to contain the
supervision, L-LDA applies a 1 :1 correspondence between
topics and labels. In addition to labels, keywords of scientific
papers and categories of news are also considered as topics
[10]. L-LDA is a probabilistic graphical model that describes
a process for generating a labeled document collection. (e
graphical model of L-LDA is shown in Figure 1.

In Figure 1, two observable parts of the grey fill c and w

are explicit variables that indicate labels and terms, re-
spectively. Nodes with no fill are implicit variables and
unobservable. Unlike LDA, both the label set c and the topic
prior α influence the topic mixture θ. L-LDA assumes that
each document d is restricted to a multinomial distribution
θd over labels which are part of the corpus. Each label is
represented as a topic c that is a multinomial distribution Φc
over the terms. (e generative process of L-LDA is shown in
Table 1. Different from LDA, the whole generative process of
L-LDA contains topic constraint. (e more detailed de-
scriptions of L-LDA are presented in literature [9].

2.2. Time TopicModel. (e time topic model is developed to
analyse the time evolution of topics in large document
collections. To the best of our knowledge, the dynamic topic
model is the first time topic model that captures the evo-
lution of topics in a sequentially organized corpus of doc-
uments [7]. In order to simplify the reasoning procedure of
the time topic model, the method uses a variational
autoencoder to construct the time topic model [8]. To build
cross-lingual tools, a multilingual dynamic topic model is
proposed that can capture cross-lingual topics that evolve
across time [25]. We review the dynamic topic model
(DTM) that is representative work on time topic model.
DTM supposes that the data is divided by time slice, for
example, by decades. (e graphical model of DTM is shown
in Figure 2.

In Figure 2, β is the vector of natural parameters for topic
evolving over time and α is the vector of mean parameters of
the logistic normal distribution for the topic proportions.
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However, the Dirichlet is not amenable to the sequential
model. Literature [7] chains the vectors of parameters α and
β in a state-space model that evolves with Gaussian noise,
respectively. By chaining together topics and topic pro-
portion distributions, DTM has sequentially tied a collection
of topic models. (e generative process for slice t of a se-
quential corpus is shown in Table 2. (e whole process of
DTM is restrained by time slice t; the more detailed de-
scriptions of DTM are presented in the literature [7].

Using the above methods, the supervised topic model
and time topic model are implemented for mining topics.
However, some documents have multiple labels and are
time-stamped in reality; for example, the scientific paper has
keywords and is time-stamped. And there are few research
papers on the supervised time topic model to learn topics for

these documents. As a result, it is necessary to propose a
method to construct a supervised time topic model for
documents with multiple labels and time-stamped.

3. Methods

In order to make the proposed method for constructing a
supervised time topic model easier to describe and under-
stand, we summarize some major notations needed in our
formulation in Table 3.

(e method of constructing a supervised time topic
model is based on the generative process of the supervised
topic model and time topic model. (e difficulty is the
reasoning of the loss function. In this section, we describe
the method for constructing a supervised time topic model
based on variational autoencoders in detail and denoted by
ST-TM; the graphical model of ST-TM is shown in Figure 3.

(e generative process of ST-TM is different from
L-LDA and DTM by dividing time slices and having the
supervision for each time slice, respectively. Moreover,
unlike DTM, ST-TM removes transitive dependencies for α

Table 1: (e generative process of L-LDA.

Steps Description
1 For each topic c ∈ C:
2 Generate the multinomial topic distributions over vocabulary Φc∼Dirichlet(βc)

3 End for
4 For each document d ∈ D:
5 Generate the multinomial topic distributions over document θd∼Dirichlet(αd) according to the label set of each document d

6 For each term Wd,n ∈ d:
7 Generate topic Zd,n∼Multinomial(θd)

8 Generate term Wd,n∼MultinomialΦZd,n

9 End for
10 End for

Zwα θ w Φ

βcδ
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Figure 1: (e graphical model of L-LDA.
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Figure 2: (e graphical model of DTM.

Table 2: (e generative process of DTM.

