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It is not widely acknowledged that multicriteria decision-making (MCDM) problems in some particular circumstances cannot be
effectively solved by some traditional methods. (is paper aims to construct a novel decision-making method to effectively solve
these MCDM problems. Firstly, we propose a covering-based picture fuzzy rough set (CPFRS) model by combining the picture
fuzzy (PF) neighborhood operator and some PF logical operators. Secondly, by combining the proposed CPFRS model with the
principle of TOPSIS method, a new method is proposed to solve the MCDM problems under PF environments. Finally, we apply
our proposed method to the risk management of green buildings. By comparing the proposed method with some existingMCDM
methods, the established method is effective and flexible and can be applied to a wide range of environments.

1. Introduction

Data-driven methods and techniques are significant tools
and have been widely used in decision making [1]. Among
many data-driven methods, methods related to multicriteria
decision making (MCDM) play a key role in knowledge
processing, information management, data mining, etc.
However, with the rapid development of the information age
and computer technology, massive and complex fuzzy data
appear in various fields of human life. (is gave rise to great
challenges. For example, in the field of risk management of
construction projects [2, 3], identifying the priority of risk
factors through risk ranking is of great significance for
improving the efficiency of risk management. Since the risk
assessment information about construction projects is
usually fuzzy and uncertain, the risk ranking is difficult to be
implemented.

To describe fuzzy and uncertain information, the
American cybernetic expert Zadeh [4] first proposed the
notion of fuzzy set (FS) by usingmembership degree in 1965.
Compared with the classical set theory, FS theory has broken
through the constraints of a two-valued logical system and
has been widely used in modern science. However, with the
in-depth study of the fuzzy set theory, it is found that FS

based on a membership degree parameter is difficult to
accurately describe the uncertainty of things. In 1986,
Atanassov [5] proposed intuitionistic fuzzy set (IFS) based
on three parameters of membership, nonmembership, and
hesitation to describe fuzzy information. Somemodels in the
intuitionistic fuzzy environment have been studied by a large
number of scholars, and some remarkable results have been
achieved [6–9]. At the same time, as the IFS theory gradually
matures, its limitations gradually appear. (erefore, many
scholars are committed to the expansion and development of
IFS theory, and various expansion forms and their appli-
cations have been proposed, such as pythagorean fuzzy set
theory [10–16], intuitionistic cubic fuzzy set theory [17],
neutrosophic set theory [18–22], and so on.

Each neutrosophic set (NS) [18] has three membership
functions: true membership function, uncertain member-
ship function, and false membership function. Intuitively,
NS has a wide range of applications. However, since the
function values of the three functions of the NS are all
subsets of the nonstandard unit interval ]0− , 1+[, it is dif-
ficult to solve practical problems. (us, two important
subclasses of NS, picture fuzzy set (PFS) [23] and spherical
fuzzy set (SFS) [24], are proposed one after another, and they
are both characterized by the degrees of positive
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membership, neutral membership, negative membership,
and refusal membership. Recently, SFS and its applications
[25–35] have been developed rapidly. (e main difference
between PFSs and SFSs is that, in the former case, the sum of
positive membership degree, neutral membership degree,
and negative membership degree belongs to the standard
unit interval [0, 1]. Hence, PFS is regarded as the standard
NS [36].

PFS is a good advanced fuzzy set for modeling some
phenomena and events that cannot be processed in other
sets such as FS and IFS [37]. To describe fuzzy and uncertain
information more accurately, PFS is applied to the infor-
mation evaluation of MCDM. Methods for MCDM with
fuzzy or intuitionistic fuzzy information are no longer
suitable for solving the MCDM problem with picture fuzzy
(PF) information. How to deal with the problem of MCDM
under PF environments has attracted the attention of a large
number of researchers [3, 38–44]. (ere are three major
families of methods of MCDM under PF environments. (1)
(e approaches based on measure theory. (ere are three
main measure methods, which are entropy measure, simi-
larity measure, and distance measure. For example, Wei [39]
proposed PF cross-entropy and applied it to the selection of
enterprise resource planning system. Joshi and Kumar [40]
proposed an approach for MCDM problems based on the
Dice similarity measure and weighted Dice similarity
measure for PFS. Peng and Dai [41] proposed an algorithm
to solve the MCDM problem based on a distance measure.
Wang et al. [42] studied the Bonferroni average distance of
PFS and applied it to the evaluation of energy performance
contracting projects. (2) (e approaches based on the
classical decision-makingmethods. For example,Wang et al.
[3] expanded the VIKOR method to picture fuzzy nor-
malized projection model and established a MCDM
framework for risk evaluation of construction projects with
PF information. Wei [43] expanded the TODIM method to
theMCDMwith PF information. Ashraf et al. [44] expanded
the TOPSIS method to the MCDM with PF information. (3)
(e approaches based on utility theory. (e information
fusion technique based on some aggregation operators is a
classical method in this family; many researchers [44–56]
have proposed aggregation operators to fuse information in
decision making. Some common aggregation operators are
shown as follows:

(i) Picture fuzzy weighted average operator [47–50]
(ii) Picture fuzzy weighted geometric operator [44, 48]
(iii) Picture fuzzy Muirhead mean operator [51]
(iv) Weighted picture fuzzy power Choquet ordered

geometric operator and weighted picture fuzzy
power Shapley Choquet ordered geometric oper-
ator [52]

(v) Picture fuzzy weighted interaction aggregation
operator [53]

(vi) Picture fuzzy weighted interaction geometric op-
erator [54]

(vii) Picture fuzzy Dombi aggregation operator [55]

(viii) Picture fuzzy Hamacher aggregation operator
[47, 56]

Although some of the existing aggregation operators
have been successfully applied to theMCDM problem under
PF environments, they all have a common shortcoming, that
is, they may not be able to deal with theMCDMproblem in a
finite picture fuzzy covering approximation space (PFCAS).

Rough set (RS) theory, as an effective tool for analyzing
information with inaccuracy, inconsistency, and incom-
pleteness, was first introduced by Pawlak [57]. (e most
significant difference between RS theory and other theories
dealing with uncertain and imprecise problems is that it does
not need to provide any prior information beyond the
dataset to be processed by the problem, so the description or
treatment of the uncertainty of the problem can be said to be
more objective. However, the binary relation in the classical
RS model is an equivalence, which is very demanding and
limits the application of RS models.(erefore, RS theory has
been extended in many ways [58–67], among which the
technology of combining FS theory, covering theory, and RS
theory is an important research topic, for example, covering-
based fuzzy rough set model [61–64], covering-based
intuitionistic fuzzy rough set model [65, 66], covering-based
spherical fuzzy rough set model [67], and so on.

Compared with FS and IFS, PFS with four dimensions of
yes, abstention, no, and rejection has more advantages in
describing fuzzy and uncertain information. (is paper has
the following two basic motivations:

(1) RS theory has advantages in handling uncertain
information. However, the classical RS model is
limited in applications due to its strict conditions.
(rough our research, we find that the introduction
of PFS theory makes many problems involving
positive degree, neutral degree, negative degree, and
refusal degree. (ere are few studies on the inter-
section of PFS theory and RS theory. (erefore, we
will try to propose a covering-based picture fuzzy
rough set (CPFRS) model by combining PF theory,
covering theory, and RS theory.

(2) In the construction industry, the project manage-
ment team uses risk assessment to determine the
priority of risk management, which can greatly
improve the efficiency of risk management. (is type
of problem can be described as the MCDM problem
in a finite PFCAS. Nonetheless, some methods may
fail in a finite PFCAS, which can be seen from Ex-
ample 2 of this paper. TOPSIS is one of the classical
decision-making methods, which can make full use
of the information of the original data and can ac-
curately reflect the gap between the evaluation plans.
Since the TOPSIS method is suitable for the calcu-
lation of small samples and the calculation of large
samples, it has been successfully applied to MCDM
problems in various complicated fuzzy environ-
ments [13, 35, 44, 65–69]. We can see that the ad-
vantage of the CPFRS model and the TOPSIS
method cannot be ignored. (erefore, we will try to
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combine them in dealing with uncertain information
and design a new decision-making method to solve
the risk management problem.

