
Research Article
Adaptive Particle Swarm Optimization with Gaussian
Perturbation and Mutation

Binbin Chen ,1 Rui Zhang ,2 Long Chen ,2 and Shengjie Long 3

1Graduate School, Xi’an International Studies University, Xi’an 710128, China
2School of Information Engineering, Zunyi Normal College, Zunyi 563002, China
3School of Traffic & Transportation Engineering, Central South University, Changsha 410004, China

Correspondence should be addressed to Shengjie Long; longshengjie12@csu.edu.cn

Received 10 October 2020; Revised 18 January 2021; Accepted 23 January 2021; Published 4 February 2021

Academic Editor: Wei Li

Copyright © 2021 Binbin Chen et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e particle swarm optimization (PSO) is a wide used optimization algorithm, which yet suffers from trapping in local optimum
and the premature convergence. Many studies have proposed the improvements to address the drawbacks above. Most of them
have implemented a single strategy for one problem or a fixed neighborhood structure during the whole search process. To further
improve the PSO performance, we introduced a simple but effective method, named adaptive particle swarm optimization with
Gaussian perturbation and mutation (AGMPSO), consisting of three strategies. Gaussian perturbation and mutation are in-
corporated to promote the exploration and exploitation capability, while the adaptive strategy is introduced to ensure dynamic
implement of the former two strategies, which guarantee the balance of the searching ability and accuracy. Comparison ex-
periments of proposed AGMPSO and existing PSO variants in solving 29 benchmark functions of CEC 2017 test suites suggest
that, despite the simplicity in architecture, the proposed AGMPSO obtains a high convergence accuracy and significant robustness
which are proven by conducted Wilcoxon’s rank sum test.

1. Introduction

Particle swarm optimization (PSO) is an evolutionary
computing technique proposed by Kennedy and Eberhart in
1995 [1], originating from the simulation of predation and
other behaviors of bird flocks and fish schools.)e solution
of each optimization problem in the algorithm is similar to a
“particle” in the search space.)e particle swarm algorithm
randomly generates an initial swarm and gives each particle
a random velocity. During the optimization process, the
particles adjust the velocity and trajectory according to the
experience of themselves and companions, so that the whole
swam contains the ability to fly to a better search area.
Involving few parameters and with easy implementation,
PSO has been widely used in many fields such as function
optimization, neural network training, fuzzy system control,
pattern recognition, and engineering application. However,
the PSO algorithm still has problems such as premature and
easily falling into local optimum when tackling complex

multimodal problems. In order to improve the solving
ability of particle swarm optimization, researchers have
proposed methods, such as an adjustment of the inertial
parameters of particle swarm algorithm, including dynamic
policies and adaptive methods, learning factors, and social
factors [2], a neighborhood searching strategy to strengthen
the exploration of the neighborhood of the current pop-
ulation [3], an adoption of the information-sharing mech-
anism to enhance population diversity and avoid premature
algorithm convergence [4], and the integrations with other
algorithms, such as the combination of particle swarm
optimization algorithm and immune algorithm, genetic
algorithm, and artificial bee colony algorithm [5].

A variety of improved methods are proposed to solve the
existing problems of PSO.)e inertia weight and velocity
parameters were dynamically adjusted through the particle
swarm’s convergence state to speed up the convergence
speed and balance the global search and local search ca-
pabilities [6]. Alatas et al. [7] proposed a strategy to learn

Hindawi
Scientific Programming
Volume 2021, Article ID 6676449, 14 pages
https://doi.org/10.1155/2021/6676449

mailto:longshengjie12@csu.edu.cn
https://orcid.org/0000-0002-3540-1053
https://orcid.org/0000-0002-6001-3167
https://orcid.org/0000-0001-8136-345X
https://orcid.org/0000-0002-1869-320X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6676449

from outstanding individuals other than the optimal par-
ticles to adapt to the solution of high-dimensional problems.
Zhao et al. [8] introduced biology principles to give the
particles the ability of multi-crossover and swarm coloni-
zation behaviors. Liang et al. [9] implemented a neigh-
borhood development strategy to improve the algorithm’s
search ability. Chen et al. [10] leveraged the optimal in-
formation for all other particles to update the velocity of the
particles in different dimensions. A particle swarm algo-
rithm with lifecycle and challenging behavior is proposed to
preserve particles’ activity during the evolution of particle
swarm, which is beneficial to the global range search [11].
Frans and Engelbrecht [12] incorporated chaos into the
particle movement process, so that the particle swarm al-
ternately moves between chaos and stability, gradually
approaching the best point. Tian [13] initialized the particle
swarm in a chaotic manner to ensure that the particle swarm
can be evenly distributed in the solution space and achieve
better global search capabilities. Du et al. [14] and Munlin
and Anantathanavit [15] proposed to use multiple methods
to realize the particles’ evolution to improve the search
capability of the algorithm. Kiran [16] improved the effi-
ciency of the algorithm evolution with a new evolutionary
mechanism. It improves the calculating speed of the algo-
rithm and particularly has an advantage in solving multi-
modal problems.

)ese methods improve the performance of PSO to
certain extent, but there are still many flaws, such as high
complexity in architecture and low convergence speed.)e
solutions, such as adaptive, perturbation, and mutation,
were incorporated to address these problems.

Aiming to attain the prominent performance of PSO, the
adaptive strategy was introduced to dynamically update the
parameters of the algorithm in prior studies, i.e., inertia
weight [17–21], velocity and position [22, 23], and ω, c1, and
c2 of each particle [5, 24]. Wang et al. [25] and Li and Cheng
et al. [26] introduced a mixed adaptive strategy to adjust the
parameters in order to balance the search and convergence
capabilities. Beyond adaptive updates the parameters, more
complex adaptive strategies are proposed.)e particles are
randomized based on the detection of the changes of gbest

value [27]. In order to adaptively maintain the social at-
tribution of swarm, the inactive particles are taken off based
on the diversity of fitness between current particle and the
best historical experience [28].

In order to promote particles to jump out of local op-
timum further improving the global searching ability,
multiple perturbation strategies were introduced. A chaotic
perturbation was incorporated into the PSO algorithm,
which improved particles’ diversity [29]. Mahmoodabadi
et al. [30] utilized Cauchy perturbation and reverse learning
to accelerate the particle swarm’s convergence and escape
the local optimal solution. Wang et al. [31] proposed
nonuniform mutation and multistage perturbation of par-
ticles, which perturbs the optimal solution at different stages
of evolution, thereby increasing group diversity and in-
creasing the probability of jumping out of local extreme
points.

