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Anomalies in time series, also called “discord,” are the abnormal subsequences. )e occurrence of anomalies in time series may
indicate that some faults or disease will occur soon. )erefore, development of novel computational approaches for anomaly
detection (discord search) in time series is of great significance for state monitoring and early warning of real-time system.
Previous studies show that many algorithms were successfully developed and were used for anomaly classification, e.g., health
monitoring, traffic detection, and intrusion detection. However, the anomaly detection of time series was not well studied. In this
paper, we proposed a long short-term memory- (LSTM-) based anomaly detection method (LSTMAD) for discord search from
univariate time series data. LSTMAD learns the structural features from normal (nonanomalous) training data and then performs
anomaly detection via a statistical strategy based on the prediction error for observed data. In our experimental evaluation using
public ECG datasets and real-world datasets, LSTMAD detects anomalies more accurately than other existing approaches
in comparison.

1. Introduction

Time series analysis is a hot research topic, which mainly
includes two aspects: (1) identifying the nature of the
phenomenon represented by the time series of observation
[1] and (2) predicting future values of the time series variable
based on historic data [2,3]. It was widely used in many areas
in the real world, e.g., signal processing, pattern recognition
[4], mathematical finance [5], weather forecasting [6], and
control engineering [7]. Particularly, anomaly detection of
time series is a more important direction, which promotes
the development of outlier recognition techniques in real-
time big data [8].

In the past years, many computational approaches were
developed and used for anomaly detection in many appli-
cations, e.g., traffic detection or network intrusion detection.
)ey can be categorized to three classes: (1) statistical
modeling [9–14], (2) data mining-based techniques [15–21],
and (3) machine learning-based approaches [22–29]. A lot of

previous studies revealed that the above models have been
successfully used for anomaly classification [10,17,18];
however, the computational frameworks focusing on ab-
normal subsequence detection in time series are still not well
developed.

Recent studies show that some time series analysis ap-
proaches [30,31] can work well, particular to some well-
known public time series, such as EEG and ECG datasets.
However, they face the challenges to the generalization,
robustness, and efficiency [32]. )ese approaches always
failed when they were applied on the real-world problems
[31]. Because the time series from the real world is always
complicated, including missing values, high noise, and
normalization issue, therefore new computational strategies
are urgent to address the above problems.

As a branch of machine learning, deep learning (DL)
methods offer a lot of promise rather than traditional ma-
chine learning, including higher accuracy, greater flexibility,
stronger generalization, and less dependency on domain
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knowledge [33–35]. )us, it provides a new way to improve
the area of anomaly classification of time series
[36]. Different from various popular computational tools of
anomaly classification, DL-based discord search in time
series was not well studied. As a new type of DL model, long
short-term memory (LSTM) provides great power in time
series forecasting [37,38], which raises a question whether
we can use LSTM to achieve discord search. In this study, we
proposed a LSTM-based anomaly detection approach
(LSTMAD) for identifying the abnormal subsequence from
univariate time series. LSTMAD can learn the temporal
structure of normal signal from the historic values so that it
can easily identify the discords in the testing series. In the
simulation experiments, we applied our LSTMAD model on
various time series datasets and found that it can offer high
accuracy. Moreover, LSTMAD also outperformed three
other typical discord search algorithms. In summary, the
developed LSTMAD provides a new pipeline to accurately
capture abnormal sequences in the real-time systems.

)e rest of the paper is structured as follows: in Sections
2 and 3, the related work and the proposed computational
approach LSTMAD are presented. In Section 4, the datasets
for validation and the experiment design are described in
detail. In addition, this section describes the steps and pa-
rameter settings of the method in detail. In Section 5, the
simulation results are shown and discussed, while in Section
6 conclusions are drawn and suggestions for future work are
presented.

2. Related Works

According to the previous works reported in literature, the
computational approaches for anomaly detection can be
summarized as three categories: statistical approaches, data
mining based techniques, and machine learning. We sum-
marized these methods as follows.