Steps Description
1 Draw topics βt|βt−1 ∼N(βt−1, σ2I)

2 Draw αt|αt−1 ∼N(αt−1, δ
2I)

3 For each document d ∈ Dt:

4 Generate the multinomial topic distributions over
document θt,d ∼N(αt, a2I)

5 For each term Wt,d,n ∈ d:
6 Generate topic Zd,n ∼Multinomial(θt,d)

7 Generate term Wt,d,n ∼Multinomial(βt,Zd,n
)

8 End for
9 End for
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and β so that the reasoning process of the model can further
simplify. (e generative process of ST-TM is shown in
Table 4.

(e implementation of ST-TM depends on a variational
autoencoder that is a deep learning technique for learning
latent representations. (e variational autoencoder is
composed of an encoder and decoder. In time slice t, the
encoder is to generate a variational approximate posterior
distribution qϕ(θt|wt) of the document-topic. Decoder
estimates the optimal generation probability p(wt

′|θt, βt)

with qϕ(θt|wt) known. (e network structure of the vari-
ational autoencoder of the topic model is shown in
Figure 4.

In Figure 4, the model assumes q(θ|w) obeys diago-
nalization of the covariance matrices of the Gaussians
distribution. (e encoder trains the potential mean and
variance for the vector of term-topic z. In order to
generate documents w′ that are as close to the input
documents w, the decoder estimates the better proba-
bilistic model p(w′|θ, z) according to the known q(θ|w).
(e generation process of θ needs to use backpropagation
to calculate the gradient of the error function. Generally,

we want to minimize an expected cost by using gradient
descent that requires computing the gradients. (e
generation process of θ adopts the reparametrization
trick that is used in computing the gradients. (e
graphical model of the reparametrization trick is shown
in Figure 5.

In Figure 5, the random variable z ∼ q(z|w) (at left) can
be reparameterized as a Gaussian function and a random
variable ε. More specifically, the reparametrization trick in
this paper involves a function of a standard Gaussian var-
iable ε ∼ N(0, I) that is used to rewrite z ∼ N(μ, σ), such
that z � μ + σ ⊙ ε. (erefore, μ and σ only involve linear
operation that can be optimized by stochastic gradient
descent algorithm easily.

In this paper, the encoder has a 2-layer neural network to
generate the variational approximate posterior distribution
qϕ(θt|wt) of document-topic. (e decoder estimates the
better probabilistic model p(wt

′|θt, βt) according to the
known qϕ(θt|wt). According to the generation process of
ST-TM, the marginal likelihood function of generating
documents w′ as a variational target is shown in equations
(1) and (2):

Table 3: Notations description.

Notation Description
t Time slice t

c (e supervised topic
C (e set of topics in a text corpus
d Document
W Term
n (e number of terms in document d

βt (e word-topic distribution parameters in time slice t

θt (e document-specific topic parameters in time slice t

z (e vector of words-topic
wt Input documents in time slice t

μt (e mean parameters for inputting documents in time slice t

σt (e covariance parameters for inputting documents in time slice t

wt
′ Generate documents in time slice t

μt
′ (e mean parameters for generating documents in time slice t

σt
′ (e covariance parameters for generating documents in time slice t

Dt

N 

Ztαt θt, w βt,c

βtc

μt

σ

μt

σ

c

θ′t

Figure 3: (e graphical model of ST-TM.
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Figure 5: (e graphical model of the reparametrization trick.

Table 4: (e generative process of ST-TM.