For increasing vitality and diversity of particles, muta-
tion strategy has been implemented in many optimizations
of PSO. Pehlivanoglu [32] applied a mutation strategy into
global random diversity and local controlled diversity.)e
undesired particles are replaced following the mutation
strategy to accelerate the convergence speed [33]. Large-
scale mutation and small-scale mutation are conducted to
prevent the premature convergence while guaranteeing the
convergence speed [34].

By contrast with the prior studies, we proposed an
adaptive principle according to which the perturbation and
mutation are conducted to balance the convergence accu-
racy and rate. Our main contributions are summarized as
follows:

(1) An adaptive adjusting rule is incorporated following
the cosine law, in order that the particles are in-
terfered with larger amplitude to improve the par-
ticle’s global search ability in the early stage and with
a smaller amplitude to improve the convergence
accuracy.

(2) Following the adaptive strategy, the Gaussian per-
turbation is incorporated to pump the optimal
particle to jump out of the local optimum.

(3) Identically, according to the adaptive strategy, the
mutation is implemented to improve the diversity of
particles that have stagnated evolution and to bal-
ance the ratio of inheritance and mutation to ensure
the population’s searching ability.

2. Adaptive Mutation Particle Swarm
Optimization Algorithm with
Gaussian Perturbation

2.1. Basic Particle SwarmOptimization. PSO first initializes a
swarm. A particle in the swarm represents a solution of each
search space, and each particle has two parameters: position
and velocity. Assuming that the size of the current swarm
P(t) is N, the position, and the velocity of the i-th particle in
the swarm are expressed as vi(t) vi1(t), . . . , vi D(t)􏼈 􏼉 and
Xi(t) Xi1(t), . . . , Xi D(t)􏼈 􏼉, where D is the dimension of the
problem and t is an evolutionary algebra.)e particles are
evaluated by a previously designed fitness function.)e
particle i updates its velocity and position through the
swarm optimal gbest and the individual historical optimal
pbesti in the iterative process.)e equations for updating
the velocity and position of a particle are as follows:

vid(t + 1) � w · vid(t) + c1 · r1 · pbsetid − xid(t)(􏼁

+ c2 · r2 · gbset − xid(t)(􏼁,

xid(t + 1) � xid(t) + vid(t + 1),

(1)

where w is the particle’s inertia weight, which determines the
degree of influence of the particle’s previous velocity on the
current velocity, c1 is the particle self-cognition learning
coefficient, c2 is the social cognitive learning coefficient, and
r1 and r2 are random numbers between 0 and 1.

2 Scientific Programming

2.2. TaskDefinition. As the number of iterations increases in
the standard PSO algorithm, the particles will gradually
approach the optimal solution, the evolutionary rate and
swarm diversity will gradually decrease. Once the optimal
particle falls into the local optimum, it hardly escapes. To
address this problem, we incorporate the Gaussian pertur-
bation and mutation strategy where the threshold stop_num
is set to define whether the particles are in the evolutionary
stagnation state or not. Since fitness of a particle ceased to
evolve, record the continuous times as tag, namely, the times
of i-th particle as tag(i) and the times of gbest as tag(g). If
tag(g)≥ stop_num, it means that the evolution of the
population has stagnated and the Gaussian perturbation is
applied to pump the population to jump out of the local
optimum. If tag(i)≥ stop_num, it means that the evolution
of this particle has stagnated, and the mutation is conducted
to update the particle. Either perturbation or mutation is
conducted following the proposed adaptive strategy,
guaranteeing the balance of searching ability and accuracy.
)e process of AGMPSO is shown in Figure 1.

2.2.1. Adaptive Strategy. In many previous studies, the
amplitude of interference in PSO parameters remains the
same during the iterations, which is not beneficial for the
convergence in the later period. Aiming to reach the ideal
state of PSO, a larger amplitude of interference is required at
the early iterative stage to ensure a better global searching
ability, and a smaller one in the late iterative stage to
guarantee the convergence. Hence, a dynamically adaptive
strategy is necessary. In this study, we introduce the
probability Pc adaptively altering following the cosine law as
iteration increases, and the equation is as follows:

Pc(t) � c3 · 1 + cos
t · π

Max_Gen
􏼠 􏼡􏼠 􏼡, (2)

where t is current evolutionary iteration, Pc(t) (as shown in
Figure 2) is the probability of application of Gaussian
perturbation or mutation of t iteration, c3 is the adaptive
coefficient, and Max_Gen is the maximum number of
iterations.

2.2.2. Gaussian Perturbation Strategy. Gaussian perturba-
tion is adopted in the particle gbest, which is in the evo-
lutionary stagnation state, to improve the ability to jump out
of the local optimum. In order to ensure that each dimension
of gbest has a possibility of escaping the local optimum, each
dimension gbestd of gbest is updated by Gaussian pertur-
bation with probability Pc(t), which guides the perturbation
to conduct adaptively so as to ensure the better ability of
escaping from the local optimum at early stages and also the
better convergence ability during the later stages.

In addition to adapting the algorithm stages, via adaptive
variance δ, the Gaussian perturbation strategy is capable of
adapting the proposed PSO algorithm to different
functions according to whose value spaces (as shown in
equation (4).

When the evolution of particle gbest is stagnant, that is,
tag(g)≥ stop_num, the perturbation is implemented as
follows:

gbestd � gbestd · r3 · guassd, (3)

guassd � Guassion 0, δ2d􏼐 􏼑, (4)

δd �
1
5

· Xmax − Xmin(􏼁, (5)

where r3 is a random number between 0 and 1, gbestd is the
optimal particle of the d-th dimension, and δd is the adaptive
variance of the d-th dimension.

2.2.3. Mutation Strategy.)emutation strategy is utilized to
improve the particle diversity of the algorithm and balance
the ratio of the mutation and the inheritance to ensure the
convergence. Similar to the Gaussian perturbation strategy,
the mutation strategy can adapt our algorithm to different
functions as follows:

vid(t + 1) � w · vid(t) + c1 · r1 · pbsetid − xid(t)(􏼁

+ c4 · r4 · mutd,
(6)

mutd � Xmin + rand Xmax − Xmin(􏼁, (7)

where c4 is an adaptive mutation coefficient, r4 is a random
number between 0 and 1, and mutd is the degree of adaptive
mutation of d-th dimension.