(e main objective of this paper is to design a decision-
makingmethod to solveMCDMproblems in a finite PFCAS.
(is paper has the following contributions:

(1) (e neighborhood operator is introduced based on
PF covering, and its properties are discussed.

(2) We propose a CPFRS model by using the neigh-
borhood operator and some PF logical operators.
(e CPFRS model not only enriches the concept of
RS theory but also expands the scope of applications
of RS theory.

(3) We design an algorithm to tackle MCDM problems
in a finite PFCAS and apply our proposed method to
risk management of green building projects.

(4) We compare our proposed method with existing
methods to show the effectiveness of the proposed
method.

(e remainder of this paper is organized as follows. In
Section 2, we review some important concepts about PFS. In
Section 3, we analyze the shortcomings of some MCDM
methods and construct a CPFRS model based on the PF
neighborhood operator and some PF logic operators. In
Section 4, we establish an approach to MCDM problems
with the evaluation of PF information based on the CPFRS
model. In addition, we apply the proposed method to the
risk management problem of green buildings and verify the
effectiveness and scientificity of the method through com-
parative analysis. Finally, several conclusions and future
research work are given in Section 5.

2. Preliminary

In this section, we recall some basic concepts, which are
necessary background knowledge.

2.1. Picture Fuzzy Set (PFS)

Definition 1 (see [23]). Let U be a nonempty universe; a PFS
on U is described as

A � 〈x, μA(x), ηA(x), υA(x)〉: x ∈ U􏼈 􏼉, (1)

which is characterized by a positive membership function
μA: U⟶ [0, 1], a neutral membership function
ηA: U⟶ [0, 1], and a negative membership function
]A: U⟶ [0, 1] with the condition: for all x ∈ U,

0≤ μA(x) + ηA(x) + υA(x)≤ 1, (2)

and πA(x) � 1 − μA(x) − ηA(x) − υA(x) is called the refusal
degree of x in A. In addition, F(U) denotes the family of
PFSs.

For convenience, we write the triplet α � 〈μα, ηα, υα〉 as a
picture fuzzy number (PFN). Additionally, πα � 1 − μα − ηα −

υα is the refusal degree of the PFN α.

Definition 2 (see [23]). Let A, B ∈ F(U). (e basic opera-
tions between two PFSs are shown as follows:

(1) A⊆B⟺ μA(x)≤ μB(x), ηA(x)≤ ηB(x), and
]A(x)≥ ]B(x) for all x ∈ U

(2) A � B⟺A⊆B and B⊆A

(3) A∪B � 〈x, max{ μA(x), μB(x)􏼈 􏼉, min ηA(x),􏼈

ηB(x)}, min ]A(x), ]B(x)􏼈 􏼉〉: x ∈ U}

(4) A∩B � 〈x,{ min μA(x), μB(x)􏼈 􏼉, min ηA(x), ηB􏼈

(x)}, max ]A(x), ]B(x)􏼈 􏼉〉: x ∈ U}

(5) A � 〈x, ]A(x), ηA(x), μA(x)〉: x ∈ U􏼈 􏼉

Definition 3 (see [70]). Let P � 〈x1, x2, x3〉 ∈􏼈 [0, 1]3: x1 +

x2 + x3 ≤ 1} and 〈x1, x2, x3〉, 〈y1, y2, y3〉 ∈ P. (e partial
order ≤ P on P can be defined by

〈x1, x2, x3〉 ≤ P〈y1, y2, y3〉

⟺ x1 <y1 andx3 ≥y3( 􏼁 or x1 � y1 andx3 >y3( 􏼁

or x1 � y1, x3 � y3 andx2 ≤y2( 􏼁.

(3)

Definition 4 (see [70]). Let x � 〈x1, x2, x3〉, y � 〈y1, y2,

y3〉 ∈ P and let

inf(x, y) �

x, if x≤Py,

y, if y≤Px,

〈min x1, y1􏼈 􏼉, 1 − min x1, y1􏼈 􏼉 − max x3, y3􏼈 􏼉, max x3, y3􏼈 􏼉〉, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(4)

sup(x, y) �

y, if x≤Py,

x, if y≤Px,

〈max x1, y1􏼈 􏼉, 0, min x3, y3􏼈 􏼉〉, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(5)

Denote 1P � 〈1, 0, 0〉, 0P � 〈0, 0, 1〉. (en, (P, ≤P) is a
complete lattice.

Indeed, Cuong et al. [70] provided that for each non-
empty set A⊆P, infA � 〈θ1, θ2, θ3〉 and supA � 〈τ1, τ2, τ3〉,

where θ1 � min x1: (∃x2, x3 ∈ [0, 1])〈x1, x2, x3〉 ∈ A􏼈 􏼉,
θ3 � max x3: (∃x1, x2 ∈ [0, 1])〈x1, x2, x3〉 ∈ A􏼈 􏼉,
τ1 � max x1: (∃x2, x3 ∈ [0, 1])〈x1, x2, x3〉 ∈ A􏼈 􏼉,
τ3 � min x3: (∃x1, x2 ∈ [0, 1])〈x1, x2, x3〉 ∈ A􏼈 􏼉,
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θ2 �
1 − θ1 − θ3 if 〈θ1, z, θ3〉 ∉ A for all z
min x2: 〈θ1, x2, θ3〉 ∈ A􏼈 􏼉 otherwise􏼚 , and

τ2 �
0 if 〈τ1, z, τ3〉 ∉ A for all z
max x2: 〈τ1, x2, τ3〉 ∈ A􏼈 􏼉 otherwise􏼚 .

2.2. PF Logical Operators

Definition 5 (see [70, 71, 72]). A PF negator is a decreasing
mapping N: P⟶ P which satisfies N(1P) � 0P and
N(0P) � 1P. In particular, when N(N(α)) � α for all
α ∈ P, then N is called an involutive negator.

For each x � 〈x1, x2, x3〉 ∈ P, we denote

I(x) � 〈x1, y, x3〉 ∈ P: 0≤y≤ x2􏼈 􏼉. (6)

Definition 6 (see [70, 71, 72]). A PF t-normT: P2⟶ P is
an increasing, commutative, and associative mapping which
satisfies T(1P, x) ∈ I(x) for all x ∈ P. In particular, if a PF
t-norm T satisfies T(1P, x) � x for each x ∈ P, then T is
called a PF strong t-norm.

Definition 7 (see [70, 71, 72]). A PF t-conorm S: P2⟶ P

is an increasing, commutative, and associative mapping
which satisfies S(0P, x) ∈ I(x) for all x ∈ P.

Definition 8 (see [70, 71, 72]). If a mapping I: P2⟶ P

satisfies the following conditions:

(1) I(0P, 0P) � I(0P, 1P) � I(1P, 1P) � 1P and
I(1P, 0P) � 0P

(2) If x≤Py, then I(x, z)≥PI(y, z) for all x, y, z ∈ P
(3) If x≤Py, then I(z, x)≤PI(z, y) for all x, y, z ∈ P,

then I is called a PF implicator. In particular,
(4) If I(1P, x)≤Px for each x ∈ P,

then PF implicator I is called a border implicator.
(5) If x≤Py⟺I(x, y) � 1P for each x ∈ P,

then I is said to satisfy the confinement law.

Definition 9 (see [72]). Let S be a PF t-conorm and N be a
PF negator. For each x, y ∈ P, a PFS-implicator IS,N

based on S and N is defined as

IS,N(x, y) � S(N(x), y). (7)

By Definition 8, it is simply to see that the following
proposition is true.