Steps Description
1 For each topic c ∈ C in time slice t:
2 Generate the multinomial topic distributions over vocabulary βt,c according to βt∼N(μt, σ2I)

3 End for
4 Draw αt∼N(μt, σ2I)

5 For each document d ∈ Dt:

6 Generate the multinomial topic distributions over document θt,d ∼N(θt
′|αt, a2I) according to θt∼N(αt, a2I) and the constraint

matrix of document-topic θt
′

7 For each term Wt,d,n ∈ d:
8 Generate topic Zd,n∼Multinomial(θt,d)

9 Generate term Wt,d,n∼Multinomial(βt,Zd,n
)

10 End for
11 End for
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Figure 4: (e network structure of variational autoencoder of the topic model.
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p wt
′|αt, βt, θt

′(  �  

N

n�1


K

zt,n

p wt,n
′|zt,n, βt p zt,n|θt ⎛⎝ ⎞⎠

· p θt|αt; θt
′( dθt,

(1)

p wt
′|αt, βt, θt

′(  �  
N

n�1
p wt,n
′|θt, βt p θt|αt; θt

′( dθt. (2)

Unlike Table 3, n is the number of documents in time
slice t. (e variational functions qϕ(θt|wt, θt

′) are intro-
duced for calculating log p(wt

′|αt, βt, θt
′). According to

Jensen’s inequality, the marginal logarithmic likelihood
function l(wt

′, αt, βt, θt
′) of generated document wt

′ is as
follows:

l wt
′, αt, βt, θt

′(  � log
θt

qϕ θt|wt, θt
′( 

p wt
′|θt, βt( ∗p θt|αt; θt

′( 

qϕ θt|wt, θt
′( 

dθt,

l wt
′, αt, βt, θt

′( ≥
θt

qϕ θt|wt, θt
′( ∗ log p wt

′|θt, βt( dθt

+ 
θt

qϕ θt|wt, θt
′( ∗ log

p θt|αt; θt
′( 

qϕ θt|wt, θt
′( 
dθt,

l wt
′, αt, βt, θt

′( ≥Eqϕ θt|wt,θt
′( ) log p wt

′|θt, βt(   − KL qϕ θt|wt, θt
′( ‖ p θt|αt; θt

′(  ,

Eqϕ θt|wt,θt
′( ) log p wt

′|θt, βt(   − KL qϕ θt|wt, θt
′( ‖ p θt|αt; θt

′(  ≜L q, βt, αt; wt, θt
′( ,

(3)

where L(q, βt, αt; wt, θt
′) is the variational lower bound for

the marginal logarithmic likelihood function l(wt
′, αt, βt, θt

′),
l(wt
′, αt, βt, θt

′) � L(q, βt, αt; wt, θt
′) if and only if qϕ(θt|wt,

θt
′) � p(θt|αt; θt

′). In order to find the best qϕ(θt|wt, θt
′)

which should be able to approximate the true posterior
distribution p(θt|αt; θt

′), the most common approximate
calculation of l(wt

′, αt, βt, θt
′) uses the Kullback–Leibler di-

vergence (KL-divergence) between qϕ(θt|wt, θt
′) and

p(θt|αt; θt
′). Our aim is to get argminKL

(qϕ(θt|wt, θt
′)‖ p(θt|αt; θt

′)) which is different from the
precise KL-divergence l(wt

′, αt, βt, θt
′) − L(q, βt, αt; wt, θt

′).
Details are shown as follows:

argminKL qϕ θt|wt, θt
′( ‖ p θt|αt; θt

′(  

� argmin l wt
′, αt, βt, θt

′(  − L q, βt, αt; wt, θt
′( ( ,

(4)

argminKL qϕ θt|wt, θt
′( ‖ p θt|αt; θt

′(  

� argmaxL q, βt, αt; wt, θt
′( ,

(5)

argminKL qϕ θt|wt, θt
′( ‖ p θt|αt; θt

′(  

� argmax Eqϕ θt|wt,θt
′( ) log p wt

′|θt, βt(  

− KL qϕ θt|wt, θt
′( ‖ p θt|αt; θt

′(  ,

(6)

where the first part is the expectation of reconstruction error
and the second part is the KL-divergence of the approximate
posterior distribution from the true posterior distribution.
In t time slice, wt

′ has N independent samples (w1′
t , w2′

t , . . .,
wN′

t ). As the first part of equation (6), Eqϕ(θt|wt,θt
′)

