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A multiview synthetic aperture radar (SAR) target recognition with discrimination and correlation analysis is proposed in this
study. *e multiple views are first prescreened by a support vector machine (SVM) to select out those highly discriminative ones.
*ese views are then clustered into several view sets, in which images share high correlations.*e joint sparse representation (JSR)
is adopted to classify SAR images in each view set, and all the decisions from different view sets are fused using a linear weighting
strategy.*e proposedmethodmakes more sufficient analysis of the multiview SAR images so the recognition performance can be
effectively enhanced. To test the proposed method, experiments are set up based on the moving and stationary target acquisition
and recognition (MSTAR) dataset. *e results show that the proposed method could achieve superior performance under
different situations over some compared methods.

1. Introduction

As one of the classical problems in remote sensing pattern
recognition field, synthetic aperture radar (SAR) target
recognition has been researched for decades [1]. Previously,
a SAR target recognition algorithm was usually conducted
on a single-view SAR image via feature extraction and
classification processes. Discriminative features are first
extracted from SAR images, e.g., geometrical properties,
scattering characteristics, or transformation features. In
[2, 3] the geometrical features were used for SAR target
recognition like target region and contour. *e attributed
scattering centers were adopted as the basic features in [4, 5],
which were matched for target recognition. A variety of
transformation features have been employed in SAR target
recognition, e.g., principal component analysis (PCA) [6],
non-negative matrix factorization (NMF) [7], monogenic
signals [8, 9], etc. *e classifiers aim to dig out the dis-
criminability in the extracted features thus reaching correct
decisions on the test samples. As a witness to the progress in
pattern recognition techniques, a rich set of classifiers were
successfully used in SAR target recognition including K-

nearest neighbor (KNN) [6], support vector machine (SVM)
[10], and adaptive boosting (AdaBoost) [11]. Based on the
compressive sensing theory, the sparse representation-based
classification (SRC) was developed with application to face
recognition [12], SAR target recognition [13, 14], etc. Re-
cently, with the rapid development of deep learning algo-
rithms, some convolutional neural network- (CNN-) based
SAR target recognition methods were proposed [15, 16].

Nowadays, the data acquisition capability of SAR sensors
is greatly enhanced. *en, the multiview SAR images of the
same target are available, which could be jointly used to
improve the recognition performance. A few multiview SAR
target recognitions have been already developed with much
superior performance over single-view ones. Brown
designed a multiview decision fusion algorithm for multi-
view SAR images based on Bayesian theory [17]. In [18], a
voting strategy for the decisions from multiple views by
SVM was developed. Zhang et al. first applied joint sparse
representation (JSR) to the classification of multiview SAR
images, which intended to exploit the inner correlations
between different views [19]. JSR is a general extension of
traditional SRC to multitask learning, which is capable of
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representing each task precisely under the correlation
constraints among different tasks. Inspired by the good
performance of JSR, several modifications of the work in [19]
were further proposed by improving the dictionary or
classification scheme [20, 21]. Some issues need to be
highlighted in multiview SAR target recognition method.
First, as mentioned in [21], because of the extended oper-
ating conditions (EOCs), not all of the multiple views are
discriminative enough for correct decisions. *en, it is
preferred that those with low discrimination were rejected
before the classification stage. Second, the multiview SAR
images may be from quite different azimuths. Due to the
azimuthal sensitivity, the multiview SAR images may be
costly related or relatively independent in terms of the az-
imuthal differences. In this case, the direct use of JSR may
bring some incorrect constraints. Based on the above
considerations, this study proposes a multiview SAR target
recognition method via discrimination and correlation
analysis of multiple views. First, SVM is used as the classifier
to perform discrimination analysis. Each of the multiview
SAR images is first classified by SVM. Based on the output
posterior probabilities, a decision reliability is defined, which
can effectively evaluate the classification precision of the
present view. Afterwards, a thresholding judgement is
conducted to reject those views with lower decision reli-
abilities in comparison with the preset threshold. For the
selected views, a clustering algorithm is designed to cluster
them into several independent view sets. It is assumed that
views in the same set share high correlations while different
view sets are relatively independent.*en, for each set, JSR is
employed to classify all the views in it to exploit their
correlations. A linear weighting strategy is adopted to fuse
the decisions from different view sets and the fused decision
values are used to decide the target label. *e main con-
tributions of this paper are as follows. First, the proposed
method comprehensively considers the discrimination and
correlation in the multiview SAR images. *erefore, it is
promising that the multiple views can be exploited fully to
enhance the recognition performance. Second, two classi-
fiers, i.e., SVM and JSR, are combined in a joint recognition
framework. *ey two classifiers are both effective for SAR
target recognition and have complementary merits. So, their
combination could probably help improve the recognition
performance. To validate the performance of the proposed
method, experiments are set up on the moving and sta-
tionary target acquisition and recognition (MSTAR) dataset
under different situations. *e experimental results confirm
the high effectiveness and robustness of the proposed
method.