When a particle falls into the evolutionary stagnation,
the mutation operator is introduced into partial dimensions
in the speed updated equation (6), which increases the di-
versity of the population getting rid of the constraints of
gbest particles, especially improves the search ability of
particles with low speed due to converging near gbest, and
promotes the particle utilization. Since the dimension d of
the particle also uses the probability Pc to mutate, the
mutated range of the algorithm’s particles is large in the
initial period, which is favorable to the global search. In the
later period, the mutated range and the inheritance ratio are
small, which is beneficial for algorithm convergence.

2.2.4. Algorithm Complexity Analysis.)e computational
costs of the standard PSO include the initialization O(mn),
fitness evaluation O(mn), and velocity and position update
O(2mn) (m and n are the swarm size and dimension, re-
spectively).)us, the time complexity of the PSO is O(mn).
Compared with the standard PSO, AMGPSO involves two
operators. However, the Gaussian perturbation operator
O(n) or the mutation operator O(mn) need to be conducted
separately only when the global best position is stagnant, or
the personal best position is stagnant within several itera-
tions.)e worst-case time complexity of AGMPSO is
O(mn), including the initialization O(mn), evaluation
O(mn+n), and update O(2mn+mn).)e conclusion can be
drawn from the above component complexity analyses;

Scientific Programming 3

AGMPSO contains the same level of time complexity as the
standard PSO algorithm.

3. Experiments and Discussions

3.1. Algorithm Aggregation Degree Analysis.)e ideal status
of PSO is that, in the early stage, the particles can explore
the solution space more dispersedly, but in the later
stage, they can better aggregate to obtain higher con-
vergence accuracy. We introduce an aggregation degree
to analyze the convergence status of the standard PSO
and the AGMPSO. When the particle fitness deviation
from the group average value is larger, and the particle
aggregation degree θ is larger, the particle diversity is
better, and the algorithm search ability is stronger.
Aggregation degree θ of the t-th generation particle is
expressed as follows:

θ �
1
N

· 􏽘
N

i�1

f x
t
i􏼐 􏼑 − f

t
avg

f
t
max − f

t
min

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (8)

where ft
avg is the average fitness value of t-th generation

particle, ft
max is the maximum fitness value of t-th gener-

ation particle, and ft
min is the minimum fitness value of t-th

generation particle.
Figure 3 shows the comparison of aggregation degree

between the standard PSO and AGMPSO while solving the
Rastrigin function. (A) and (B) are the aggregation curves of
standard PSO and AGMPSO in 3500 iterations, and (C) and
(D) are enlarged screenshots of the last 20 iterations. It can
be seen that the standard PSO holds the higher particle
aggregation even in later iterations, which indicates the high
diversity, that is, the poor convergence. It is worth noting
that the aggregation degree remains a high level, which
means the swarm did not converge to a satisfactory extent till
the end. In contrary, AGMPSO can maintain higher di-
versity throughout the early period and lower diversity in the
later period, which ensures both the global search ability and
the convergence.

3.2. Comparison with PSOVariants. In order to evaluate the
performance of the proposed algorithm, the comparison
experiments of AGMPSO with PSO, TSLPSO, HFPSO, and
MPEPSO are conducted in this section, and parameters of
each algorithm are listed in Table 1. All experiments were
performed under Windows 10 system, eight-core processor
(Intel (R) Core (TM) i7-10700K CPU @ 3.80GHz), 16G
memory using MATLAB R2018a.

3.2.1. Benchmark Functions. CEC 2017 [38] test suites are
introduced in experiments, including the 29 benchmark
functions divided into four categories: unimodal functions,
simple multimodal functions, hybrid functions, and

Start End

Initialize the position and
velocity

Set the current particle as
pbest, and the particle with
the globaloptimum as gbest

Termination?

Gaussian perturbation
to gbest by equation (3)

Yes
rand ≤ Pc (t)

rand ≤ Pc (t)

No

No

No

Yes

Yes

Yes

No

tag (g) < stop_num

tag (i) < stop_num

Update the position by
equation (1)

Update the position
by equation (1)

Update the velocity
by equation (6)

Update the velocity
by equation (1)

Figure 1: Flowchart of AGMPSO.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Va
lu

e o
f p

ro
ba

bi
lit

y
Pc

0 500 1000 1500 2000 2500 3000
Number of iterations

Figure 2:)e curve of probability Pc during the whole iterations.

4 Scientific Programming

composition functions. Based on the description of the
definitions of CEC 2017 test suits, F2 has been excluded
because of its unstable behavior especially for higher
dimensions.

Two series of experiments are performed, the dimension
of each test function of each series is 10 and 30, respectively,
the population size is 30, and each algorithm runs each
benchmark function for 30 runs independently. According
to the definitions of CEC 2017 test suits, the stop condition
of each run is that the maximum number of function
evaluations (MaxFES) reaches 10000 ∗ D, that is,
MaxFES� 100,000 for 10D, MaxFES� 300,000 for 30D.
Table 2 shows the search range and the global optimum of
benchmark functions.

3.2.2. Comparison of Simulation Results for Benchmark
Functions.)e comparison results of mean values (mean),
standard deviation (std), and Wilcoxon rank sum test (h)
produced by all compared PSO variants on 10-dimensional
tested functions are represented in Table 3 and 30-dimen-
sional in Table 4, where the optimal results are marked in
bold.)e comparison results of computation time of each
run are in Figures 4 and 5.

As shown in Table 3, AGMPSO performs well for
unimodal functions, especially getting optimal mean fitness
value on F3, despite the same result of TSLPSO on F3. In
solving the multimodal functions from F4 to F10, AGMPSO
has superior advantage, achieving better results on 5 out of 7
functions. However, AGMPSO does not obtain advantage
solving the hybrid functions (F11–F20), and HFPSO gets the
same achievement as proposed algorithm: 4 out of 10. It is
still worth noting that the standard deviations of AGMPSO
are smaller than HFPSO, which indicates more stability. For
composition functions (F21–F30), AGMPSO algorithm
perfectly reflects the better ability to search global optimum
on 6 test functions, compared with the other competitors. In
general, AGMPSO is top ranked on 14 out of all functions.
Although on F3, F28, and F29, the proposed algorithm does
not contain the statistically significant advantage, its mean

0.35

0.32

0.29

0.26

0.23

0.2

0.17

0.14

0.11

0.08

0.05

A
gg

re
ga

tio
n

de
gr

ee

0 500 1000 1500 2000 2500 3000 3500
Iterations

(a)

A
gg

re
ga

tio
n

de
gr

ee

0 500 1000 1500 2000 2500 3000 3500
Iterations

0.35

0.32

0.29

0.26

0.23

0.2

0.17

0.14

0.11

0.08

0.05

(b)

A
gg

re
ga

tio
n

de
gr

ee

Iterations

0.35

0.32

0.29

0.26

0.23

0.2

0.17

0.14

0.11

0.08

0.05
3480 3485 3490 3495 3500

(c)

A
gg

re
ga

tio
n

de
gr

ee

Iterations

0.35

0.32

0.29

0.26

0.23

0.2

0.17

0.14

0.11

0.08

0.05
3480 3485 3490 3495 3500

(d)

Figure 3: Aggregation degree of standard PSO and AGMPSO in solving Rastrigin function.