[log p(wt
′|θt, βt)] is generated by each sample with one point

and then Eqϕ(θt|w
i
t,θt
′)[log p(wi′

t|θt, βt)]≈ log p(wi′
t|θt, βt) and

obeys multivariate Bernoulli distribution.(e expectation of
reconstruction error can be measured by the cross entropy
cost function, which is often used to measure the difference
between the predicted value and actual value. In addition,
the decrease of the learning rate of the loss function can be
avoided in the process of gradient descent [26]. (e loga-
rithmic likelihood of p(wt

′|θt, βt) uses the negative cross
entropy denoted by L1, where L1 � −wt ∗ log p(wt

′|θt, βt).
(e state variables βt remove transitive dependency in

order to simplify the complex reasoning process. Gaussian
sampling is used to initialize the state variables βt denoted by
L2, then L2 � βt ∼ N(μt, σ2I). In ST-TM, the encoder is to
generate a variational approximate posterior distribution
qϕ(θt|wt, θt

′) of the document-topic. We assume qϕ
(θt|wt, θt

′) obeys diagonalization of the covariance matrices
of the Gaussians distribution. (en, log qϕ(θt|wt, θt

′) �

logN(wt; μt
′, σt
′) · θt
′, where the mean μt

′ and the covariance
σt
′ are generated by the neural network. Following the above

reparametrization trick, we rewrite qϕ with an auxiliary
parameter ε that makes θt � σ((μt

′ + σ′(1/2)
t ∗ ε) · θt

′). We
apply this trick to obtain an estimator of the variational
lower bound [27].

For the true posterior distribution, θt obeys a logarithmic
Gaussian distribution with the mean μt and the variance σt,
then log p(θt|wt, θt

′; αt) � logN(wt; μt, σt) · θt
′, where the

covariance σt is the hyperparameters, and the mean μt � αt

that is initialized by the Gaussian random sampling
αt ∼ N(1, σ2t I) to take the place of αt � 1. According to the
probability density function of multivariate Gaussian
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distribution, the second part of (6) denoted by Lkl is inferred
as follows:

KL qϕ θt|wt, θt
′( ‖ p θt|wt, θt

′; αt(   � Eqϕ
log qϕ θt|wt, θt

′(  − log p θt|wt, θt
′; αt(  

�
1
2
Eqϕ

−log σt
′


 − x − μt

′( 
Tσ′(−1)

t x − μt
′(  + log σt


 + x − μt( 

Tσ−1
t x − μt(  

�
1
2
log

σt




σt
′




+
1
2
Eqϕ

− x − μt
′( 

Tσ′(−1)
t x − μt

′(  + x − μt( 
Tσ−1

t x − μt(  

�
1
2
log

σt




σt
′




+
1
2
Eqϕ

−tr σ′(−1)
t x − μt

′(  x − μt
′( 

T
  + tr σ−1

t x − μt(  x − μt( 
T

  

�
1
2
log

σt




σt
′




+
1
2
Eqϕ

−tr σ′(−1)
t x − μt

′(  x − μt
′( 

T
   +

1
2
Eqϕ

tr σ−1
t x − μt(  x − μt( 

T
  

�
1
2
log

σt




σt
′




−
1
2

tr Eqϕ
σ′(−1)

t x − μt
′(  x − μt

′( 
T

   +
1
2

tr Eqϕ
σ−1

t x − μt(  x − μt( 
T

  

�
1
2
log

σt




σt
′




−
1
2

tr σ′(−1)
t Eqϕ

x − μt
′(  x − μt

′( 
T

  