2. SVM-Based Discrimination Analysis

SVM is chosen as the basic classifier for discrimination
analysis [10], which aims to find out those highly dis-
criminative views while rejecting those indiscriminative
ones. Since the proposal by Vapnik et al. in 1995, SVM has
long been a hot classifier in pattern recognition field. In 2001,
Zhao and Principe first introduced SVM into the field of
SAR target recognition. Afterwards, it was widely used to

classify different types of features as reported in [2, 3, 7].
With the objective to minimize the structural risk, SVM is
able to find a hyperplane to separate two different patterns.
*en, for an unknown sample x, the decision function is as
follows:

f(x) � 
M

i�1
wiyiK xi, x(  + b, αi ≥ 0,∀i, (1)

where xi(i � 1, . . . , M) represents the support vectors
drawn from the training samples; yi � ± 1 denote the two
pattern labels; wi(i � 1, . . . , M) and b are the parameters to
be estimated, i.e., weights and bias; and K(·) is the kernel
function, which can be properly designed to enhance the
nonlinear classification capability. Some common kernel
functions are linear kernel, polynomial kernel, radial basis
function (RBF) kernel, etc.

Traditionally, SVM was designed for two-class separa-
tion task. In order to handle multiclass classification
problems, the multiclass SVM was developed using one-
versus-one or one-versus-rest strategies as we can find these
functions in the famous LIBSVM toolbox.

In this study, each of the multiview SAR mages is first
classified by SVM for prescreening. *ere are C classes of
training samples. For a single view, the posterior proba-
bilities output from SVM corresponding to different classes
are denoted as [p1, p2, . . . , pC]. *e decision reliability is
defined as follows:

R �
max pj 

pk

, (j≠ k), (2)

where pk denotes the maximum in the C probabilities. So,
the decision reliability R is a constant in the range of [0, 1]. A
lower R indicates a more reliable decision because the
maximum probability is notably larger than the remaining
ones. On the contrary, a high R infers a decision not reliable
enough. With an appropriate threshold T1, those views with
larger decision reliabilities than T1 are rejected. And the
remaining views are assumed to be highly beneficial for the
multiview target recognition, which are used in the following
classification stage.

3. Correlation Analysis

3.1. Clustering of Multiview SAR Images. After the dis-
crimination analysis by SVM, only M of total N views are
selected for the following classification. However, due to
azimuthal sensitivity of SAR images, the selected views may
not be closely related. When two images are from
approaching azimuths, they share high correlations. Oth-
erwise, when their azimuths are notably different, they have
a low similarity. Hence, it is necessary to analyze the rela-
tionship among the multiview SAR images thus designing a
suitable classification scheme.

In this paper, a clustering algorithm of multiview SAR
images is developed based on the correlation of two images.
*e correlation coefficient between two SAR images is de-
fined as follows:
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cij � max
kl Ii(k, l) − m1  Ij(k − Δk, l − Δl) − m2 

kl Ii(k, l) − m1 
2

Ij(k − Δk, l − Δl) − m2 
2

 
1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(3)

In equation (3), m1 and m2 represent the mean values of
the two images: Ii and Ij, respectively. When Ii slides on Ij,
the maximum correlation coefficient is defined as the final
correlation coefficient.

Denote the M selected multiview SAR images as
V � I1, I2, . . . , IM . At first, the correlation coefficients
between each pair of views are calculated as a matrix in
Table 1. Afterwards, the designed clustering algorithm is
performed as the following steps:

Step 1. Choose I1 as the cluster center

Step 2. Select the correlation coefficients in the first row of C

lower than T2

Step 3. Obtain the first cluster, which comprises I1 and those
from Step 2

Step 4. Remove views in the first cluster from V; repeat Step
1 to Step 3 to obtain the next cluster

Step 5. Repeat Step 1 to Step 4 until each view are included
in a single cluster

After the clustering algorithm, the multiview SAR im-
ages are included into several view sets. In each view set, SAR
images are assumed to share high correlations related to the
threshold T2. On the contrary, different view sets are as-
sumed to be relatively independent.

