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+is paper proposes a perceptual medical image fusion framework based on morphological component analysis combining
convolutional sparsity and pulse-coupled neural network, which is called MCA-CS-PCNN for short. Source images are first
decomposed into cartoon components and texture components bymorphological component analysis, and a convolutional sparse
representation of cartoon layers and texture layers is produced by prelearned dictionaries.+en, convolutional sparsity is used as a
stimulus to motivate the PCNN for dealing with cartoon layers and texture layers. Finally, the medical fused image is computed via
combining fused cartoon layers and texture layers. Experimental results verify that the MCA-CS-PCNN model is superior to the
state-of-the-art fusion strategy.

1. Introduction

In clinical applications, medical images include anatomical
images and functional images. Anatomical images provide
information of dense structures [1], for instance, X-ray com-
puted tomography (CT) and magnetic resonance imaging
(MRI). Functional images reflect information of blood flow and
blood activity [2], for instance, positron emission CT (PET)
and single-photon emission CT (SPECT). Medical images with
single modality do not provide sufficient information in di-
agnosing diseases; medical image fusion (MIF) technology
provides an effective method via merging medical images with
different modalities into a comprehensive MIF image to aid
radiologists for better diagnosis [3–5].

Many MIF algorithms have been addressed in the last
dozen years. +ese methods include the multiscale de-
composition- (MSD-) based fusion strategy [6–10], sparse
representation- (SR-) based fusion strategy [11], and pulse-
coupled neural network- (PCNN-) based fusion strategy
[12, 13]. To pursue satisfactory fusion performance, attempts
were made to use the PCNN based on MST [14–16]. PCNN

is a cat visual cortex biologically inspired neural network,
which is used in medical image fusion. Huang et al. [17]
integrated non-subsampled contourlet transform (NSCT)
with the PCNN for SPECT and CT image fusion. Non-
subsampled shearlet transform (NSST) was combined with
the PCNN to fuse medical images [18]. However, NSCT- or
NSST-based fusion strategy has high computational com-
plexity due to proper contours, which may limit the fusion
performance. Furthermore, normalized coefficient values
are employed to stimulate the PCNN, which may cause
detail loss and blurring effect in the fused image. Electro-
physiological experiments have proved that the neuron
representations of complex stimulation in the cat visual
cortex are represented by sparse coding [19–21]. Morpho-
logical component analysis (MCA) has been widely studied
as effective image decomposition. Combining MCA with SR
can acquire the SR of cartoon and texture components of an
image [22, 23]. To resolve the disadvantage produced by
patch coding, convolutional sparse representation (CSR) has
been shown to be more effective than sparse representation
in extracting features [24]. It is implemented on the whole
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image instead of a local image patch. Based on the above
considerations, this paper presents a medical image fusion
algorithm using convolutional sparsity to stimulate the
PCNN based on morphological component analysis
(MCA-CS-PCNN). Source images are first decomposed into
cartoon components and texture components by MCA, and
CSR of cartoon layers and texture layers is obtained by
prelearned dictionaries. +en, convolutional sparsity is
employed to stimulate the PCNN for processing cartoon
layers and texture layers. +e MIF image is computed via
combining fused cartoon layers and texture layers. We test
the performance of the proposed MCA-CS-PCNN fusion
method, and the experimental results verify the advantages
of our fusion strategy.

2. Related Work

2.1. Convolutional Sparsity Based on Morphological Compo-
nent Analysis (CSMCA). Convolutional sparsity is a sparse
representation model applying the convolutional form [24],
which is based on an entire image rather than overlapped
patch. +e CSR is defined as
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where I denotes an image, sn and dn denote the global sparse
coefficient maps and dictionary filter, respectively, ∗ represents
the convolution operator, and c is the regularization parameter.