2.1. Statistical Approaches. Yamanishi et al. proposed a
Gaussian mixture model by scoring each data point and
identifying the outlier with high scores [9]. Zhang and
coworkers proposed a mathematical criterion to distinguish
between normal and abnormal data using statistical algo-
rithms [10]. Kosek et al. developed a regression model based
method for anomaly detection [11]. Goldsein et al. proposed
histogram-based outlier detection (HBOS) algorithm, which
assumes independence of the features, making it much faster
than multivariate anomaly detection approaches. It points
out that the histogram is required if the results of outlier
detection are available immediately [12]. )e limitation of
these approaches is that anomaly detection depends on the
assumption that the data is generated in a particular sta-
tistical distribution [13].

2.2. Data Mining-Based Techniques. Solutions making
anomaly detection more effective are by using data mining
techniques, including clustering, or classification. Re-
searchers have mostly used K-means clustering for grouping
of similar data points [15, 16], so that the data points locating

outside of these clusters were considered as anomalies.)ese
approaches operate in an unsupervised mode; however, they
may not offer accurate insights at the required level of detail
in smaller datasets. Classification-based anomaly detection
was also widely studied for real-world applications, e.g.,
traffic, intrusion, or network detection [17–20]. )e goal of
classification is to learn from labeled classes of training data
for identifying classes of new or unknown instances [39].
However, the good performance requires that the training
set must have well defined labels.

2.3. Machine Learning. In recent years, machine learning
techniques were widely used for anomaly detection, including
fuzzy logic [22–24], Bayesian approach [25,26], genetic al-
gorithm [23,27], and neural network [28,29]. Nakano et al.
proposed a fuzzy logic-based anomaly detection method for
network anomaly detection [22]. Hamamto and coworkers
developed a hybrid approach for network anomaly detection
by using genetic algorithm and fuzzy logic [23]. Mascaro et al.
explored the use of Bayesian networks for analyzing vessel
behavior and detecting anomalies [26]. Combining the dy-
namic and static networks, they proved that their approach
improved the detecting accuracy in vessel tracks. As the rapid
progress of artificial intelligence, various neural network
models, e.g., recurrent neural network (RNN) [29] and back
propagation neural network (BPNN) [28], were developed to
monitor the anomalies of a complicated system. )ese ap-
proaches work well in some special application areas; how-
ever, the generalization is still a big challenge.

Comparing with traditional machine learning methods,
deep learning (DL) has stronger learning ability and can
achieve higher accuracy [40]. )e most frequently deep
learning methods are generative adversarial network (GAN)
[41], autoencoder [42], convolutional neural network
(CNN) [43], and Long Short-Term Memory (LSTM) [44].
Previous studies show that almost all of the above models
were applied to anomaly classification [45–47]; however, the
work focusing on DL-based abnormal subsequence detec-
tion in time series is rarely reported.

Despite this, there still have been many attempts to
perform anomaly detection in time series using various
statistical or SVM-based methods, including MFAD [31]
and LRRDS [32]. However, few attempts have been made to
accurately predict the abnormal subsequence in time series
using LSTM. )erefore, a proper deep learning method is
required to perform anomaly detection using LSTM.

3. Method

)e flowchart of the proposed LSTMAD approach is shown
in Figure 1(a). )e whole framework consists of four
modules, including noise reduction, normalization, LSTM
model, and anomaly detection. )e details of each module
are described in the following sections.

3.1. Noise Reduction. Since the noisy signal might be in-
volved in the processing of data collection, which will affect
the accuracy of the computational results, therefore, it is
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necessary to reduce the noise from the raw sequence before
constructing anomaly detection model. In this study, we
removed the noise information from time series by using
S-G filter, which was proposed by Savitzky and Golay in
1964 [48]. It can be applied to a set of digital data points for
the purpose of smoothing the data, to increase the precision
of the data without much destroying its original properties.
S-G algorithm is capable of not only removing the noise
from raw data, but also ensuring the shape and width of the
original signal [49, 50].

3.2. Normalization. Given a univariate time series
A � [a1, a2, . . . , ai, . . . , aN] with length N (N> 1), the
normalization was implemented as follows:

xi �
ai − A

Si

,

A �
1
N
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i�1
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N



N

i�1
ai − A( 
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,

(1)

where A and Si are the mean value and standard deviation of
the original series A. )e vector X � [x1, x2, . . . , xi, . . . , xN]

is the normalized sequence. After normalization, the seriesX

will follow 0-1 normal distribution.