Table 1:)e parameters of all comparison competitors.

Algorithm Parameter settings
AGMPSO w � 0.729, c1 � c2 � c4 �1.49445, c3 � 0.2
TSLPSO [35] w � 0.9∼0.4, c1 � c2 �1.5, c3 � 0.5∼2.5

HFPSO [36] wi � 0.9, wf � 0.5, c1 � c2 �1.49445, α� 0.2, B0 � 2,
c � 1

MPEPSO
[37] w � 0.9∼0.4, c1 � c2 � 0.5∼2.5, LP� 10, λh � 0.1

PSO [1] w � 0.9∼0.4, c1 � c2 � 2.0

Scientific Programming 5

Ta
bl

e
2:

D
es
cr
ip
tio

n
of

be
nc
hm

ar
k
fu
nc
tio

ns
of

C
EC

20
17

te
st

su
its
.

N
o.

Fu
nc
tio

n
na
m
e

Se
ar
ch

ra
ng

e
G
lo
ba
lo

pt
im

um
Ty

pe
F1

Sh
ift
ed

an
d
ro
ta
te
d
be
nt

ci
ga
r
fu
nc
tio

n
(−
10
0,

10
0)

10
0

U
ni
m
od

al
F3

Sh
ift
ed

an
d
ro
ta
te
d
Za

kh
ar
ov

fu
nc
tio

n
(−
10
0,

10
0)

30
0

U
ni
m
od

al
F4

Sh
ift
ed

an
d
ro
ta
te
d
Ro

se
nb

ro
ck
’s
fu
nc
tio

n
(−
10
0,

10
0)

40
0

M
ul
tim

od
al

F5
Sh

ift
ed

an
d
ro
ta
te
d
Ra

st
ri
gi
n’
s
fu
nc
tio

n
(−
10
0,

10
0)

50
0

M
ul
tim

od
al

F6
Sh

ift
ed

an
d
ro
ta
te
d
ex
pa
nd

ed
Sc
aff

er
’s
F6

fu
nc
tio

n
(−
10
0,

10
0)

60
0

M
ul
tim

od
al

F7
Sh

ift
ed

an
d
ro
ta
te
d
Lu

na
ce
k
Bi
_R

as
tr
ig
in

fu
nc
tio

n
(−
10
0,

10
0)

70
0

M
ul
tim

od
al

F8
Sh

ift
ed

an
d
ro
ta
te
d
no

nc
on

tin
uo

us
Ra

st
ri
gi
n’
s
fu
nc
tio

n
(−
10
0,

10
0)

80
0

M
ul
tim

od
al

F9
Sh

ift
ed

an
d
ro
ta
te
d
Le
vy

fu
nc
tio

n
(−
10
0,

10
0)

90
0

M
ul
tim

od
al

F1
0

Sh
ift
ed

an
d
ro
ta
te
d
Sc
hw

ef
el
’s
fu
nc
tio

n
(−
10
0,

10
0)

10
00

M
ul
tim

od
al

F1
1

H
yb
ri
d
fu
nc
tio

n
1
(N

�
3)

(−
10
0,

10
0)

11
00

H
yb
ri
d

F1
2

H
yb
ri
d
fu
nc
tio

n
2
(N

�
3)

(−
10
0,

10
0)

12
00

H
yb
ri
d

F1
3

H
yb
ri
d
fu
nc
tio

n
3
(N

�
3)

(−
10
0,

10
0)

13
00

H
yb
ri
d

F1
4

H
yb
ri
d
fu
nc
tio

n
4
(N

�
4)

(−
10
0,

10
0)

14
00

H
yb
ri
d

F1
5

H
yb
ri
d
fu
nc
tio

n
5
(N

�
4)

(−
10
0,

10
0)

15
00

H
yb
ri
d

F1
6

H
yb
ri
d
fu
nc
tio

n
6
(N

�
4)

(−
10
0,

10
0)

16
00

H
yb
ri
d

F1
7

H
yb
ri
d
fu
nc
tio

n
6
(N

�
5)

(−
10
0,

10
0)

17
00

H
yb
ri
d

F1
8

H
yb
ri
d
fu
nc
tio

n
6
(N

�
5)

(−
10
0,

10
0)

18
00

H
yb
ri
d

F1
9

H
yb
ri
d
fu
nc
tio

n
6
(N

�
5)

(−
10
0,

10
0)

19
00

H
yb
ri
d

F2
0

H
yb
ri
d
fu
nc
tio

n
6
(N

�
6)

(−
10
0,

10
0)

20
00

H
yb
ri
d

F2
1

C
om

po
sit
io
n
fu
nc
tio

n
1
(N

�
3)

(−
10
0,

10
0)

21
00

C
om

po
sit
io
n

F2
2

C
om

po
sit
io
n
fu
nc
tio

n
2
(N

�
3)

(−
10
0,

10
0)

22
00

C
om

po
sit
io
n

F2
3

C
om

po
sit
io
n
fu
nc
tio

n
3
(N

�
4)

(−
10
0,

10
0)

23
00

C
om

po
sit
io
n

F2
4

C
om

po
sit
io
n
fu
nc
tio

n
4
(N

�
4)

(−
10
0,

10
0)

24
00

C
om

po
sit
io
n

F2
5

C
om

po
sit
io
n
fu
nc
tio

n
5
(N

�
5)

(−
10
0,

10
0)

25
00

C
om

po
sit
io
n

F2
6

C
om

po
sit
io
n
fu
nc
tio

n
6
(N

�
5)

(−
10
0,

10
0)

26
00

C
om

po
sit
io
n

F2
7

C
om

po
sit
io
n
fu
nc
tio

n
7
(N

�
6)

(−
10
0,

10
0)

27
00

C
om

po
sit
io
n

F2
8

C
om

po
sit
io
n
fu
nc
tio

n
8
(N

�
6)

(−
10
0,

10
0)

28
00

C
om

po
sit
io
n

F2
9

C
om

po
sit
io
n
fu
nc
tio

n
9
(N

�
3)

(−
10
0,

10
0)

29
00

C
om

po
sit
io
n

F3
0

C
om

po
sit
io
n
fu
nc
tio

n
10

(N
�
3)

(−
10
0,

10
0)

30
00

C
om

po
sit
io
n

6 Scientific Programming

Ta
bl

e
3:

C
om

pa
ri
so
n
pe
rf
or
m
an
ce

be
tw
ee
n
A
G
M
PS

O
an
d
PS

O
,T

SL
PS

O
,H

FP
SO

an
d
M
PE

PS
O

on
C
EC

20
17

be
nc
hm

ar
k
fu
nc
tio

ns
(1
0-
D
).