Morphological component analysis of an image is
regarded as a linear combination of different components,
which is defined as [23]

I � Ic + It, (2)

whereIc and It denote cartoon components and texture
components, respectively. According to CSR theory, the
model of convolutional sparsity based on morphological
component analysis (CSMCA) is expressed as
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where bc,n􏽮 􏽯
nc

n�1 and sc,n􏽮 􏽯
nc

n�1 denote the dictionary and
convolution sparse coefficient corresponding to Ic, respec-
tively. bt,n􏽮 􏽯

nt

n�1 and st,n􏽮 􏽯
nc

n�1 represent the dictionary and
convolution sparse coefficient corresponding to It, respec-
tively. +e image is computed and denoted by
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nt
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bt,n ∗ st,n. (4)

2.2. Pulse-Coupled Neural Network. +e diagrammatic di-
agram of the simplified PCNN is shown in Figure 1. +ere
are three modules in the simplified PCNNmodel [12], which
include the dendritic, linking modulation, and pulse gen-
erator, where feeding and linking input are built into the
dendritic, denoted by Ex,y � (m) and Lx,y � (m).
Fx,y � (m) and Px,y � (m) denote the linking modulation
and the pulse generator, respectively. +e simplified PCNN
model is denoted by

Ex,y(m) � Sx,y, (5)

Lx,y(m) � e
− μL Lx,y(m − 1) + GL 􏽘

u,v

Wx,y,u,vPx,y(m − 1),

(6)

Fx,y(m) � Ex,y(m) 1 + ηLx,y(m)􏽨 􏽩, (7)

Tx,y(m) � e
− βT Tx,y(m − 1) + ZTPx,y(m − 1), (8)

Px,y(m) �
1, Fx,y(m)>Tx,y(m),

0, Tx,y(m)>Tx,y(m),
􏼨

(9)

where x, y denote pixel locations, u, v represent the dis-
location in the symmetric neighborhood around a pixel, W

and Si,j(n) denote the synaptic weight matrices and the
external stimulus, respectively, GL and μL are normalizing
constants, and η varies the weight of the linking field, which
denotes the linking parameter. +e threshold magnitude
coefficient and attenuation coefficient are represented by ZT

and βT, respectively.
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Figure 1: Diagrammatic diagram of the simplified PCNN.
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3. Proposed MIF Fusion Framework

3.1. MCA-CS-PCNN. +e flowchart of the MCA-CS-PCNN
framework is shown in Figure 2. Images A and B denote
different source images, which are decomposed into cartoon
components AC, BC􏼈 􏼉 and the texture components AT, BT􏼈 􏼉

by applying MCA, respectively. According to equations
(1)–(4), the CSR of cartoon components and texture com-
ponents is computed as
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where CSMCA(·) represents CSMCA functions, described
in Section 2.1, cA
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of BC, BT􏼈 􏼉.
Next, the convolutional sparse representation is used to

stimulate the PCNN because complex stimulation in the cat
visual cortex is based on sparse coding. AC

CSMCA, BC
CSMCA􏼈 􏼉

and AT
CSMCA, BT

CSMCA􏼈 􏼉 are employed to stimulate the PCNN
for processing AC, BC􏼈 􏼉 and AT, BT􏼈 􏼉, respectively.
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T
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where PCNN(·) denotes the PCNN functions; the firing time
matrices TAC , TBC􏼈 􏼉 of AC, BC􏼈 􏼉 and TAT , TBT􏼈 􏼉 of AT, BT􏼈 􏼉

are obtained according to equations (5)–(9), until the it-
eration number m � Mmax, where Mmax denotes the max
iteration times, and then iteration stops.

+en, fused coefficients of the convolution sparse co-
efficient map in cartoon components are computed by
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Figure 2: Flowchart of the anatomical and anatomical image fusion method.
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+e fused coefficients of the convolution sparse coeffi-
cient map in texture components are computed by
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+e fused image of cartoon component Fc and fused image
of texture component Ft are computed and denoted by

Fc � 􏽘
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n�1 are dictionaries.
Finally, the medical fused image is acquired and denoted

as

F � Fc + FT. (15)

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: Five pairs of source images with anatomical and anatomical.
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Figure 3: Flowchart of the anatomical and functional image fusion method.
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(a) (b) (c) (d) (e) (f )