Proposition 1. Let S be a PF t-conorm and N be a PF
negator. :en, for each x, y ∈ P,

I
∗
S,N(x, y) �

1P, if x≤Py,

S(N(x), y), otherwise
􏼨 (8)

is a PF border implicator and it satisfies the confinement law.

Example 1. Some common PF logical operators [71, 72] are
shown below: for all x � 〈x1, x2, x3〉, y � 〈y1, y2, y3〉 ∈ P,

(i) (e standard PF negator:

Ns(x) �〈x3, 1 − x1 − x2 − x3, x1〉. (9)

(ii) (e infimum operator (PF strong t-norm):

TI(x, y) � inf(x, y). (10)

(iii) (e Łuksiewicz t-norm:

TL(x, y) �〈max 0, x1 + y1 − 1( 􏼁, max 0, x2 + y2 − 1( 􏼁,

min 1, x3 + y3( 􏼁〉.
(11)

(iv) (e standard maximum operator (PF t-conorm):

SM(x, y) �〈max x1, y1( 􏼁, min x2, y2( 􏼁, min x3, y3( 􏼁〉.
(12)

(v) (e algebraic product operator (PF t-conorm):

SP(x, y) �〈x1 + y1 − x1y1, x2y2, x3y3〉. (13)

(vi) (e Łukasiewicz t-conorm:

SL(x, y) �〈min 1, x1 + y1( 􏼁, max 0, x2 + y2 − 1( 􏼁,

max 0, x3 + y3 − 1( 􏼁〉.
(14)

3. Covering-Based Picture Fuzzy Rough Set
(CPFRS) Model

(e following first gives the relevant content in
[47–49, 53, 55, 56] and analyzes their limitations in dealing
with some complex MCDM problems.

Let αi � 〈μi, ηi, ]i〉(i � 1, 2, . . . , n) be a number of PFNs
that correlated with weight vector ω � (ω1,ω2, . . . ,ωn) such
that 􏽐

n
i�1 ωi � 1 and ωi ∈ [0, 1] for all i. Some aggregation

operators are shown as Definitions 10–14.

Definition 10 (see [47, 48]). (ree PF aggregation operators
are listed as follows:

(1) PFWA(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − μi)

ωi ,

􏽑
n
i�1 η

ωi

i , 􏽑
n
i�1 ]

ωi

i 〉,

(2) PFOWA(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − μσ(i))

ωi ,

􏽑
n
i�1 η

ωi

σ(i), 􏽑
n
i�1 ]

ωi

σ(i)〉,

(3) PFHWA(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − 􏽥μσ(i))

ωi ,

􏽑
n
i�1 􏽥ηωi

σ(i), 􏽑
n
i�1 􏽥]ωi

σ(i)〉.

4 Scientific Programming



Definition 11 (see [49]). (ree PF aggregation operators,
which are provided by Wang, are listed as follows:

(1) PFWA∗(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − μi)

ωi ,

􏽑
n
i�1 (ηi + πi)

ωi − 􏽑
n
i�1 π

ωi

i , 􏽑
n
i�1 (1 − μi)

ωi −

􏽑
n
i�1 (ηi + πi)

ωi 〉,

(2) PFOWA∗(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − μσ(i))

ωi ,

􏽑
n
i�1 (ησ(i) + πσ(i))

ωi − 􏽑
n
i�1 π

ωi

σ(i), 􏽑
n
i�1 (1 − μσ(i))

ωi −

􏽑
n
i�1 (ησ(i) + πσ(i))

ωi 〉,

(3) PFHWA∗(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − 􏽥μσ(i))

ωi ,

􏽑
n
i�1 (􏽥ησ(i) + 􏽥πσ(i))

ωi − 􏽑
n
i�1 􏽥πωi

σ(i), 􏽑
n
i�1 (1 − 􏽥μσ(i))

ωi −

􏽑
n
i�1 (􏽥ησ(i) + 􏽥πσ(i))

ωi 〉.

Definition 12 (see [47, 56]). Let c> 0. (ree PFHammer
weighted averaging operators are listed as follows:

(1) PFHWAc(α1, α2, . . . , αn) � 〈(􏽑
n
i�1(1+ (c − 1)μi)

ωi −

􏽑
n
i�1(1 − μi)

ωi/􏽑n
i�1(1 + (c − 1)μi)

ωi + (c − 1)

􏽑
n
i�1(1 − μi)

ωi ), (c􏽑
n
i�1η

ωi

i / 􏽑
n
i�1

(1 + (c − 1)(1 − ηi))
ωi +(c − 1)􏽑

n
i�1η

ωi

i ), (c􏽑
n
i�1]

ωi
αi
/

􏽑
n
i�1(1 + (c − 1) (1 − ]αi

))ωi + (c − 1)􏽑
n
i�1]

ωi
αi

)〉,

(2) PFHOWAc(α1, α2, . . . , αn) � 〈(􏽑
n
i�1 (1 + (c − 1)

μσ(i))
ωi − 􏽑

n
i�1(1 − μσ(i))

ωi /􏽑n
i�1(1 + (c − 1)μσ(i))

ωi +

(c − 1)􏽑
n
i�1(1 − μσ (i))ωi ), (c􏽑

n
i�1η

ωi

σ(i)/􏽑
n
i�1(1+

(c − 1)(1 − ησ(i)))
ωi + (c − 1)􏽑

n
i�1 ηωi

σ(i)), (c􏽑
n
i�1]

ωi

σ(i)

/􏽑n
i�1(1 + (c − 1)(1 − ]σ(i)))

ωi + (c − 1)􏽑
n
i�1]

ωi

σ(i))〉,

(3) PFHHAc(α1, α2, . . . , αn) � 〈(􏽑
n
i�1(1 + (c − 1)

􏽥μσ(i))
ωi − 􏽑

n
i�1(1 − 􏽥μσ(i))

ωi /􏽑n
i�1(1 + (c − 1)􏽥μσ(i))

ωi +

(c − 1)􏽑
n
i�1(1 − 􏽥μσ(i))

ωi ), (c􏽑
n
i�1􏽥ηωi

σ(i)/ 􏽑
n
i�1(1+ (c −

1)(1 − 􏽥ησ(i)))
ωi + (c − 1)􏽑

n
i�1􏽥ηωi

σ(i)), (c􏽑
n
i�1􏽥]

ωi

σ(i)/
􏽑

n
i�1(1 + (c − 1) (1 − 􏽥]σ(i)))

ωi + (c − 1)􏽑
n
i�1􏽥]

ωi

σ(i))〉

Definition 13. (see [53]). (ree PF weighted interaction
aggregation operators are listed as follows:

(1) PFWIA(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − μi)

ωi ,

􏽑
n
i�1 (1 − μi)

ωi − 􏽑
n
i�1 (]i + πi)

ωi , 􏽑
n
i�1 (]i + πi)

ωi −

􏽑
n
i�1 π

ωi

i 〉,

(2) PFOWIA(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − μσ(i))

ωi ,

􏽑
n
i�1 (1 − μσ(i))

ωi − 􏽑
n
i�1 (]σ(i) + πσ(i))

ωi ,

􏽑
n
i�1 (]σ(i) + πσ(i))

ωi − 􏽑
n
i�1 π

ωi

σ(i)〉,

(3) PFHOWIA(α1, α2, . . . , αn) � 〈1 − 􏽑
n
i�1 (1 − 􏽥μσ(i))

ωi ,

􏽑
n
i�1 (1 − 􏽥μσ(i))

ωi − 􏽑
n
i�1 (􏽥]σ(i) + 􏽥πσ(i))

ωi ,

􏽑
n
i�1 (􏽥]σ(i) + 􏽥πσ(i))

ωi − 􏽑
n
i�1 􏽥πωi

σ(i)〉.