3.2. JSR of Multiview SAR Images. In each view set after the
clustering, the included SAR images share high correlations.
In this case, it is preferred that JSR can be used to jointly
represent the multiview SAR images with the constraints of
their correlations. Denote the P views in a view set as
Y � [y(1), . . . , y(P)]; their sparse representation problems
can be considered together as follows:

min
A

g(A) � 
P

m�1
y

(m)
− Xα(m)

�����

�����
⎧⎨

⎩

⎫⎬

⎭, (4)

where X represents the global dictionary established by all
the training samples and A � [α(1), . . . , α(P)] comprises the
sparse coefficient vectors from different views. However, the
problem in equation (4) considers different views inde-
pendently. In order to properly use the inner correlations
among them, the ℓ1,2 mixed norm is usually imposed on the
coefficient matrix A to formulate an optimization objective
as follows:

min
A

g(A) + λ‖A‖1,2, (5)

where ‖A‖1,2 returns the ℓ1,2 mixed norm of A by calculating
ℓ2 norm of each row in A and ℓ1 of the resulting vector
afterwards.

Owing to the progress in compressive sensing theory,
there are algorithms like simultaneous orthogonal matching
pursuit (SOMP) [22] and multitask Bayesian compressive
sensing (BCS) [23], which can be used to solve the opti-
mization problem in equation (5). Based on the solved
coefficient matrix, the total reconstruction error of all the
views by a single training class can be calculated as follows:

ri � 
P

m�1
y

(m)
− X

(m)
i α(m)

i

�����

�����2
, (6)

where ri denotes the total reconstruction error from the ith
training class. Traditionally, by comparing the reconstruc-
tion errors from different training classes, the target label of
the test sample (s) is assigned to the one with the minimum
error. Specifically in this study, there are several view sets,
which are represented by JSR, respectively. *erefore, a
proper fusion of their results can help improve the precision
of the final decision.

3.3. Linear Weighting. *ere are K view sets after the
clustering. For the kth view set, the output reconstruction
errors from JSR are [rk

1, rk
2, . . . , rk

C]. *is study uses a linear
weighting strategy to fuse the reconstruction errors from
different view sets as follows:

fri � ω1r
1
i + ω2r

2
i + · · · + ωKr

k
i , (7)

where fri denotes the fused reconstruction error to the ith
training class and ω1,ω2, . . . ,ωK are the linear weights of
different view sets subject to

w0 + w1 + · · · + wn � 1. (8)

In this study, the weight of a view set is decided based on
the number of views in it. For example, if there are Mk views
in the kth view set, the corresponding weight is calculated as
ωk � (Mk/M). It is assumed that when a view set includes
more images, it contains more information for correct
decision so a higher weight is assigned.

Figure 1 illustrates the implementation details of the
proposed multiview SAR target recognition method. *e
training samples are used to support the two classifiers, i.e.,
SVM and JSR. Considering the high dimension of original
SAR images, the random projection algorithm [13] is used to
reduce the training and multiview test samples to 520-di-
mension feature vectors for classification.

Table 1: Correlation coefficient matrix of multiview SAR images.

I1 I2 · · · IM

I1 c11 c12 · · · c2M

I2 c21 c22 · · · c2M

⋮ ⋮ ⋮ ⋱ ⋮
IM cM1 cM2 · · · cMM
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Figure 2 further explains the proposed method with a
concrete example with MSTAR SAR images. *ere are six
views of the same target with different azimuths to be
classified indexed as “1” to “6” sequentially. First, those
views are classified based on SVM and their reliability levels
are calculated to be 0.53, 0.42, 0.27, 0.39, 0.57, and 0.36,
respectively. With a threshold of 0.3, the view indexed 3 is
unselected while the remaining ones are used in the fol-
lowing stages. Using the clustering algorithm, the five views
are reorganized into two subsets with indexes as {1, 6, 7}
and {2, 4, 5}. Afterwards, the two subsets are independently
processed by JSR to obtain the corresponding recon-
struction error vectors, which are fused to make the final
decision.