3.3. LSTM Model. )e Long Short-Term Memory (LSTM)
model was first developed by Horchreiter and Schmidhuber
in 1997 [51]. Different from RNN’s capability to process
short term sequential data, LSTM can be used to represent

the long-term dependencies in time series data [52]. A
common LSTM unit is composed of a memory cell, an input
gate, an output gate, and a forget gate (Figure 2). )e cell
remembers values over arbitrary time intervals and the three
gates regulate the flow of data into and out of cell. )e
processing of state transition in the memory cell was
implemented via formula (2)–(6). )e input vector at time
point t is xt, and the hidden state vector at t − 1 (h1) is
introduced to the LSTM unit, and then the hidden state ht

will be finally obtained. Equation (2) decides what infor-
mation is going to be thrown away from the cell state via the
forget gate (ft). )e input gate (it) decides which values to
be updated, and (3) and (4) were used to update the old cell
state (ct−1) into the new cell state ct. Equation (5) indicates
that the output gate (ot) decides what parts of the cell state
are going to be produced as output. Finally, the cell state
goes through tanh layer and multiply it by the ot so that
we get the hidden value ht as the output of the LSTM unit
(in (6)).

ft � σ Wxfxt + Whfht−1 + Wcfct−1 + bf , (2)

ft � σ Wxfxt + Whfht−1 + Wcfct−1 + bf , (3)

ct � ft · ct−1 + it · tanh Whcxt + Whcht−1 + bc( , (4)

ot � σ Wxoxt + Whoht−1 + Wcoct + bo( , (5)

ht � ot · tanh ct( . (6)

According to Figure 1(b), the LSTM model in our
LSTMAD framework includes five layers.)e input layer has
L − 1 nodes, indicating that a subseries with L − 1 elements
was used as input to a fully connected hidden layer.)ere are
three hidden layers to process the information from input

Time series LSTMAD
Normalization LSTM model Anomaly detectionNoise reduction

(a)

Time series Input

x1

x2

...
...

...
...

Hidden layer Hidden layer Hidden layer

Output

yL – 1

xL–1

(b)

Figure 1: )e flowchart of the proposed framework LSTMAD.
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layer. Each blue node shown in the hidden layer is a LSTM
unit. )e output layer only has one node (Y), which can be
obtained from

y � 
i

W
3
i ∗ h

3
i , (7)

where W3 is the weight of the i-th hidden node in layer 3
(last hidden layer) and output node Y. h3 is the i-th hidden
node connecting to node Y.

For a certain subseries STSj � [xj, xj+1, . . . , xj+L−1],
where 1≤ j≤N − L + 1, the first elements were L − 1 sent to
the input layer of the LSTMmodel simultaneously, and then
the last element was considered as the expected result to be
optimized. )is also can be represented as xj+L−1 ≈
Y∗ � F(STSj(1: L − 1)). Mathematically, the function F(·)

is a trained LSTM model. Before training the LSTM model,
the original time series was segmented to multiple subseries
via a sliding window with length L (Figure 3). All these
segmented subsequences were randomly ordered. To obtain
enough training samples, each subseries was replicated k

copies, where 1≤ k≤ 10. Finally, each row in the augmented
matrix was input into LSTM network for model training.

According to the above description, our LSTMmodel can be
considered as a supervised regressionmachine for predicting the
upcoming values based on the historic data. Based on this ra-
tional, the LSTM module was firstly trained with the samples
converted from the series without anomaly; hence, the model
prediction would reflect the tendency of the normal signal.

3.4. Discord Search. As described above, a normal subse-
quence XTrn � [x1, . . . , xm] (1<m<N) was firstly extracted
for LSTM training. In the meantime, a testing subsequence
XTst � [xm+1, . . . , xN], including discords (anomalies), will
be selected. Our rationale is that a trained LSTM model
“memorized” the characters of a dynamic system in normal
state; hence, it can predict the future state of the system if it
still normally works. Given a testing sequence that contains
abnormal signals, the discord values can be easily identified
by comparing the predicted values from LSTM with the
observed values. )e calculation for discord search includes
the following steps.

3.4.1. Segmentation of the Testing Sequence XTst. Similar to
the training sequence, the testing series also needs to be
converted to multiple segments via sliding window (Fig-
ure 3). Here, we set the length of sliding window as L. In our
experiments, we set XTst �X to simultaneously present the
fitting error and prediction error.