Definition 14 (see [55]). LetR≥ 1. Two PFDombi weighted
averaging operators, which are provided by Jana et al., are
listed as follows:

(1) PFDWAR(α1, α2, . . . , αn) � 〈1 − (1/1 + [􏽐
n
i�1ωi

(μi/1 − μi)
R]1/R), (1/1 + [􏽐

n
i�1ωi(1 − ηi/ηi)

R]1/R),

(1/1 + [􏽐
n
i�1ωi(1 − ]i/]i)

R]1/R)〉,

(2) PFDOWAR(α1, α2, . . . , αn) � 〈1 − (1/1 + [􏽐
n
i�1ωi

(μσ(i)/1 − μσ(i))
R]1/R), (1/1 + [􏽐

n
i�1ωi(1 − ησ(i)

/ησ(i))
R]1/R), (1/1 + [􏽐

n
i�1ωi(1 − ]σ(i)/]σ(i))

R]1/R)〉,

(3) PFDHWAR(α1, α2, . . . , αn) � 〈1 − (1/1 + [􏽐
n
i�1ωi

(􏽥μσ(i)/1 − 􏽥μσ(i))
R]1/R), (1/1 + [􏽐

n
i�1ωi(1 − 􏽥ησ(i)

/􏽥ησ(i))
R]1/R), (1/1 + [􏽐

n
i�1ωi(1 − 􏽥]σ(i)/􏽥]σ(i))

R]1/R)〉.

Example 2. Let U � x1, x2, x3, x4, x5, x6􏼈 􏼉 and
C � C1, C2, C3, C4, C5, C6􏼈 􏼉 is listed as follows:

C1 � 〈x1, 1, 0, 0〉, 〈x2, 1, 0, 0〉, 〈x3, 0.1, 0.1, 0.1〉, 〈x4, 0.6, 0.2, 0.2〉, 〈x5, 0.6, 0.1, 0.3〉, 〈x6, 0.2, 0.6, 0.1〉􏼈 􏼉,

C2 � 〈x1, 0.4, 0.2, 0.2〉, 〈x2, 0.6, 0.2, 0.1〉, 〈x3, 1, 0, 0〉, 〈x4, 0.2, 0.4, 0.4〉, 〈x5, 0.2, 0.4, 0.3〉, 〈x6, 0.4, 0.4, 0.1〉􏼈 􏼉,

C3 � 〈x1, 0.1, 0.8, 0.1〉, 〈x2, 0.7, 0.1, 0.2〉, 〈x3, 0.4, 0.2, 0.2〉, 〈x4, 0.3, 0.3, 0.2〉, 〈x5, 1, 0, 0〉, 〈x6, 0.2, 0.2, 0.2〉􏼈 􏼉,

C4 � 〈x1, 0.8, 0.1, 0.1〉, 〈x2, 1, 0, 0〉, 〈x3, 0.9, 0.1, 0〉, 〈x4, 0.7, 0.1, 0.1〉, 〈x5, 0.2, 0.5, 0.3〉, 〈x6, 0.3, 0.1, 0〉􏼈 􏼉,

C5 � 〈x1, 0.3, 0.7, 0〉, 〈x2, 0.3, 0.6, 0.1〉, 〈x3, 0.2, 0.1, 0.1〉, 〈x4, 0.1, 0.8, 0.1〉, 〈x5, 0.7, 0.1, 0.1〉, 〈x6, 1, 0, 0〉􏼈 􏼉,

C6 � 〈x1, 1, 0, 0〉, 〈x2, 0.1, 0.2, 0.7〉, 〈x3, 0.3, 0.2, 0.5〉, 〈x4, 1, 0, 0〉, 〈x5, 0.4, 0.1, 0.3〉, 〈x6, 0.2, 0.6, 0.1〉􏼈 􏼉.

(15)

It is easy to see that for each x ∈ U, there exists C ∈ C
such that C(x) � 1P. (en, C is a PF covering, i.e.,
∪ 6i�1Ci � U. By these methods in Definitions 10–14, the
ranking results of six alternatives are shown in Table 1. At
this point, regardless of the weight value, the ranking
result remains unchanged. Accordingly, decision makers
cannot choose the optimal alternative.

To solve theMCDMproblems which cannot be solved by
these methods [47–49, 53, 55, 56] effectively, the CPFRS
model is proposed in this section.

3.1. PF Neighborhood

Definition 15. A PF neighborhood operator is a mapping
N: U⟶ F(U).

Definition 16. Let C be a PF covering and x ∈ U; then, the
PF neighborhood system of x is given by

L(C, x) � A ∈ C: A(x)≠ 0P􏼈 􏼉. (16)
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Remark 1. By the concept of PF covering, for each x ∈ U,
there exists a set A ∈ C such that A(x) � 1P. Hence,
L(C, x)≠∅ for each x ∈ U. (e following conclusions are
clearly established:

(1) If C is a fuzzy covering, then L(C, x) is the fuzzy
neighborhood system of x defined in [73]

(2) If C is crisp, then L(C, x) is crisp neighborhood
system of x defined in [74]

Definition 17. Let C be a PF covering and x ∈ U; then, the
PF minimal description of x is given by

md(C, x) � A ∈ L(C, x): (∀S ∈ L(C, x)) S(x) � A(x), S⊆A⇒ S � A{ }.

(17)

Definition 18. Let C be a PF covering and let I be a PF
border implicator which satisfies the confinement law; the
PF neighborhood NC(x) of x is defined by

N
C

(x)(y) � inf
A∈C

I(A(x), A(y)). (18)

Note that PF implicatorI satisfies the confinement law;
then, NC(x)(x) � infA∈CI(A(x), A(x)) � 1P for each
x ∈ U. Here, we call that NC is reflective.

Proposition 2. Let C be a finite PF covering and let I be a
PF border implicator which satisfies the confinement law.
:en, for any x, y ∈ U, we have

inf
A∈C

I(A(x), A(y)) � inf
A∈L(C,x)

I(A(x), A(y))

� inf
A∈md(C,x)

I(A(x), A(y)).
(19)

Proof. First note that if A(x) � 0P for some A ∈ C, then by
I(0P, 0P) � I(0P, 1P) � 1P and monotonicity of I, we
can obtain that

1P � I 0P, 0P( 􏼁≤PI(A(x), A(y))

� I 0P, A(y)( 􏼁≤PI 0P, 1P( 􏼁 � 1P.
(20)

Hence,

inf
A∈C

I(A(x), A(y)) � inf inf
A∈L(C,x)

I(A(x), A(y)),􏼠

inf
A∈C∖(C,x)

I(A(x), A(y))􏼡,

� inf
A∈L(C,x)

I(A(x), A(y)).

(21)

Furthermore, since md(C, x)⊆L(C, x), we have

inf
A∈L(C,x)

I(A(x), A(y)) � inf inf
A∈md(C,x)

I(A(x), A(y)),􏼠

inf
A∈L(C,x)∖md(C,x)

I(A(x), A(y))􏼡.

(22)

Table 1: (e ranking results of six alternatives by using different operators.

Methods C1(x), C2(x), C3(x), C4(x), C5(x), C6(x)(x ∈ U) (e ranking results of six alternatives

(e PFWA operator in [47, 48] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFOWA operator in [47, 48] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFHWA operator in [47, 48] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFWA∗ operator in [49] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFOWA∗ operator in [49] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFHWA∗ operator in [49] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFHWAc operator in [47, 56] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFHOWAc operator in [47, 56] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFHHWAc operator in [47, 56] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFWIA operator in [53] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFOWIA operator in [53] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFHOWIA operator in [53] 1P x1 � x2 � x3 � x4 � x5 � x6
(e PFDWAR operator in [55] Cannot be calculated ×

(e PFDOWAR operator in [55] Cannot be calculated ×

(e PFDHWAR operator in [55] Cannot be calculated ×
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If A ∈ L(C, x)∖md(C, x), then by Definition 17, there
exists A′ ∈ md(C, x) such that A ′ ⊆A and A′(x) � A(x).
(erefore, for all y ∈ U,

I(A(x), A(y)) � I A′(x), A(y)( 􏼁≥ PI A′(x), A′(y)( 􏼁.