4. Experiments and Analysis

4.1. Dataset and Compared Methods. MSTAR dataset is
chosen as the data source to validate the performance of this
method. In the dataset, a large volume of SAR images
collected from ten ground targets (shown in Figure 3) are
available for training and testing. All the images have high
resolutions of 0.3m at both range and cross range directions.
Typical experimental situations including the standard
operating condition (SOC) and EOCs can be set up to
comprehensively evaluate the proposed method.

Simultaneously in each experiment, some single-view
and multiview SAR target recognition methods from pre-
vious literatures are compared. *e single-view methods are
SVM from [10], SRC from [13], and CNN from [15]. *e
multiview methods are [18, 19], respectively, which are
denoted as MultiView1 and MultiView2. For simplicity, ten
views with azimuth step of 3° are used for the threemultiview
methods. In the following, the proposed method is first
tested under SOC to validate its preliminary performance
and obtain the best parameters for recognition. Later, some
typical EOCs, e.g., configuration variance, depression angle
variance, and noise corruption, are set up to evaluate the
robustness of the proposed method.

4.2. Recognition under SOC. SOC is a simple situation in
SAR target recognition, under which the test samples are
similar to the training ones. Table 2 gives the training and
test sets under SOC. Images at 17° depression angle are
trained to classify those from 15°. At first, the two thresholds

T1 and T2 are set to be 0.3 and 0.4, respectively. Figure 4
displays the confusion matrix of the proposed method,
where the recognition rate of each of the ten targets can be
observed on the diagonal. *e average recognition rates
(ARRs) of different methods are summarized in Table 3 for
comparison. Clearly, the multiview methods generally
achieve much higher ARRs than those of single-view ones
because more discrimination is available in multiview SAR
images. *e proposed method has the highest ARR, vali-
dating its best effectiveness under SOC. Compared with
another two multiview methods, the proposed method
enhances the recognition performance to some extent due
to the comprehensive analysis in this study. However,
because of the simplicity of SOC, other methods could also
achieve very high ARRs so the improvement in this method
is not remarkable enough. By varying the two thresholds,
the ARRs of the proposed method at different parameters
are listed in Table 4. It is noticeable that the two thresholds
have influences on the final recognition performance be-
cause they affected the preselection of the multiple views as
well as the clustering of the views. In comparison, the
highest ARR occurs at T1 � 0.3 and T2 � 0.4, which is the
reason of setting the two thresholds in the former test. In
the following tests, the two thresholds keep unchanged for
convenience.

4.3. Recognition under EOCs. EOCs are common in SAR
target recognition because of the variations of targets’
structures, environment, or radar sensors. In is urgent that
SAR target recognition could well handle different types of
EOCs thus improving the practicability in real-world
scenarios.

4.3.1. Configuration Variance. Caused by the variations of
targets’ structures, there exist configuration variances in the
same types of targets. Table 5 displays the training and test
sets under configuration variance, in which the configura-
tion variances occur in BMP2 and T72. Classifying these test
samples by all the methods, their ARRs are listed in Table 6.
Due to the configuration variances, the ARRs of all the
methods decrease disproportionately. In comparison, the
proposed one still achieves the highest ARR, validating its
higher robustness to possible configuration variances. *e
prescreening via SVM and clustering algorithm can

Multi-view SAR
images

View 1

View 2

View N

SVM

SVM

SVM

Decision
reliability 1

Decision
reliability 2

Decision
reliability N

Selected
viewsT1

View set 1

View set 2

View set K

JSR

JSR

JSR

Linear
weighting Target label

Clustering

Figure 1: Implementation of the proposed multiview SAR target recognition method.
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effectively select those views beneficial for target recognition.
*erefore, the multiview recognition performance could be
enhanced as compared with another two multiview
methods.

4.3.2. Depression Angle Variance. When the relative po-
sitions between the target and radar change, the de-
pression angle for SAR imaging may change
simultaneously. However, SAR images of the same target
from different depression angles tend to have many di-
vergences even at the same azimuths. As a result, the
recognition problems under depression angle variance
become much more difficult than SOC. Table 7 gives the
training and test sets for this experiment, in which the
depression angles occur in 2S1, BDRM2, and ZSU23/4.

Figure 5 summarizes the ARRs of different methods at 30°
and 45° depression angles, respectively. In comparison,
the proposed method defeats the compared ones at both
depression angles, reflecting its robustness to possible
depression angle variances.