Fn
A
G
M
PS

O
TS

LP
SO

H
FP

SO
M
PE

PS
O

PS
O

M
ea
n

St
d

M
ea
n

St
d

h
M
ea
n

St
d

h
M
ea
n

St
d

h
M
ea
n

St
d

h
F1

1.
02

E
+
03

1.
94
E
+
03

2.
53
E
+
03

2.
06
E
+
03

+
6.
03
E
+
08

2.
83
E
+
08

+
3.
82
E
+
10

2.
79
E
+
08

+
4.
86
E
+
08

1.
76
E
+
08

+
F3

3.
00

E
+
02

5.
46
E
+
01

3.
00

E
+
02

1.
16
E
+
01

−
3.
78
E
+
03

1.
62
E
+
03

+
3.
29
E
+
03

3.
78
E
+
03

+
8.
02
E
+
03

5.
18
E
+
03

+
F4

4.
06

E
+
02

1.
37
E
+
01

4.
83
E
+
02

5.
09
E
+
01

−
4.
47
E
+
02

3.
70
E
+
01

+
5.
44
E
+
03

4.
46
E
+
01

+
4.
16
E
+
02

1.
93
E
+
01

+
F5

5.
44

E
+
02

1.
83
E
+
01

5.
94
E
+
02

3.
36
E
+
00

+
5.
83
E
+
02

1.
50
E
+
01

+
6.
91
E
+
02

6.
36
E
+
00

+
5.
79
E
+
02

2.
46
E
+
01

+
F6

6.
19
E
+
02

9.
40
E
+
00

6.
56
E
+
02

8.
10
E
+
00

+
6.
11

E
+
02

8.
77
E
+
00

−
6.
76
E
+
02

7.
65
E
+
00

+
6.
40
E
+
02

1.
32
E
+
01

+
F7

7.
36

E
+
02

1.
13
E
+
01

8.
15
E
+
02

3.
21
E
+
00

+
7.
40
E
+
02

7.
74
E
+
00

+
8.
29
E
+
02

4.
04
E
+
00

+
7.
77
E
+
02

2.
14
E
+
01

+
F8

8.
24

E
+
02

9.
43
E
+
00

1.
00
E
+
03

2.
54
E
+
00

+
8.
25
E
+
02

4.
87
E
+
00

+
9.
05
E
+
02

4.
87
E
+
00

+
8.
60
E
+
02

9.
96
E
+
00

+
F9

9.
56

E
+
02

1.
07
E
+
02

9.
98
E
+
02

3.
19
E
+
02

+
1.
12
E
+
03

1.
13
E
+
02

+
1.
73
E
+
03

2.
95
E
+
01

+
1.
33
E
+
03

3.
41
E
+
02

+
F1

0
2.
09
E
+
03

3.
46
E
+
02

1.
64

E
+
03

1.
10
E
+
02

−
2.
11
E
+
03

2.
35
E
+
02

−
4.
56
E
+
03

7.
17
E
+
02

2.
85
E
+
03

2.
15
E
+
02

+
F1

1
1.
13
E
+
03

1.
85
E
+
01

1.
30
E
+
03

1.
97
E
+
00

−
1.
11

E
+
03

9.
71
E
+
00

−
2.
51
E
+
03

1.
05
E
+
02

+
1.
57
E
+
03

9.
37
E
+
02

+
F1

2
5.
33

E
+
03

9.
64
E
+
03

1.
41
E
+
04

1.
25
E
+
04

+
8.
13
E
+
05

5.
31
E
+
05

+
4.
75
E
+
09

9.
05
E
+
08

+
7.
22
E
+
07

2.
03
E
+
08

+
F1

3
1.
64

E
+
03

2.
42
E
+
01

1.
85
E
+
03

1.
51
E
+
02

+
6.
17
E
+
03

2.
34
E
+
03

+
5.
26
E
+
08

9.
70
E
+
08

+
3.
11
E
+
06

4.
30
E
+
06

+
F1

4
1.
46

E
+
03

2.
75
E
+
00

1.
60
E
+
03

4.
40
E
+
00

+
4.
01
E
+
03

1.
57
E
+
03

+
1.
84
E
+
04

1.
51
E
+
04

+
6.
01
E
+
03

4.
10
E
+
03

+
F1

5
1.
58

E
+
03

6.
96
E
+
01

1.
59
E
+
03

1.
86
E
+
00

−
1.
71
E
+
03

1.
94
E
+
02

+
8.
53
E
+
03

3.
32
E
+
03

+
1.
71
E
+
04

6.
12
E
+
03

+
F1

6
1.
86
E
+
03

1.
05
E
+
02

1.
60

E
+
03

2.
19
E
+
01

−
1.
96
E
+
03

2.
85
E
+
01

+
3.
10
E
+
03

1.
09
E
+
02

+
2.
12
E
+
03

1.
87
E
+
02

+
F1

7
1.
77
E
+
03

3.
23
E
+
01

1.
89
E
+
03

4.
12
E
+
00

+
1.
72

E
+
03

1.
12
E
+
01

−
2.
79
E
+
03

2.
59
E
+
02

+
1.
83
E
+
03

4.
76
E
+
01

+
F1

8
4.
96
E
+
03

8.
96
E
+
03

3.
59
E
+
04

6.
25
E
+
02

+
1.
87

E
+
03

6.
90
E
+
01

−
1.
19
E
+
10

3.
29
E
+
09

+
1.
85
E
+
07

2.
77
E
+
07

+
F1

9
4.
00
E
+
03

7.
86
E
+
03

5.
90
E
+
03

7.
03
E
+
01

+
1.
94

E
+
03

6.
64
E
+
01

−
1.
11
E
+
10

5.
21
E
+
08

+
2.
04
E
+
05

5.
53
E
+
05

F2
0

2.
16
E
+
03

3.
22
E
+
01

2.
00

E
+
03

3.
77
E
+
01

−
2.
10
E
+
03

5.
33
E
+
01

−
2.
56
E
+
03

1.
02
E
+
02

+
2.
23
E
+
03

8.
20
E
+
01

+
F2
1

2.
30
E
+
03

5.
84
E
+
01

2.
70
E
+
03

3.
91
E
+
01

+
2.
24

E
+
03

5.
69
E
+
01

−
2.
76
E
+
03

6.
96
E
+
00

+
2.
36
E
+
03

5.
40
E
+
01

+
F2

2
2.
33
E
+
03

1.
45
E
+
01

2.
64
E
+
03

2.
98
E
+
01

+
2.
40

E
+
03

5.
86
E
+
01

−
4.
91
E
+
03

2.
81
E
+
01

+
2.
37
E
+
03

2.
10
E
+
02

+
F2

3
2.
67

E
+
03

3.
40
E
+
01

2.
70
E
+
03

3.
48
E
+
00

−
2.
94
E
+
03

1.
65
E
+
02

+
3.
92
E
+
03

8.
02
E
+
01

+
2.
73
E
+
03

8.
73
E
+
01

+
F2

4
2.
70
E
+
03

1.
39
E
+
02

2.
74
E
+
03

8.
46
E
+
01

−
2.
64

E
+
03

3.
51
E
+
01

−
3.
36
E
+
03

5.
65
E
+
00

+
2.
78
E
+
03

1.
25
E
+
02

+
F2

5
2.
92

E
+
03

2.
17
E
+
00

2.
98
E
+
03

5.
37
E
+
01

−
2.
96
E
+
03

1.
13
E
+
01

+
4.
67
E
+
03

1.
90
E
+
01

+
2.
99
E
+
03

1.
47
E
+
02

+
F2

6
3.
13

E
+
03

4.
72
E
+
02

3.
80
E
+
03

1.
43
E
+
02

+
3.
56
E
+
03

3.
12
E
+
02

+
5.
51
E
+
03

5.
00
E
+
01

+
3.
53
E
+
03

6.
80
E
+
02

+
F2

7
3.
13

E
+
03

3.
73
E
+
01

3.
18
E
+
03

1.
09
E
+
00

−
3.
38
E
+
03

1.
34
E
+
02

+
4.
66
E
+
03

9.
29
E
+
01

+
3.
19
E
+
03

7.
89
E
+
01

+
F2

8
3.
32

E
+
03

9.
61
E
+
00

3.
78
E
+
03

6.
29
E
+
01

+
3.
49
E
+
03

2.
48
E
+
02

+
4.
40
E
+
03

2.
51
E
+
01

+
3.
32

E
+
03

1.
20
E
+
02

−

F2
9

3.
24

E
+
03

6.
01
E
+
00

3.
34
E
+
03

1.
03
E
+
01

−
3.
24

E
+
03

2.
95
E
+
01

+
3.
27
E
+
03

3.
86
E
+
01

+
3.
46
E
+
03

1.
29
E
+
02

+
F3

0
3.
45
E
+
05

7.
06
E
+
05

7.
61
E
+
05

3.
15
E
+
03

+
1.
23

E
+
05

5.
21
E
+
04

+
4.
32
E
+
08

1.
00
E
+
07

+
1.
23
E
+
07

1.
65
E
+
07

+
Sc
or
es

14
4

10
0

1
Ra

nk
1

3
2

5
4

Scientific Programming 7

Ta
bl

e
4:

C
om

pa
ri
so
n
pe
rf
or
m
an
ce

be
tw
ee
n
A
G
M
PS

O
an
d
PS

O
,T

SL
PS

O
,H

FP
SO

an
d
M
PE

PS
O

on
C
EC

20
17

be
nc
hm

ar
k
fu
nc
tio

ns
(3
0-
D
).