3.4.2. Prediction of LSTM Model. For each segmented small
piece of sequence STSTj � [xj+1, . . . , xj+L], the element
vector STSTj(1), STSTj(2), . . . , STSTj(L − 1)| would be
used as input of trained LSTM model. We thus obtained the
model outcome Prdj � F(STST)j, which is the theoretical
value of observation STSTj(L). For J testing samples
(subsequences), we will obtain the prediction error vector:
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Figure 2: )e basic cell unit of LSTM network.

4 Scientific Programming



PEV � [AE1, . . . ,AEj, . . . ,AEJ], where AEj � |Prdj−

STSTj(L)|.

3.4.3. Discord Search. )e vector PEV reflects the difference
between prediction and observation. If the value AEj is
significantly higher (AEj ≥ 0.33M), the corresponding point
at time j + L can be considered as the peak of discord. We
then use Gaussian model to fit each candidate point with
significant higher value AEj, and the abnormal sequence was
finally selected from the region [μ − 3σ, μ + 3σ] (μ and σ are
the mean value and standard deviation, respectively).

4. Simulation Experiments

4.1. Data Collection and Preprocessing. To examine the
performance, we applied the LSTMAD approach on 6
datasets, including four well-known public datasets and two
industrial time series from the real world.)e details of these
datasets are described as follows.

(1) Chf01 [30] and Chf13 [53], ECG (electrocardiogram)
related data, are collected from BIDMC Congestive
Heart Failure Database [53,54]. )e length of both
datasets is 3751 and 3750, respectively. Each of them
includes two series. In our experiments, we selected
the 1st series from Chf01 and the 2nd series from
Chf13 to test our algorithm.

(2) Ltstdb_20221 [30], an ECG dataset, is selected from
Long Term ST Database. Its length is also 3750. We
used the 1st series in our experiment.

(3) Xmitdb_x108 [30,55], an ECG dataset with length
5400, is selected from MIT-BIH Arrhythmia Data-
base. )e first sequence was used in our simulation.

(4) SLD1 and SLD2, two sequences related with “soil
pressure” in shield tunneling machine [56], were
collected from a project of shield tunnel construction
in the real world. )e real-time construction state

was collected at each 10 seconds by local sensors.
Totally, over 400 features were observed during the
whole process of construction. In our experiments,
we focused on the time series related with “soil
pressure” because abnormal pressure is a typical fault
in tunneling construction. )e lengths of SLD1 and
SLD2 are 18,087 and 210,907, respectively.

Before the implementation of anomaly detection, the
performance of S-G filters on both categories (original signal
and processed signal) of data sample was evaluated in terms
of PSNR (peak signal-to-noise ratio), SNR (signal-to-noise
ratio), MSE (mean square error), and PRD (root mean
square difference) values [57].

4.2. Experiment Design. First, we applied the proposed
LSTMAD approach on the above six datasets to prove its
outstanding performance. Second, we further compared
LSTMAD with three well-known algorithms, including
HOT SAX [30], Robust Random Cut Forest (RRCF) [58],
and Telemanom [59]. To evaluate the accuracy of anomaly
detection, two statistical metrics, MCC and F0, are defined as
follows:

MCC �
TP × TN − FP × FN

�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

 ,

(8)

F0 �
1
N



N

i�1
fi, (9)

fi �
length Prei − Ref i( 

length Ref i( 
. (10)

As reported in previous studies, MCC produces a more
informative and truthful score in evaluating binary classi-
fications, particularly for the imbalanced data [60, 61]. In (8),
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Figure 3: )e basic idea of resampling in the data-preprocessing.
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TP, FP, TN, and FN define the number of normal subse-
quences correctly detected as normal (true positive), the
number of abnormal subsequences that are detected as
normal (false positive), the number of abnormal subse-
quences that are predicted as abnormal (true negative), and
the number of normal states that are recognized as abnormal
(false negative). )e above four variables were counted if a
predicted anomaly overlapped with the observed anomaly.
In addition, F0 is defined as the global overlapping degree
between predicted and observed anomalies. fi denotes the
overlapping degree of i-th abnormal subsequence between
prediction (Prei) and observation (Ref i).