Figure 6: Five anatomical and anatomical image fusion results obtained by sixmethods. (a) CSR. (b) NSCT-MSF-PCNN. (c) GFF. (d) CSCS.
(e) LP-SR. (f ) Proposed.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 5: Five pairs of source images with anatomical and functional.
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3.2. Extension to Anatomical and Functional Image Fusion
BasedonMCA-CS-PCNN. +eproposedMCA-CS-PCNN is
extended to conduct anatomical and functional image fu-
sion. Considering that functional images are pseudo-color
images, the YUV color space transform has shown to be
effective in processing pseudo-color images [10, 16]. Spe-
cifically speaking, a functional image with RGB is firstly
transformed into the Y channel, U channel, and V channel.
+en, the new Y channel is produced via the fusion of the Y
channel and grayscale image based on MCA-CS-PCNN, and
the new YUV is acquired via merging the new Y, U, and V.
Finally, YUV is converted into RGB, and the medical fused
image with color is obtained. +e flowchart of the ana-
tomical and functional image fusion strategy based on
MCA-CS-PCNN is shown in Figure 3.

4. Experiments

4.1. Experimental Settings. To test and verify the perfor-
mance of the MCA-CS-PCNN fusion algorithm, ten pairs of

medical images with the same size of 256× 256 pixels are
used to conduct the experiments, including five pairs of
anatomical image and functional image fusion and five pairs
of anatomical image and anatomical image fusion (Figures 4
and 5). Five representative medical image fusion algorithms
are selected for experimental comparison; they are con-
volutional sparse representation (CSR) [24], NSCT-based
modified spatial frequency and PCNN (NSCT-MSF-PCNN)
[14], guided filtering (GFF) [25], cross-scale coefficient se-
lection (CSCS) [26], and sparse representation based on the
Laplacian pyramid (LP-SR) [11]. Objective quality evalua-
tion is important for image quality [27–31]. +e existing
fusion quality metrics include the human perception quality
metric (QHP) [32], feature mutual information quality
metric (QFMI) [33], spatial frequency quality metric (QSF)

[34], standard deviation quality metric (QSD) [11], nonlinear
correlation information entropy metric (QNCIE) [35], and
mutual information metric (QMI) [36]. In the above quality
metrics, the higher the values of QHP, QFMI, QSF, QSD, QMI,
and QNCIE, the higher the fusion performance.

(a) (b) (c) (d) (e) (f )

Figure 7: Five anatomical and functional image fusion results obtained by six methods. (a) CSR. (b) NSCT-MSF-PCNN. (c) GFF. (d) CSCS.
(e) LP-SR. (f ) Proposed.
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4.2. Analysis of Experimental Results. In the example of
anatomical and anatomical image fusion, we can see that the
anatomical information of the bones or soft tissues is
contained in the fused images by the six algorithms; still,
differences between fused images can be clearly distin-
guished, such as focal regions blur (Figures 6(a), 6(c), and
6(d)), information of soft tissues regions are missing
(Figures 6(b) and 6(e)). Our method obtains better per-
formance than other methods. +e example of anatomical
and functional image fusion shows that the fused images

obtained by GFF and CSCS lead to the loss of color in-
formation (Figures 7(a), 7(c), and 7(d)), and the NSCT-
MSF-PCNN and LP-SR algorithms lead to poor visual effect,
for instance, the details of the anatomical image are lost
(Figures 7(b) and 7(e)). From the comparisons, our pro-
posed algorithm demonstrates more advantages than the
existing algorithms.

Tables 1 and 2 give the objective evaluation results of the
proposed MCA-CS-PCNN fusion algorithm and five fusion
methods via using objective fusion quality metrics. We mark

Table 2: Objective evaluation for anatomical and functional image fusion.