Fn
A
G
M
PS

O
TS

LP
SO

H
FP

SO
M
PE

PS
O

PS
O

M
ea
n

St
d

M
ea
n

St
d

h
M
ea
n

St
d

h
M
ea
n

St
d

h
M
ea
n

St
d

h
F1

1.
03

E
+
03

1.
64
E
+
03

2.
41
E
+
03

1.
86
E
+
03

+
6.
27
E
+
08

2.
33
E
+
08

+
2.
62
E
+
10

2.
49
E
+
08

+
5.
20
E
+
08

1.
48
E
+
08

+
F3

3.
00

E
+
02

4.
81
E
+
04

3.
00

E
+
02

9.
91
E
+
03

−
4.
12
E
+
03

1.
44
E
+
03

+
3.
33
E
+
03

3.
41
E
+
03

+
7.
71
E
+
03

4.
25
E
+
03

+
F4

4.
39

E
+
02

1.
15
E
+
01

4.
79
E
+
02

4.
53
E
+
01

−
4.
57
E
+
02

2.
97
E
+
01

+
5.
67
E
+
03

3.
57
E
+
01

+
4.
41
E
+
02

1.
59
e+

01
+

F5
5.
66

E
+
02

1.
49
E
+
01

6.
00
E
+
02

2.
76
E
+
00

+
6.
01
E
+
02

1.
36
E
+
01

+
7.
61
E
+
02

5.
47
E
+
00

+
6.
08
E
+
02

2.
14
e+

01
+

F6
6.
50
E
+
02

7.
61
E
+
00

6.
32
E
+
02

9.
91
E
+
00

6.
29
E
+
02

7.
63
E
+
00

−
6.
16

E
+
02

6.
59
E
+
00

−
6.
60
E
+
02

1.
09
e+

01
+

F7
7.
46

E
+
02

9.
29
E
+
00

7.
67
E
+
02

2.
73
E
+
00

+
8.
15
E
+
02

6.
89
E
+
00

+
8.
87
E
+
02

3.
52
E
+
00

+
7.
08
E
+
02

1.
80
e+

01
+

F8
8.
03

E
+
02

1.
55
E
+
00

1.
06
E
+
03

2.
24
E
+
00

+
8.
66
E
+
02

3.
58
E
+
00

+
8.
24
E
+
02

4.
09
E
+
00

+
8.
91
E
+
02

8.
75
e+

00
+

F9
1.
04

E
+
03

9.
31
E
+
01

N
/A

N
/A

1.
06
E
+
03

1.
02
E
+
02

+
1.
86
E
+
03

2.
63
E
+
01

+
1.
42
E
+
03

2.
97
e+

02
+

F1
0

2.
14
E
+
03

2.
84
E
+
02

1.
76

E
+
03

9.
87
E
+
01

−
2.
05
E
+
03

2.
12
E
+
02

+
4.
89
E
+
03

6.
32
E
+
02

+
2.
97
E
+
03

1.
92
e+

02
+

F1
1

1.
11

E
+
03

1.
47
E
+
00

1.
41
E
+
03

1.
62
E
+
00

−
1.
12
E
+
03

8.
45
E
+
00

−
2.
47
E
+
03

9.
17
E
+
02

+
1.
51
E
+
03

7.
59
e+

02
+

F1
2

5.
19

E
+
03

7.
91
E
+
03

1.
30
E
+
04

1.
00
E
+
04

+
7.
65
E
+
05

4.
30
E
+
05

+
4.
71
E
+
09

7.
51
E
+
08

+
7.
80
E
+
07

1.
71
e+

08
+

F1
3

1.
56

E
+
03

2.
09
E
+
02

1.
67
E
+
03

1.
26
E
+
02

+
6.
17
E
+
03

2.
04
E
+
03

+
5.
59
E
+
08

8.
64
E
+
08

+
2.
81
E
+
06

3.
58
e+

06
+

F1
4

1.
43

E
+
03

2.
31
E
+
01

1.
57
E
+
03

3.
96
E
+
00

+
4.
37
E
+
03

1.
42
E
+
03

+
1.
75
E
+
04

1.
31
E
+
04

+
5.
82
E
+
03

3.
61
e+

03
+

F1
5

1.
54

E
+
03

5.
92
E
+
01

1.
58
E
+
03

1.
56
E
+
00

−
1.
60
E
+
03

1.
71
E
+
02

+
9.
22
E
+
03

2.
70
E
+
03

+
1.
64
E
+
04

5.
21
e+

03
+

F1
6

1.
63

E
+
03

1.
16
E
+
01

1.
67
E
+
03

1.
82
E
+
01

−
1.
97
E
+
03

2.
37
E
+
01

+
3.
11
E
+
03

9.
40
E
+
01

+
2.
06
E
+
03

1.
52
e+

02
+

F1
7

1.
73
E
+
03

2.
72
E
+
00

1.
71
E
+
03

3.
30
E
+
00

+
1.
70

E
+
03

9.
58
E
+
00

−
2.
80
E
+
03

2.
26
E
+
02

+
1.
91
E
+
03

4.
14
e+

01
+

F1
8

4.
47
E
+