(23)

It is immediate that

inf
A∈md(C,x)

I(A(x), A(y))

≤ P inf
A∈L(C,x)∖md(C,x)

I(A(x), A(y)),
(24)

and so

inf
A∈L(C,x)

I(A(x), A(y)) � inf
A∈md(C,x)

I(A(x), A(y)).

(25)

Example 3. Consider the situation in Example 2, and let

I(x, y) � I
∗
SP,Ns

(x, y) �
1P, if x≤Py,

〈x3 + y1 − x3y1, 1 − x1 − x2 − x3( 􏼁y2, x1y3〉, otherwise,
􏼨 (26)

for x � 〈x1, x2, x3〉, y ∈ 〈x1, x2, x3〉 ∈ P, where SP and Ns

are shown in Example 1. (en, by means of equation (18),
the results of NC(xi)(i � 1, 2, 3, 4, 5, 6) are shown in Table 2.

3.2. CPFRS Model

Definition 19. Let C be a PF covering of a nonempty uni-
verse U; then, a pair (U,C) is called a picture fuzzy covering
approximation space (PFCAS). Next, let T be a PF strong
t-norm andI be a PF border implicator such that it satisfies
the confinement law; then, for each A ∈F(U) and x ∈ U,
the lower and upper approximations of A are defined by

apr
NC ,I

(A)(x) � inf
y∈U

I N
C

(x)(y), A(y)􏼐 􏼑, (27)

aprNC ,T(A)(x) � sup
y∈U

T N
C

(x)(y), A(y)􏼐 􏼑. (28)

If apr
NC(A) � aprNC(A), A is called (I,T)-definable.

Otherwise, A is called covering-based (I,T)-picture fuzzy
rough set ((I,T)-CPFRS).

Remark 2. From Definition 19, we can consider the fol-
lowing cases:

(1) When the PF covering C degenerates into the fuzzy
covering C′, it is easy to see that PF implicatorI, PF
t-normT, and the PF neighborhood NC degenerate
into fuzzy implicator I′, fuzzy t-norm T′, and the
fuzzy neighborhood NC′ , respectively. (en, equa-
tions (27) and (28) can turn into the following form
[62]:

apr
NC′ ,I′

(A)(x) � inf
y∈U

I′ N
C′

(x)(y), A(y)􏼒 􏼓,

apr
NC′ ,T′(A)(x) � sup

y∈U
T′ N

C′
(x)(y), A(y)􏼒 􏼓.

(29)

(2) When PF implicator I, PF t-norm, and the PF
neighborhood NC degenerate into fuzzy implicator
I′, fuzzy t-norm T′, and fuzzy relation R, re-
spectively, then equations (27) and (28) can turn into
the following form [75]:

apr
R,I′

(A)(x) � inf
y∈U

I′(R(x)(y), A(y)),

aprR,T′(A)(x) � sup
y∈U

T′(R(x)(y), A(y)).
(30)

(3) When the PF covering C degenerates into the IF
covering C″, it is easy to see that PF implicatorI, PF
t-normT, and the PF neighborhood NC degenerate
into IF implicator I″, IF t-norm T″, and the IF
neighborhood NC″ , respectively. (en, equations
(27) and (28) can turn into the following form [66]:

apr
NC″ ,I″

(A)(x) � inf
y∈U

I′ N
C″

(x)(y), A(y)􏼒 􏼓,

apr
NC″ ,T″(A)(x) � sup

y∈U
T′ N

C″
(x)(y), A(y)􏼒 􏼓.

(31)

(4) When PF implicator I, PF t-norm T, and the PF
neighborhood NC degenerate into IF implicatorI″,
IF t-norm T″, and IF relation ρ, respectively, then
equations (27) and (28) can turn into the following
form [76]:

apr ρ,I″
(A)(x) � inf

y∈U
I″(R(x)(y), A(y)),

aprρ,T″(A)(x) � sup
y∈U

T″(R(x)(y), A(y)).
(32)

(5) When the PF neighborhood NC is replaced by a PF
relation σ, then equations (27) and (28) can turn into
the following form [36]:
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apr σ,I
(A)(x) � inf

y∈U
I(σ(x)(y), A(y)),

aprσ,T(A)(x) � sup
y∈U

T(σ(x)(y), A(y)).
(33)

Example 4. Let PFCAS (U,C) be listed as in Example 2, and
let I � I∗SP,Ns

and T � TI, where SP, Ns, and TI are
shown in Example 1. Consider the PFS

A � 〈x1, 0.7, 0.1, 0.2〉, 〈x2, 0.4, 0.2, 0〉, 〈x3, 0.2, 0, 0.1〉, 〈x4, 1, 0, 0〉, 〈x5, 0.5, 0, 0.1〉, 〈x6, 0.2, 0.3, 0.4〉􏼈 􏼉. (34)

By Definition 19 and Table 2, we have

apr
NC ,I

(A) � 〈x1, 0.18, 0.62, 0.2〉, 〈x2, 0.312, 0, 0.08〉, 〈x3, 0.2, 0, 0.1〉, 〈x4, 0.28, 0.21, 0.08〉, 〈x5, 0.36, 0.54, 0.1〉, 〈x6, 0.2, 0, 0.4〉􏼈 􏼉,

aprNC,T(A) � 〈x1, 0.7, 0.1, 0.2〉, 〈x2, 0.4, 0.2, 0〉, 〈x3, 0.4, 0, 0.1〉, 〈x4, 1, 0, 0〉, 〈x5, 0.5, 0, 0.1〉, 〈x6, 0.28, 0, 0.1〉􏼈 􏼉.

(35)

Proposition 3. For the operators apr
NC ,I

and aprNC ,T, the
following statements are true:

(1) apr
NC ,I

(U) � aprNC ,T(U) � U

(2) apr
NC ,I

(∅) � aprNC ,T(∅) � ∅
(3) apr

NC ,I
(A)⊆A⊆ aprNC ,T(A) for each A ∈ F(U)

(4) For A, B ∈F(U) such that A⊆B,
apr

NC ,I
(A)⊆apr

NC ,I
(B) and aprNC ,T(A)

⊆aprNC ,T(B)

(5) aprNC ,T(A∩B)⊆aprNC ,T(A)∩ aprNC ,T(B) and
apr

NC ,I
(A∩B)⊆apr

NC ,I
(A)∩ apr

NC ,I
(B) for each

A, B ∈ F(U)

Proof. (1) For each x ∈ U,

apr
NC ,I

(U)(x) � inf
y∈U

I N
C

(x)(y), U(y)􏼐 􏼑

� inf
y∈U

I N
C

(x)(y), 1P􏼐 􏼑≥ P inf
y∈U

I 1P, 1P( 􏼁

� 1P,

aprNC ,T(U)(x) � sup
y∈U

T N
C

(x)(y), U(y)􏼐 􏼑􏽮 􏽯

� sup
y∈U

T N
C

(x)(y), 1P􏼐 􏼑􏽮 􏽯

� sup
y∈U

N
C

(x)(y)􏽮 􏽯≥ PN
C

(x)(x)

� 1P.

(36)

(en, apr
NC ,I

(U)(x) � aprNC ,T(U)(x) � 1P and so
(1) holds.

(2) For each x ∈ U,

apr
NC ,I

(∅)(x) � inf
y∈U

I N
C

(x)(y),∅(y)􏼐 􏼑

� inf
y∈U

I N
C

(x)(y), 0P􏼐 􏼑≤ PI N
C

(x)(x), 0P􏼐 􏼑

� I 1P, 0P( 􏼁
� 0P,

aprNC ,T(∅)(x) � sup
y∈U

T N
C

(x)(y),∅(y)􏼐 􏼑􏽮 􏽯

� sup
y∈U

T N
C

(x)(y), 0P􏼐 􏼑􏽮 􏽯≤ P sup
y∈U

T 1P, 0P( 􏼁􏼈 􏼉

� sup
y∈U

0P􏼈 􏼉

� 0P.