4.3. Experiment Parameters. All the simulations were per-
formed under the environment of Keras 2.2.4 [62] and
Python 3.5.4 with Intel Core i7-7700HQ Processor and 8G
RAM (2.8GHz). For the S-G filter, the size of sliding window
is 11, and the order is 3-4. )e LSTM network was con-
structed with five layers. )e input layer includes 49 neu-
rons, and the output layer has only one neuron. )e size of
the three hidden layers is 64, 256, and 100 neurons, re-
spectively. Default parameters were set as set batch size� 500
and dropout� 0.2. Loss function is MSE (mean square er-
ror). Optimizer was set as “rmsprop” [63].

5. Results

5.1. Evaluation of Noise Reduction. Firstly, we evaluated the
quality of each time series processed by S-G filter. )e
performance of S-G filter of data sample was compared in
terms of PSNR, SNR, MSE, and PRD values. Table 1 shows
that S-G filter works well on the six datasets. )e anomaly
detections implemented on the processed datasets are
reliable.

5.2. Validation on Univariate Time Series. According to the
description in Section 4.2, the proposed LSTMAD approach
was tested on six time series datasets shown in the above
section. )e simulation results were presented as follows.
)e reference (observed) and predicted anomalies were
highlighted with red color.

Figure 4 shows the simulation results of LSMAD on
chfdb_chf01. Figure 4(a) presents a reference anomaly,
which locates in the range [2182, 2392]. Figure 4(b) shows an
abnormal subsequence from 2252 to 2392 identified by
LSTMAD.

Comparing with Figure 4(a), we found that the predicted
result is very close to the reference.

Similarly, Figure 5 shows the simulation results of
LSTMAD on the dataset chfdb_chf13. In Figure 5(a), we
found that the normal signal is a periodic sequence, which is
repeated many times. Moreover, there is a discord located in
the range [2758, 2967]. )e outcomes of LSTMAD revealed
that the predicted anomaly occurred in the range from 2758
to 2874 (Figure 5(b)). It indicates that the prediction of
LSTMAD fit the observation well.

Different from the above two sequences (Figures 4 and
5), the series ltstdb_20221 is not easily identified because the

abnormal subsequence is very similar to the normal signal.
In Figure 6(a), the discord is determined in the range [583,
783]. After calculating with LSTMAD, we predicted the
subsequence locating at [583, 857] as a discord (Figure 6(b)).

In addition, we examined the performance of LSTMAD
on the last ECG dataset xmitdb_x108 (Figure 7). )e ref-
erence and predicted anomaly locate at [3995, 4207] and
[3899, 4207], respectively. Taken the above together, we
found that the proposed algorithm works well on four well-
known ECG datasets.

Furthermore, we applied the LSTMAD framework on
two real datasets, which were generated from a shield tunnel
construction project. For SLD1, the log file recorded that
there was a fault (“soil pressure continues to decrease” that
occurred in the region from 11,940 to 12,160. )e reference
discord also can be obviously identified in Figure 8(a).

)e prediction of LSTMAD shows that our method is
capable of capturing the abnormal subsequence
(Figure 8(b)). However, the predicted discord is located at
the region [11,255, 12,219], where there exists a little bias.

Finally, we tested the performance of LSTMAD on the
time series SLD2. It seems that there are two peaks in the
reference sequence (Figure 9(a)); however, only one fault
was reported in the log file. )e reference anomaly, from
173,982 to 174,002, was shown in Figure 9(a) with red color.
Our algorithm successfully identified the anomaly in the
range [173,982, 174,002] (Figure 9(b)). In summary, the
developed LSTMAD approach not only works well on some
public time series, but also works on real-world sequence.

5.3. ComparisonwithOtherAlgorithms. To further prove the
effectiveness of the proposed algorithm, we tested all the
above datasets on three classic anomaly detection methods:
Hot SAX [30], Robust Random Cut Forest (RRCF) [58], and
Telemanom [59]. Table 2 shows that LSTMAD out-
performed the three other methods for anomaly detection in
univariate time series. )e values of MCC on six datasets
show that LSTMAD can capture the abnormal subsequences
in most of the time series. However, the performance of
RRCF and Telemanom is obviously lower than that of others.
Moreover, the measurements of F0 on six datasets indicate
that the predicted anomalies obtained from LSTMADmatch
the references very well. In summary, the accuracy of our
approach is significantly superior to existing methods.