+
1
2

tr Eqϕ
σ−1

t xx
T

− μtx
T

− xμT
t + μtμ

T
t   

�
1
2
log

σt




σt
′




−
1
2

tr σ′(−1)
t σt
′  +

1
2

tr σ−1
t Eqϕ

xx
T

− μtx
T

− xμT
t + μtμ

T
t  

�
1
2
log

σt




σt
′




−
1
2
θt
′


 +

1
2

tr σ−1
t σt
′ + μt
′μ′Tt − μtμ

′T
t − μt
′μT

t + μtμ
T
t  

�
1
2

log
σt




σt
′



− θt
′


 + tr σ−1

t σt
′  + tr σ−1

t μt
′μ′Tt − μtμ

′T
t − μt
′μT

t + μtμ
T
t   

�
1
2

log
σt




σt
′



− θt
′


 + tr σ−1

t σt
′  + tr σ−1

t μt
′μ′Tt − σ−1

t μtμ
′T
t − σ−1

t μt
′μT

t + σ−1
t μtμ

T
t  

�
1
2

log
σt




σt
′



− θt
′


 + tr σ−1

t σt
′  + tr μ′Tt σ−1

t μt
′ − 2μ′Tt σ−1

t μt + μT
t σ

−1
t μt  

�
1
2

log
σt




σt
′



− θt
′


 + tr σ−1

t σt
′  + μt − μt

′( 
Tσ−1

t μt − μt
′(  ,

(7)

where |θt
′| is the column number of document-topic con-

straint matrix that is the number of topics in time slice t. In
conclusion, the final variational objective can be represented
by loss function L(Θ) as follows:
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L(Θ) � argmax L1 + L2 − Lkl( ,

L(Θ) � argmin −L1 − L2 + Lkl( ,

L(Θ) � argmin wt ∗ log p wt
′|θt, βt(  + βt + Lkl ,

L(Θ) � argmin
D

i

wt,i ∗ log π βt(  π μt
′ + σt
′ ∗ ε(  · θt

′( (  + βt

+
1
2

tr σ−1
t σt
′  + μt − μt

′( 
Tσ−1

t μt − μt
′(  − θt
′


 + log

σt




σt
′




 ,

(8)

where π(βt) � (exp(βt,w)/wexp(βt,w)), π(μt
′ + σt
′ ∗ ε) �

(exp(μt,d
′ + σt,d
′ ∗ ε)/dexp(μt,d

′ + σt,d
′ ∗ ε)).

4. Experimental Results and Analysis

In this section, we conduct experiments to verify the effi-
ciency of the proposed method on a real dataset. Our ap-
proach is compared with the state-of-the-art topic models.

4.1. Experiment Environment and Dataset. (e experiments
were executed on a personal computer with an AMD FX-
Series CPU FX-8350 @4.0GHz, the processor having eight
physical computing cores, 24GB DDR3 RAM memory
@1600MHz. (e machine was running on Windows 7
(64 bits) operating system, TensorFlow 1.4.0 with CPU
support only, and Python 3.6.

To demonstrate the efficiency of our proposed approach,
we use the paper corpus of SIGIR (International ACM SIGIR
Conference on Research and Development in Information
Retrieval) as the dataset. (e main purpose of SIGIR is to
show new technologies and achievements related to infor-
mation retrieval. (e dataset is constructed by abstracts of
papers that are from the 2018, 2013, and 2009 annual
conferences. Experimental data consisting of 564 papers
with 76 topics and about 90000 words can be downloaded
from the official SIGIR website.We divided the dataset into 3
time slices by year.

Our neural networks structure is composed of an en-
coder and decoder. (e encoder has one input layer and two
hidden layers, and the decoder has two hidden layers and
one output layer. Input layer and output layer have the same
number of neurons as the number of papers, which changes
in different time slices. Every hidden layer has 100 hidden
neurons according to the existing experimental conclusion
[8]. Moreover, the learning rate is 0.002 and the number of
iterations is 300 that can achieve convergence for our
dataset.

4.2. Evaluation Metrics. It is difficult to choose the appro-
priate evaluation method of the topic model. Although the
traditional evaluating method uses perplexity to evaluate the
qualitative of topics, it is generally not well suited to express
the semantic property of topic terms [28]. Lau et al. [29] use
Normalized Pointwise Mutual Information (NPMI) to

evaluate the qualitative of topics, and NPMI is close to the
ordinary understanding and judgment of people.