(37)

(en, apr
NCI

(∅)(x) � aprNC ,T(∅)(x) � 0P and so
(2) holds.

(3) For each x ∈ U, A ∈ F(U),

apr
NC ,I

(A)(x) � inf
y∈U

I N
C

(x)(y), A(y)􏼐 􏼑

≤ PI N
C

(x)(x), A(x)􏼐 􏼑

� I 1P, A(x)( 􏼁≤ PA(x),

aprNC ,T(A)(x) � sup
y∈U

T N
C

(x)(y), A(y)􏼐 􏼑􏽮 􏽯

≥ PT N
C

(x)(x), A(x)􏼐 􏼑

� T 1P, A(x)( 􏼁

� A(x).

(38)

Table 2: (e results of NC(xi).

NC(xi)/U x1 x2 x3 x4 x5 x6

NC(x1) 〈1, 0, 0〉 〈0.3, 0, 0.7〉 〈0.1, 0.4, 0.5〉 〈0.36, 0.44, 0.2〉 〈0.28, 0.42, 0.3〉 〈0.2, 0, 0.1〉

NC(x2) 〈0.28, 0.6, 0.12〉 〈1, 0, 0〉 〈0.1, 0.76, 0.14〉 〈0.19, 0.57, 0.24〉 〈0.2, 0, 0.3〉 〈0.2, 0.66, 0.14〉

NC(x3) 〈0.28, 0.52, 0.2〉 〈0.55, 0, 0.21〉 〈1, 0, 0〉 〈0.19, 0.41, 0.4〉 〈0.2, 0, 0.3〉 〈0.3, 0.6, 0.1〉

NC(x4) 〈0.28, 0.16, 0.03〉 〈0.1, 0, 0.7〉 〈0.28, 0.22, 0.5〉 〈1, 0, 0〉 〈0.28, 0.42, 0.3〉 〈0.2, 0, 0.1〉

NC(x5) 〈0.1, 0, 0.1〉 〈0.37, 0.04, 0.28〉 〈0.28, 0.52, 0.2〉 〈0.19, 0.61, 0.2〉 〈1, 0, 0〉 〈0.2, 0, 0.2〉

NC(x6) 〈0.28, 0.64, 0.08〉 〈0.19, 0.02, 0.14〉 〈0.19, 0.71, 0.1〉 〈0.28, 0.04, 0.16〉 〈0.2, 0.08, 0.12〉 〈1, 0, 0〉
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(en, apr
NC ,I

(A)⊆A⊆ aprNC ,T(A).
(4) Let A, B ∈ F(U) such that A⊆B; then, A(x)≤ PB(x)

for each x ∈ U. By the monotonicity of I, we can
prove that apr

NC ,I
(A)⊆ apr

NC ,I
(B) and

aprNC ,T(A)⊆aprNC ,T(B).
(5) From (1) and (3) of Definition 2, we have A∩B⊆A

and A∩B⊆B for each A, B ∈F(U). It is easy to
obtain (5) by (4).

4. An Approach to MCDMwith PF Information
Based on CPFRS Model

4.1. Decision-Making Background. To accelerate the de-
velopment of urbanization in China, the number of
buildings is rapidly increasing. At the same time, China is
also facing increasingly prominent resource constraints.
To maximize the use of resources and protect the envi-
ronment, in recent years, the Ministry of Construction of
China has proposed “building a resource-saving and
environment-friendly society” as its guiding principle to
promote the modernization of the green building in-
dustry. Green buildings have the three characteristics of
energy-saving, resource-saving, and returning to nature,
namely, saving resources to the greatest extent, pro-
tecting the environment, and reducing pollution. Com-
pared with ordinary buildings, the characteristics of
green buildings make developers face project investment
risks. To ensure the smooth progress of the project, the
risk management of the green building project by the
project management team is of great significance. By
accessing relevant data and consulting experts, some
characteristics of the risk (e.g., the possibility of occur-
rence, influence, and unpredictability) can be obtained.
However, the resources for risk management are limited
and risk factors are often numerous. (erefore, the
project management team uses risk assessment to de-
termine the priority of risk management which can
greatly improve the efficiency of risk management. (is is
a MCDM problem in the field of risk management. Since
most of the data obtained are vague or uncertain, green
building is a process involving uncertainty and vague
risk. Using traditional methods, we cannot effectively
make risk management decisions. However, our pro-
posed method can help the risk management team to do
this work.

Let U � a1, a2, . . . , an􏼈 􏼉 be composed of n risk factors
and C � C1, C2, . . . , Cm􏼈 􏼉 be composed of m criteria. (e
evaluation value of option ai under criteria Cj is
expressed by the PFN xij � 〈μij, ηij, ]ij〉, where μij, ηij, and
]ij indicate the positive membership degree, neutral
membership degree, and negative membership degree
that the risk factor ai satisfies the criteria Cj given by a lots
of experts’ evaluation, respectively. For example, a 10-
member expert group evaluates risk factor a1 as
〈0.2, 0.3, 0.4〉 under criteria C1; then, evaluation value of
risk factor a1 under criteria C1 is denoted by
x11 � 〈μ11, η11, ]11〉 � 〈0.2, 0.3, 0.4〉, where μ11 � 0.2
means that two experts strongly believe that risk factor a1

satisfies the criteria C1; η11 � 0.3 means that three experts
are neutral on the risk factor a1 satisfying the criteria C1;
]11 � 0.4 means that four experts firmly believe that the
risk factor a1 does not satisfy the criteria C1; and π11 �

1 − μ11 − η11 − ]11 � 0.1 means that one expert refused to
state whether risk factor a1 satisfies the criteria C1.
Suppose that for each risk factor a ∈ U, there exist criteria
C ∈ C such that the value of a under the criteria C is equal
to 1P. Obviously, C is a PF covering of U.

4.2. Decision-Making Methodology. Firstly, by many au-
thoritative experts, a risk evaluation matrix M � [xij]n×m is
given as in Table 3.

Here, we consider two types of criteria in MCDM,
namely, cost type and benefit type. Normally, the cost-type
criteria should be transformed into corresponding benefit-
type criteria. So, we transform the risk evaluation matrix
M � [xij]n×m into a normalized decision matrix
M∗ � [x∗ij]n×m, where

x
∗
ij �

xij, if Cj is a benefit − type criterion,

xij, if Cj is a cost − type criterion,

⎧⎨

⎩ (39)

for i � 1, 2, . . . , n and j � 1, 2, . . . , m.
(en, the positive ideal solution and the negative ideal

solution are obtained by the following equations:

I
+

� 〈a, μa, ηa, ]a〉: (a ∈ U)〈μa, ηa, ]a〉 � sup
C∈C

C(a)􏼨 􏼩,

(40)

I
−

� 〈a, μa, ηa, ]a〉: (a ∈ U)〈μa, ηa, ]a〉 � inf
C∈C

C(a)􏼚 􏼛.

(41)

Furthermore, by the score function,

L(α) �
μα − ]α
1 − ηα

, ηα ≠ 1, (42)

and the algebraic product SP; for each ai ∈ U, two ranking
functions of ai are defined as

S
+

ai( 􏼁 � L SP apr
NC ,I

I
+

( 􏼁 ai( 􏼁, aprNC ,T I
+

( 􏼁 ai( 􏼁􏼒 􏼓􏼒 􏼓,

(43)

S
−

ai( 􏼁 � L SP apr
NC ,I

I
−

( ) ai( 􏼁, aprNC ,T I
−

( ) ai( 􏼁􏼒 􏼓􏼒 􏼓.