6. Discussion and Conclusion

In this study, we proposed a novel LSTM-based approach
(LSTMAD) for anomaly detection in time series data.
LSTMAD was developed by combing LSTM network with a
statistical strategy. )ere is no need to depend on prior
knowledge; our method is capable of learning the context of
sequence data from the normal signal and then identifying
the abnormal regions based on the prediction error for
observed data. To verify the performance, we applied
LSTMAD on several time series datasets, including well-
known public data and real-world data. )e simulation
results revealed that LSTMAD can identify the discords from
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a whole sequence with high accuracy. Moreover, LSTMAD
outperformed the other golden standard approaches on all
the testing datasets.

In previous studies, LSTM was widely used for time
series classification or forecasting [2,3,17,44]. However, it
was rarely reported for discord search in time series. We are
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Figure 4: )e reference (a) and predicted (b) anomalies in the time series chfdb_chf01.
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Figure 5: )e reference (a) and predicted (b) anomalies in the time series chfdb_chf13.
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Figure 6: )e reference (a) and predicted (b) anomalies in the time series ltstdb_20221.

Table 1: )e MSE, PNSR, PRD, and SNR values of S-G filters on six datasets.

MSE PSNR PRD SNR
Original Filter Original Filter Original Filter Original Filter

Chfdb_chf01 0.077 0.061 22.62 22.38 0.059 0.052 7.45 7.12
Chfdb_chf13 0.061 0.053 24.74 21.86 0.052 0.046 8.36 6.08
Ltstdb_20221 0.047 0.038 21.47 18.78 0.037 0.028 4.52 3.18
Xmitdb_x108 0.094 0.079 27.55 24.64 0.081 0.069 8.51 7.96
SLD1 0.026 0.019 37.65 32.59 0.018 0.014 12.76 11.97
SLD2 0.012 0.009 98.27 90.23 0.008 0.006 35.12 32.57
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Figure 7: )e reference (a) and predicted (b) anomalies in the time series xmitdb_x108.
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Figure 8: )e reference (a) and predicted (b) anomalies in the time series SLD1.
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Figure 9: )e reference (a) and predicted (b) anomalies in the time series SLD1.

Table 2: )e comparison of LSTMAD and other algorithms.

Datasets
MCC F0

LSTMAD RRCF Telemanom SAX LSTMAD RRCF Telemanom SAX

Chfdb_chf01 0.58 0.33 0.25 0.25 0.67 0.18 0.53 0.63
Chfdb_chf13 0.58 0.06 0.09 0.25 0.56 0.48 0.45 0.54
Ltstdb_20221 0.82 0.58 0.58 0.58 1.0 0.45 0.13 0.39
Xmitdb_x108 0.82 0.33 0.58 0.82 1.0 0.44 0.33 0.37
SLD1 0.41 0.25 0.06 0.35 1.0 0.12 0.08 0
SLD2 0.58 0.09 0.06 0.58 1.0 1.0 0.85 1.0
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the first to build a predictive model from nonanomalous
training data and then perform anomaly detection based on
the prediction error for observed data. Moreover, the ex-
perimental evaluations also indicate that both the perfor-
mance and generalization of LSTMAD are strong.

Our method is suitable for real-time anomaly prediction,
especially when the underlying physical process is less fully
understood and characterized. It does not rely on prior
knowledge and is not sensitive to the length of sliding
window; it thus will be a scalable algorithm for future
application.

Limitations exist in the proposed LSTMAD approach.
First, the current version is mainly developed for univariate
time series so that it cannot directly address multivariate
sequences. Second, bias also exists in the selection of public
data because anomalies in periodic sequences are often more
easily detected [30].)ird, enough evidence is still lacking to
mathematically prove that the structure of current LSTM
network is optimal. To refine the LSTMAD approach, there
are four aspects that need to be considered in the future
work: (1) new component will be included into the current
framework to transform the multivariate sequence to uni-
variate; (2) the rationality of the LSTM network needs
further argumentation; (3) we will further design a rea-
sonable strategy for parameter search in the future to im-
prove the performance of our model; (4) various golden-
standard time sequences need to be tested.

Data Availability

All the data used in this study are available at GitHub:
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