(e experiment is evaluated by NPMI(k) that can ex-
press the coherence of topic k, and NPMI(k) is given as

NPMI(k) � 
M−1

i�1


M

j�i+1

log p wi, wj /p wi( p wj  

−log p wi, wj 
, (9)

where M is the number of topic terms in topic k. wi and wj

are the ith topic term and the jth topic term, respectively.
p(wi), p(wj), and p(wi, wj) are the probability of the ith
topic term, the probability of the jth topic term, and the
cooccurrence probability of the ith and the jth topic term in
topic k. Experiment results depend on the average topic
coherence of K topics at last. (e higher value the average of
NPMI is, the better the topic model is.

4.3. Baseline Methods. To validate the effectiveness of our
method, three state-of-the-art topic model methods have
been compared with ST-TM. (e first baseline is collapsed
Gibbs sampling on the LDAmodel denoted by SDTMGibbs
[30]. (e second one is the static topic model based on
autoencoding variational inference denoted by LDA VAE
[31]. (e last one uses a variational autoencoder to construct
a time topic model denoted by DTM VAE [8]. (e details of
all methods are provided in Table 5. All baseline methods are
conducted by the original paper of the corresponding
methods.

4.4. Comparison with Baseline Methods. We conduct a
preliminary experiment. (e convergence process of each
method is shown in Figure 6. (e convergence of Gibbs
sampling depends on the perplexity value which is a mea-
surement of stability for the topic model. (e loss function is
used to determine the convergence of other methods that are
based on a variational autoencoder.

All methods on NPMI value are shown in Figure 7. Our
method has the highest NPMI value at 0.316, while the other
methods are at 0.083, 0.169, and 0.299, respectively. Com-
paring to the traditional Gibbs sampling method of con-
structing the topic model, the variational autoencoder
method is more efficient. (e supervised time topic model
outperforms the static topic model and unsupervised time
topic model on the semantic property of topic terms. (e
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result of the preliminary experiment shows that ST-TM has
excellent performance at interpretation of the topic.

4.5. Discussion. (e proposed method for constructing the
supervised time topic model is verified through the public
dataset, and the experimental results show that the average
of NPMI is improved with time slices and supervision. (e
proposed method is easier to operate compared with the
traditional Gibbs sampling method of constructing the topic
model [30] and can achieve a good result. In addition, the
proposed method is based on the basic structure of the
variational autoencoder method [31] and introduces time
slices and supervision for understanding the supervised time
topic model. (e largest advantage of this work is in solving
the problem of constructing a supervised time topic model

for some documents with multiple labels and which are
time-stamped to achieve document-related tasks.

5. Conclusions

In this paper, we propose a method for constructing a su-
pervised time topic model based on variational autoen-
coders. We reveal and discuss the limitations of the main
current relevant works on the supervised topic models and
time topic models, respectively. We further present the
reasoning and constructing process of the supervised time
topic model. Specifically, the graphical model of con-
structing process of supervised time topic model is pro-
posed. (e implementation of the method depends on a
variational autoencoder that is composed of an encoder and
decoder. An encoder is to generate a variational approximate

Table 5: Details of all methods.

Method Variational autoencoder Time slices Supervision
SDTM Gibbs No Yes Yes
LDA VAE Yes No No
DTM VAE Yes Yes No
ST-TM Yes Yes Yes
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Figure 6: (e convergence process of all methods. (a) Gibbs sampling. (b) Other methods.
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Figure 7: Comparison of all methods on NPMI.
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posterior distribution of the document-topic, and a decoder
estimates the optimal generation probability. (e process of
reasoning of the marginal likelihood function of generating
documents as a variational target is presented. In addition,
we compare our method with baselines in the experiment for
a preliminary evaluation. (e results show that our method
is more effective for the topic model than baseline methods.
(e contribution of this work is in solving the problem of
constructing a supervised time topic model for some doc-
uments with multiple labels and time-stamped to achieve
document-related tasks. (e relevant theories of the topic
model can be conducive for researchers to understand,
reason, and use the supervised time topic model.

In future work, we will improve the method of con-
structing a supervised time topic model for further com-
pletion, refinement, and adaptation. Furthermore, to achieve
better performance, we will also apply our constructed
supervised time topic model in information retrieval, rec-
ommender systems, text classification, and other fields.
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