(44)

Finally, based on the principle of the TOPSIS methods,
the intimate function is obtained as follows:

δ ai( 􏼁 �
S

−
ai( 􏼁

S
−

ai( 􏼁 + S
+

ai( 􏼁
, ai ∈ U. (45)

We can rank these risk factors and choose the highest
risk factor by the following ranking rule:
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δ ai( 􏼁> δ aj􏼐 􏼑⇒ ai ≻ aj. (46)

4.3. Procedure forDecision-MakingMethod. An algorithm of
the proposed method is shown as follows:

Input: risk evaluation matrix M � [xij]n×m.
Output: a ranking result of all risk factors.
Step 1: by equation (39), normalized decision matrix
M∗ � [x∗ij]n×m is obtained.
Step 2: by equations (40) and (41), compute the positive
ideal solution I+ and the negative ideal solution I− .
Step 3: by equations (27) and (28), compute a pair of
approximation operators apr

NC ,I
and aprNC ,T of I+

and I− .
Step 4: by equations (42)–(44), compute two ranking
functions S+(ai) and S− (ai) for each ai ∈ U.

Step 5: by equation (45), compute intimate function
δ(ai) for each ai ∈ U.
Step 6: according to rule (46), rank these risk factors
and choose the highest risk factor.

4.4. An Example. In a construction company, seven key risk
factors, which are based on the root causes of risks in the
green building project, are adopted by consulting the rele-
vant data and experts. (e seven risk factors are denoted by
U � a1, a2, a3, a4, a5, a6, a7􏼈 􏼉, where a1, a2, a3, a4, a5, a6, and
a7 represent policy risk, market risk, manage risk, quality
risk, period risk, security risk, and claim risk, respectively.
For more information on the seven risk factors, see [3].
Meanwhile, the following four criteria [2, 3] are considered
to evaluate the risk factors: probability of risk occurrence
(C1), risk influence (C2), risk unpredictability (C3), and risk
urgency (C4). Suppose that for each risk ai, there at least
exists a criterion Cj such that Cj(ai) � 1P. Table 4 presents
the project risk evaluation matrix under the PF environment
by a lot of experts’ diagnosis.

Firstly, from [3], we can know that the four criteria are all
benefit type in the risk evaluation problem. (us, the
normalized decision matrix is the same as Table 4.

Secondly, by equations (40) and (41), the value of
positive and negative ideal solutions is listed as

I
+

� 〈a1, 1, 0, 0〉, 〈a2, 1, 0, 0〉, 〈a3, 1, 0, 0〉, 〈a4, 1, 0, 0〉, 〈a5, 1, 0, 0〉, 〈a6, 1, 0, 0〉, 〈a7, 1, 0, 0〉􏼈 􏼉,

I
−

�
〈a1, 0.3, 0.4, 0.3〉, 〈a2, 0.2, 0.6, 0.2〉, 〈a3, 0.3, 0.3, 0.4〉, 〈a4, 0.2, 0.3, 0.5〉,

〈a5, 0.3, 0.1, 0.4〉, 〈a6, 0.6, 0.1, 0.2〉, 〈a7, 0.4, 0.1, 0.3〉
􏼨 􏼩.

(47)

Here, suppose that I � I∗SP,Ns
and T � TI; by means

of equation (18), the result is listed as in Table 5.
(en, by equations (27) and (28), we have the following

results:

apr
NC ,I

I
+

( 􏼁 � aprNC ,T I
+

( 􏼁 � 〈a1, 1, 0, 0〉, 〈a2, 1, 0, 0〉, 〈a3, 1, 0, 0〉, 〈a4, 1, 0, 0〉, 〈a5, 1, 0, 0〉, 〈a6, 1, 0, 0〉, 〈a7, 1, 0, 0〉􏼈 􏼉,

apr
NC ,I

I
−

( ) � 〈a1, 0.3, 0, 0.3〉, 〈a2, 0.2, 0, 0.2〉, 〈a3, 0.3, 0, 0.4〉, 〈a4, 0.2, 0, 0.5〉, 〈a5, 0.3, 0.056, 0.4〉, 〈a6, 0.447, 0.353, 0.2〉,􏼈

〈a7, 0.28, 0.42, 0.3〉􏼉,

aprNC ,T I
−

( ) � 〈a1, 0.6, 0, 0.2〉, 〈a2, 0.6, 0.1, 0.2〉, 〈a3, 0.6, 0.1, 0.2〉, 〈a4, 0.6, 0.1, 0.2〉, 〈a5, 0.6, 0, 0.2〉, 〈a6, 0.6, 0.1, 0.2〉,􏼈

〈a7, 0.6, 0.1, 0.2〉􏼉.

(48)

Furthermore, by equations (42)–(45), the results are
listed as in Table 6.

According to rule (46), we rank seven risk factors as
follows:

Table 3: Risk evaluation matrix.

U/C C1 C2 · · · Cm

a1 x11 x12 · · · x1m

a2 x21 x22 · · · x2m

⋮ ⋮ ⋮ ⋮ ⋮
an xn1 xn2 · · · xnm
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a6 ≻ a7 ≻ a1 ≻ a5 � a2 � a3 ≻ a4. (49)

Obviously, decision makers can select the highest risk
factor a6 (security risk). In addition, other logical op-
erators can be also considered in our proposed method.
(e ranking results of risk factors by using different
logical operators are shown in Table 7. It can be seen from
Table 7 that the highest risk factor obtained by using
different logical operators is the same in the ranking
results.

4.5. ComparativeAnalysis. (is section aims at verifying the
effectiveness of the proposed method by comparing it with
several classical methods. (ese comparative methods are
shown as follows:

(1) (e first type of comparative method is some ag-
gregation operators in [47–49, 53–56]

(2) Considering the VIKOR method is one of the most
widely used tools in MCDM methods, the second
comparative method is VIKOR method based on
picture fuzzy normalized projection (PFNP) model
proposed by Wang et al. [3]

(3) (e third comparative method is the approach based
on picture fuzzy Hamming distance (PFHD) mea-
sure [3, 23]

In order to make a comparative analysis among the
results of our proposed method and the methods in
[3, 23, 47–49, 53–56], the results of these methods are shown
as in Table 8 and Figures 1–3. (rough Table 8 and
Figures 1–3, we make a brief conclusion as follows:

Table 5: (e description for NC(ai).

a1 a2 a3 a4 a5 a6 a7

NC(a1) 〈1, 0, 0〉 〈0.44, 0.36, 0.2〉 〈0.44, 0.03, 0.24〉 〈0.28, 0.15, 0.15〉 〈0.37, 0.05, 0.12〉 〈0.6, 0, 0.2〉 〈0.46, 0.24, 0.3〉

NC(a2) 〈0.44, 0.36, 0.2〉 〈1, 0, 0〉 〈0.3, 0, 0.4〉 〈0.28, 0.37, 0.35〉 〈0.44, 0, 0.28〉 〈0.9, 0, 0〉 〈0.52, 0, 0.21〉

NC(a3) 〈0.3, 0.55, 0.15〉 〈0.36, 0.44, 0.2〉 〈1, 0, 0〉 〈0.2, 0, 0.5〉 〈0.3, 0, 0.4〉 〈0.64, 0, 0.1〉 〈0.4, 0, 0.3〉

NC(a4) 〈0.52, 0.28, 0.2〉 〈0.55, 0, 0.16〉 〈0.3, 0, 0.4〉 〈1, 0, 0〉 〈0.7, 0, 0.1〉 〈0.64, 0, 0.16〉 〈0.55, 0, 0.24〉

NC(a5) 〈0.46, 0, 0.18〉 〈0.5, 0, 0.2〉 〈0.37, 0, 0.28〉 〈0.28, 0.57, 0.15〉 〈1, 0, 0〉 〈0.6, 0, 0.2〉 〈0.5, 0, 0.3〉

NC(a6) 〈0.3, 0.49, 0.21〉 〈0.2, 0.6, 0.2〉 〈0.3, 0, 0.36〉 〈0.2, 0, 0.5〉 〈0.3, 0, 0.4〉 〈1, 0, 0〉 〈0.4, 0, 0.3〉

NC(a7) 〈0.4, 0, 0.3〉 〈0.2, 0, 0.1〉 〈0.37, 0, 0.32〉 〈0.2, 0, 0.2〉 〈0.51, 0.02, 0.16〉 〈0.7, 0, 0〉 〈1, 0, 0〉

Table 4: Risk evaluation matrix of the green building construction project.