4.3.3. Noise Corruption. Due to the noises from the real-
world environment and radar equipment, the test sam-
ples to be classified may have a much lower signal-to-
noise ratio (SNR) than that of training samples. As a
simulation, different levels of Gaussian noises [24, 25] are
first added to the test samples in Table 2. Figure 6 il-
lustrates the simulated noisy SAR images at different
levels, in which the target characteristics are blurred by
the noises especially at low SNRs. Afterwards, those noisy

(1) BMP2 (2) BTR70 (3) T72 (4) T62 (5) BRDM2

(6) BTR60 (7) ZSU23/4 (8) D7 (9) ZIL131 (10) 2S1

Figure 3: Optical images of the ten MSTAR targets.
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Figure 2: Illustration of multiview SAR images from different azimuths. (a) View l. (b) View 2. (c) View 3. (d) View 4. (e) View 5. (f ) View 6.
(g) View 7.
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samples are classified by different methods and their ARR
curves are shown in Figure 7. *e ARRs of the proposed
method top at each SNR, showing its superior robustness
to noise corruption over the compared ones. Both the
SVM prescreening and clustering could help analyze the

multiview SAR images aiming to improve the recognition
performance under noise corruption. *erefore, the
proposed method could work more robustly in this sit-
uation as compared with other single-view and multiview
methods.

Table 4: ARRs of the proposed method at different combinations of the two thresholds.

T2
T1 0.1 0.2 0.3 0.4 0.5 0.6
0.1 98.62 98.94 99.08 99.04 98.73 98.32
0.2 98.84 99.03 99.14 99.10 98.92 98.56
0.3 98.97 99.06 99.31 99.18 99.04 98.79
0.4 99.14 99.35 99.58 99.27 99.10 99.02
0.5 99.16 99.28 99.47 99.31 99.16 99.08
0.6 99.10 99.21 99.38 99.27 99.12 99.04
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Figure 4: Confusion matrix under SOC.

Table 3: Comparison of ARRs under SOC.

Method Proposed SVM SRC CNN MultiView1 MultiView2
ARR (%) 99.58 97.04 96.28 99.06 99.13 99.32

Table 2: Training and test sets used under SOC.

Class
Training set Test set

Depression angle Number of samples Depression angle Number of samples
BMP2

17°

233

15°

195
BTR70 233 196
T72 232 196
T62 299 273
BDRM2 298 274
BTR60 256 195
ZSU23/4 299 274
D7 299 274
ZIL131 299 274
2S1 299 274
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Table 5: Training and test sets under configuration variance.

Class
Training set Test set

Configuration Number of samples Configuration Number of samples

BMP2 Sn_9563 233 Sn_9566 196
Sn_c21 196

BTR70 Sn_c71 233 Sn_c71 196

T72 Sn_132 232 Sn_812 195
Sn_s7 191

Table 6: Comparison of ARRs under configuration variance.

Method Proposed SVM SRC CNN MultiView1 MultiView2
ARR (%) 98.84 94.92 95.08 97.35 97.97 98.14

Table 7: Training and test sets under depression angle variance.

Class
Training set Test set

Depression angle Number of samples Depression angle Number of samples

2S1

17°

299 30° 288
45° 303

BDRM2 298 30° 287
45° 303

ZSU23/4 299 30° 288
45° 303

0
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98.12 96.18 96.04 97.28 97.63 97.92

72.44
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)
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Figure 5: Comparison of ARRs at different depression angles.
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Figure 6: Continued.
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5. Conclusion

In this paper, a multiview SAR target recognition method is
proposed by considering both discrimination and corre-
lation. SVM is first to classify each view thus rejecting those
views with low contributions to correct decisions. A
clustering algorithm is performed afterwards to conduct
the correlation analysis. In each of the clustered view sets,
the included SAR images are highly correlated. JSR is
adopted to classify each view set and all the decisions are
fused via a linear weighting strategy. Finally, the target label
of an unknown test sample is determined based on the
fused decision values. In the experiments, the proposed
method is evaluated based on the MSTAR dataset under
SOC and EOCs. Meanwhile, it is compared with some
previous SAR target recognition methods including single-
view and multiview ones. *e results show that the pro-
posed method could achieve much better performance than
the compared ones.
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