03

7.
71
E
+
03

3.
33
E
+
04

5.
07
E
+
02

+
1.
85

E
+
03

5.
66
E
+
01

−
1.
12
E
+
10

2.
96
E
+
09

+
1.
78
E
+
07

2.
49
e+

07
+

F1
9

4.
28
E
+
03

6.
69
E
+
03

6.
37
E
+
03

5.
63
E
+
01

+
1.
90

E
+
03

5.
35
E
+
01

−
1.
15
E
+
10

4.
38
E
+
08

+
1.
96
E
+
05

4.
59
e+

05
+

F2
0

2.
00

E
+
03

2.
48
E
+
01

2.
01
E
+
03

3.
32
E
+
01

+
2.
09
E
+
03

4.
53
E
+
01

−
2.
49
E
+
03

9.
05
E
+
01

+
2.
42
E
+
03

7.
22
e+

01
+

F2
1

2.
26
E
+
03

4.
67
E
+
01

2.
79
E
+
03

3.
53
E
+
01

+
2.
33

E
+
03

4.
67
E
+
01

−
3.
01
E
+
03

5.
92
E
+
00

+
2.
29
E
+
03

4.
38
e+

01
+

F2
2

2.
24

E
+
03

1.
31
E
+
02

2.
73
E
+
03

2.
48
E
+
01

+
2.
29
E
+
03

4.
99
E
+
01

−
4.
42
E
+
03

2.
47
E
+
01

+
2.
85
E
+
03

2.
10
e+

02
+

F2
3

2.
58

E
+
03

2.
76
E
+
00

2.
61
E
+
03

3.
14
E
+
00

−
2.
89
E
+
03

1.
46
E
+
02

+
4.
08
E
+
03

6.
82
E
+
01

+
2.
67
E
+
03

7.
16
e+

01
+

F2
4

2.
63
E
+
03

1.
20
E
+
02

3.
70
E
+
03

7.
53
E
+
01

−
2.
60
E
+
03

3.
02
E
+
01

+
2.
59

E
+
03

4.
70
E
+
00

+
2.
73
E
+
03

1.
03
e+

02
+

F2
5

2.
85

E
+
03

1.
94
E
+
01

2.
87
E
+
03

4.
35
E
+
01

−
2.
91
E
+
03

9.
73
E
+
00

+
4.
40
E
+
03

1.
62
E
+
01

+
2.
95
E
+
03

1.
21
e+

02
+

F2
6

3.
10

E
+
03

3.
97
E
+
01

3.
72
E
+
03

1.
22
E
+
02

+
3.
35
E
+
03

2.
53
E
+
02

+
5.
57
E
+
03

4.
20
E
+
01

+
3.
32
E
+
03

5.
71
e+

02
+

F2
7

3.
09

E
+
03

3.
33
E
+
01

3.
13
E
+
03

9.
10
E
+
01

−
3.
29
E
+
03

1.
07
E
+
02

+
4.
48
E
+
03

8.
27
E
+
01

+
3.
13
E
+
03

6.
87
e+

01
+

F2
8

3.
26
E
+
03

8.
27
E
+
01

3.
70
E
+
03

5.
54
E
+
01

+
3.
46
E
+
03

2.
06
E
+
02

+
4.
28
E
+
03

2.
16
E
+
01

+
3.
25

E
+
03

1.
02
e+

02
−

F2
9

2.
96

E
+
03

4.
99
E
+
01

3.
25
E
+
03

8.
25
E
+
00

+
3.
08
E
+
03

2.
54
E
+
01

+
3.
60
E
+
03

3.
09
E
+
01

+
3.
25
E
+
03

1.
10
e+

02
+

F3
0

3.
25
E
+
05

5.
65
E
+
05

7.
00
E
+
05

2.
84
E
+
03

+
8.
96

E
+
04

4.
53
E
+
04

+
4.
21
E
+
08

8.
41
E
+
06

+
1.
15
E
+
07

1.
32
e+

07
+

Sc
or
es

19
2

5
2

1
Ra

nk
1

4
2

3
5

8 Scientific Programming

1000

900

800

700

600

500

400

300

200

100

0

M
ea

n
co

m
pu

ta
tio

n
tim

e (
s)

F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
Benchmark function

PSO
TSLPSO
HFPSO

MPEPSO
AGMPSO

(a)
900

800

700

600

500

400

300

200

100

0

M
ea

n
co

m
pu

ta
tio

n
tim

e (
s)

F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F27 F28 F29F26 F30
Benchmark function

PSO
TSLPSO
HFPSO

MPEPSO
AGMPSO

(b)

Figure 4:)e average computation time of comparison algorithms on benchmark functions (10-D).