C1 C2 C3 C4

a1 〈0.6, 0.1, 0.2〉 〈1, 0, 0〉 〈0.3, 0.1, 0.1〉 〈0.4, 0.1, 0.3〉

a2 〈1, 0, 0〉 〈0.5, 0.2, 0.2〉 〈0.7, 0.1, 0.2〉 〈0.2, 0.4, 0.1〉

a3 〈0.3, 0.3, 0.4〉 〈0.5, 0.4, 0.1〉 〈1, 0, 0〉 〈0.5, 0.2, 0.2〉

a4 〈1, 0, 0〉 〈0.8, 0.1, 0.1〉 〈0.2, 0.3, 0.5〉 〈0.2, 0.5, 0.2〉

a5 〈0.7, 0.2, 0.1〉 〈1, 0, 0〉 〈0.3, 0.1, 0.4〉 〈0.6, 0.3, 0.1〉

a6 〈0.9, 0.1, 0〉 〈0.6, 0.1, 0.2〉 〈1, 0, 0〉 〈0.7, 0.1, 0〉

a7 〈0.8, 0.1, 0.1〉 〈0.5, 0.2, 0.3〉 〈0.4, 0.1, 0.3〉 〈1, 0, 0〉

Table 6: (e description of S+(ai), S− (ai), and δ(ai).

S+(ai) S− (ai) δ(ai)

a1 1 0.66 0.3976
a2 1 0.64 0.3902
a3 1 0.64 0.3902
a4 1 0.58 0.3671
a5 1 0.64 0.3902
a6 1 0.7658 0.4337
a7 1 0.7056 0.4137

Table 7: Decision results obtained by applying different logical operators.

(ree pairs of logic operators (e ranking results of seven risk factors
I � I∗SM,Ns

, T � TI a6≻a7 � a2≻a5 � a3≻a1≻a4
I � I∗SP,Ns

, T � TI a6≻a7≻a1≻a5 � a2 � a3≻a4

I � I∗SL,Ns
, T � TI a6≻a7≻a1≻a5 � a2 � a3≻a4
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Table 8: Decision results obtained by applying different methods.

References Methods (e ranking results of seven risk factors

Garg [47] and Wei [48]
(e PFWA operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFOWA operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFHWA operator a1 � a2 � a3 � a4 � a5 � a6 � a7

Wang [49]
(e PFWA∗ operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFOWA∗ operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFHWA∗ operator a1 � a2 � a3 � a4 � a5 � a6 � a7

Garg [47] and Wei [56]
(e PFHWAc operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFHOWAc operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFHHWAc operator a1 � a2 � a3 � a4 � a5 � a6 � a7

Li et al. [53]
(e PFWIA operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFOWIA operator a1 � a2 � a3 � a4 � a5 � a6 � a7
(e PFHOWIA operator a1 � a2 � a3 � a4 � a5 � a6 � a7

Jana et al. [55]
(e PFDWAR operator ×

(e PFDOWAR operator ×

(e PFDHWAR operator ×

Wang et al. [3] VIKOR method based on PFNP model a6≻a3≻a5≻a7≻a1≻a2≻a4

Ju et al. [54] (e PFWIG operator a6≻a1≻a7≻a2≻a5≻a3≻a4

Wang et al. [3] and Coung [23] PFHD measure a6≻a7≻a1 � a5≻a2≻a3≻a4

(is paper
Case 1 (I � I∗SM,Ns

and T � TI in CPFRS model) a6≻a7 � a2≻a5 � a3≻a1≻a4
Case 2 (I � I∗SP,Ns

and T � TI in CPFRS model) a6≻a7≻a1≻a5 � a2 � a3≻a4

Case 3 (I � I∗SL,Ns
and T � TI in CPFRS model) a6≻a7≻a1≻a5 � a2 � a3≻a4

Our proposed method (case 1)
Our proposed method (cases 2 and 3)
The VIKOR index in PFNP model

1

3
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Figure 1: (e comparison among the results of our proposed method (three cases) and PFNP model.

Our proposed method (case 1)
Our proposed method (cases 2 and 3)
The PFWIG operator
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Figure 2: (e comparison among the results of our proposed
method (three cases) and the PFWIG operator method.

Our proposed method (case 1)
Our proposed method (cases 2 and 3)
PFHD measure
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Figure 3: (e comparison among the results of our proposed
method (three cases) and PFHD measure method.
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(1) By using aggregation operators in [47–49, 53, 56],
the ranking results for seven risk factors are
a1 � a2 � a3 � a4 � a5 � a6 � a7. In addition, the
aggregation operators in [55] did not produce any
results. Using these methods, we cannot choose the
highest risk factor, but through our proposed
method, we can choose the highest risk factor a6.
(erefore, there is a conclusion that our proposed
method is more effective and has an extensive
application than the selected 15 aggregation
operators.

(2) Although the ranking results of our proposed
method and these methods in [3, 23, 54] are dif-
ferent, the highest risk factor and the lowest risk
factor are still a6 and a4, respectively. (erefore, the
ranking results derived from our proposed method
are valid and credible.

5. Conclusion and Discussion

In practical applications, many problems can be described as
MCDM problems in a finite PFCAS. In this paper, by
combining PF theory, RS theory, and covering theory, a type
of CPFRS model is constructed and its properties are dis-
cussed. Based on the CPFRS model, we construct a PF
TOPSIS method, which can effectively deal with MCDM
problems in a finite PFCAS.(e advantages of our proposed
method are summarized as follows:

(1) (e fusion of multiple theories is a highlight of our
proposed method. Our proposed method not only
enriches the RS theory but also expands the appli-
cation range of RS theory.

(2) Our proposed method is more effective and has an
extensive application than the methods in
[47–49, 53, 55, 56]. In real life, many decision-
making problems can be described as the MCDM
problems in a finite PFCAS, such as the risk man-
agement of green buildings described in Section 4.1.
Our proposed method can effectively solve the
MCDM problems in a finite PFCAS that cannot be
solved by these methods in [47–49, 53, 55, 56].

(3) Although the ranking results of the risk factors using
different logical operators described in Section 4.4
are different, the highest risk factor and the lowest
risk factor are still a6 and a4, respectively. (is
phenomenon shows that our proposed method is
feasible and flexible. (e decision makers can choose
different logical operators according to personal
preferences and actual needs when using our pro-
posed method to deal with complex problems.

(4) Since PFS is a direct extension of FS and IFS, our
proposed method can also be applied to the MCDM
problem in fuzzy or IF environments.

However, our proposed method did not consider the
introduction of variable parameters, which makes the
proposed method lack certain fault tolerance.

In the future, we plan to further discuss the following
topics. (1) We will consider introducing variable parameters
into the CPFRS model and investigate covering-based pic-
ture fuzzy variable precision rough set model. (2) Due to the
importance of the picture fuzzy nano topological spaces [38]
in MCDM, we will investigate the topological properties of
the CPFRS model. (3) Based on the preference behavior of
decision makers, we may combine the CPFRS model with
other classical decision-making methods to solve complex
economic management problems. (4) We may extend the
CPFRS model to different fields to further improve various
mathematical models, such as pattern fuzzy recognition and
fuzzy cluster analysis.
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