Metric CSR NSCT-MSF-PCNN GFF CSCS LP-SR Proposed
QNCIE 0.8065 0.8055 0.8064 0.8067 0.8060 0.8071
QMI 0.6623 0.5171 0.6428 0.6597 0.6178 0.7081
QFMI 0.6560 0.4691 0.6621 0.5600 0.6591 0.8489
QSD 48.9095 53.8469 50.0278 47.3761 54.4485 55.5928
QNCIE 0.8058 0.8051 0.8167 0.8058 0.8056 0.8277
QMI 0.6760 0.5373 1.2242 0.6503 0.6640 0.8370
QFMI 0.7265 0.4684 0.7894 0.6437 0.7130 0.8674
QSD 59.8627 71.6602 56.7290 57.5273 73.7096 83.8645
QNCIE 0.8064 0.8053 0.8063 0.8067 0.8061 0.8071
QMI 0.6419 0.4994 0.6222 0.6417 0.6053 0.6914
QFMI 0.6459 0.4683 0.6592 0.5376 0.6476 0.8457
QSD 48.4643 56.5707 50.2559 46.4979 55.2796 56.1166
QNCIE 0.8060 0.8052 0.8158 0.8059 0.8056 0.8072
QMI 0.7060 0.5567 1.2565 0.6608 0.6660 0.8220
QFMI 0.7331 0.4911 0.7967 0.6345 0.7229 0.8275
QSD 59.4432 75.1043 59.4872 55.5982 71.4376 89.1413
QNCIE 0.8039 0.8030 0.8055 0.8049 0.8035 0.8062
QMI 0.5698 0.3652 0.6721 0.6271 0.5077 0.8241
QFMI 0.7380 0.5254 0.7510 0.6657 0.7431 0.8608
QSD 35.3903 46.0797 49.6000 44.3124 45.5952 51.4487

Table 1: Objective evaluation for anatomical and anatomical image fusion.

Metric CSR NSCT-MSF-PCNN GFF CSCS LP-SR Proposed
QHP 192.5371 217.4689 204.7978 191.4941 217.2586 475.4320
QFMI 0.7166 0.4874 0.7747 0.6542 0.7661 0.9024
QSF 6.5501 6.9821 6.8311 6.7044 7.0135 7.6950
QSD 60.8623 60.8988 61.3338 59.8601 62.0928 70.2132
QHP 877.7084 962.9514 849.0039 1033.4054 975.2739 1225.7900
QFMI 0.7068 0.5380 0.7238 0.6372 0.7090 0.8649
QSF 6.1220 6.5293 6.3858 5.6766 6.9076 6.8722
QSD 45.4486 48.4487 49.1475 43.1021 49.6588 51.1843
QHP 306.5058 314.8874 361.3098 424.6304 276.2802 580.2270
QFMI 0.7600 0.5294 0.7865 0.6727 0.7750 0.8750
QSF 6.0409 6.4068 6.5122 5.9881 6.6294 6.8274
QSD 58.7902 58.1959 58.4755 56.8458 59.7011 69.6467
QHP 267.9495 317.9863 222.8093 467.2239 253.2109 481.7950
QFMI 0.7443 0.4925 0.7747 0.6556 0.7651 0.8862
QSF 6.4027 6.8604 6.8962 6.4012 7.0255 7.1951
QSD 61.1738 67.0296 65.2783 59.9890 67.7791 78.0285
QHP 90.5363 87.7394 79.0995 195.9282 94.2120 220.7360
QFMI 0.7467 0.5754 0.8030 0.7083 0.7741 0.8719
QSF 5.8630 6.2027 5.9547 5.9907 6.3836 6.8953
QSD 55.8337 56.4241 57.1615 54.7563 56.6573 60.1770
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best results employing the boldface in each row. Table 1
shows an objective evaluation of the fused image about
anatomical image and functional image. We QSF values are
only slightly lower than LP-SR in the second pair of images
of Figure 4. Our method achieves the significant superiority.
From Table 2, it can be see that QMI values are only slightly
lower than GFF in the second pair of images of Figure 5, and
the values of QFMI and QSD in our proposed algorithm
demonstrate advantages.

5. Conclusion

+is paper proposes a perceptual medical image fusion
framework based on morphological component analysis
combining convolutional sparsity and pulse-coupled neural
network, which is called MCA-CS-PCNN for short. It is
basically based on the visual system feature that the cat visual
cortex can produce complex stimulation, and the neuron
representations of complex stimulation can be represented
using sparse coding. To this end, we first decomposed source
images into cartoon components and texture components by
morphological component analysis, and convolutional
sparse representation of cartoon layers and texture layers is
obtained by prelearned dictionaries. +en, convolutional
sparsity is employed to stimulate the PCNN for processing
cartoon layers and texture layers. Finally, the medical fused
image is computed via combining fused cartoon layers and
texture layers. +e experimental results verify that the
proposed model can produce high performance, which is
superior to the state-of-the-art fusion strategy.
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