M
ea

n
co

m
pu

ta
tio

n
tim

e (
s)

F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
Benchmark function

PSO
TSLPSO
HFPSO

MPEPSO
AGMPSO

6000

5000

4000

3000

2000

1000

0

(a)

Figure 5: Continued.

Scientific Programming 9

fitness values equal those of winning algorithms, which
makes AGMPSO take the second rank on the above-
mentioned function.

For 30-dimensional experiments in Table 4, since the
iterations greatly increase, the results of all algorithms have
improved in varying degrees. AGMPSO achieves optimal
mean fitness value on F3 and F20. It gets the same per-
formance as in 10-dimensional experiments in unimodal
and multimodal functions, gets 7 out of 10 best results in
hybrid functions, and 6 out of 10 best results in composition
functions. In general, AGMPSO outperforms peers for the
19 benchmark functions.

In short, AGMPSO is top ranked in both 10-dimensional
and 30-dimensional experiments.

)e standard deviations of AGMPSO on different
benchmark functions are generally smaller than those of
comparison PSO variants, which indicates better robustness
of our algorithm.

Aiming to analyze the computational efficiency of
compared peers, the average computation time for each
algorithm to run all benchmark functions is depicted in
Figures 4 and 5. It can be concluded that AGMPSO con-
sumes lower computational overhead than its peers and the
advantage grows obvious when iteration increases as shown
in Figure 5. It is worth noting that, despite shared the same
time complexity of standard PSO, the time consumption of
AGMPSO is significantly lower indicating higher compu-
tational efficiency.

In summary, the outstanding results of AGMPSO in
terms of average computational time and fitness values
demonstrate that our proposed algorithm obtains higher
search accuracy and convergence rate than its peers,
meanwhile, with the significant robust.

3.2.3. Wilcoxon’s Rank Sum Test Results.)eWilcoxon rank
sum test at a significance level of α� 0.05 is performed on the
ranking between AGMPSO and other PSO variants to

analyze their statistical significance. Tables 3 and 4 list the
results of Wilcoxon rank sum test on fitness values of all 29
functions. In both tables, h value (+/−/∼) indicates that the
AGMPSO performs significantly better, significantly worse,
or not statistically significant than its competitor.

It can be observed from the results that AGMPSO is
significantly better than compared PSO variants in most of
test functions. AGMPSO gets the same mean values with
TSLPSO, standard PSO, and HFPSO on 10-dimensional F3,
F28, and F29, while with TSLPSO on 30-dimensional F3.
However, from the rank sum test results, AGMPSO per-
forms significantly worse than the peer on above functions.
Although the proposed algorithm does not gain the superior
rank on these functions, it still takes the second rank inmean
fitness value on each function, and the difference is slight.

3.2.4. Convergence Progresses. In order to observe the
convergence speed of all the peer algorithms, the conver-
gence processes in random runs of the comparison algo-
rithms on benchmark functions of 10 dimensions are
depicted in Figures 6 and 7.

In Figure 6, AGMPSO does not show the characteristics
of rapid convergence on F1 and F3 in the initial period
because of the strong particle diversity yielded by proposed
mutation strategy; meanwhile, the high solution accuracy is
achieved by our algorithm at the later convergence stage.

From F4 to F10, we can observe that the other com-
parison algorithms fall into the local minima to different
extent, while AGMPSO attains the favorable performances
on all multimodal functions. However, it is noteworthy that
the effect of proposed adaptive strategies is not obvious on
F4, F6, and F9, which may cause the low diversity in the early
period and fail to find the global optima.)is is demon-
strated by the result of F6 in Table 3.

From the performances for F11 to F20, the similar
problems of rapid convergence in the initial period can be
observed on F11, F14, and F15. Furthermore, AGMPSO fails

M
ea

n
co

m
pu

ta
tio

n
tim

e (
s)

F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F27 F28 F29F26 F30
Benchmark function

PSO
TSLPSO
HFPSO

MPEPSO
AGMPSO

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

(b)

Figure 5:)e average computation time of comparison algorithms on benchmark functions (30-D).

10 Scientific Programming

25.0
22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0

Fi
tn

es
s v

al
ue

/lo
g

e
Fi

tn
es

s v
al

ue
/lo

g
e

Fi
tn

es
s v

al
ue

/lo
g

e

Fi
tn

es
s v

al
ue

/lo
g

e
Fi

tn
es

s v
al

ue
/lo

g
e

Fi
tn

es
s v

al
ue

/lo
g

e

Fi
tn

es
s v

al
ue

/lo
g

e
Fi

tn
es

s v
al

ue
/lo

g
e

Fi
tn

es
s v

al
ue

/lo
g

e

Fi
tn

es
s v

al
ue

/lo
g

e
Fi

tn
es

s v
al

ue
/lo

g
e

Fi
tn

es
s v

al
ue

/lo
g

e
Fi

tn
es

s v
al

ue
/lo

g
e

Fi
tn

es
s v

al
ue

/lo
g

e

Fi
tn

es
s v

al
ue

/lo
g

e

11

10

9

8

7

6

8.5

8.0

7.5

7.0

6.5

6.0
0 500 1000 1500 2000 2500 3000

Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

6.55
6.50
6.45
6.40
6.35
6.30
6.25

6.600
6.575
6.550
6.525
6.500
6.475
6.450
6.425
6.400

6.95
6.90
6.85
6.80
6.75
6.70
6.65
6.60

6.850

6.825

6.800

6.775

6.750

6.725

6.700

8.4
8.2
8.0
7.8
7.6
7.4
7.2
7.0
6.8

8.6
8.4
8.2
8.0
7.8
7.6
7.4
7.2

18

16

14

12

10

8

22
20
18
16
14
12
10

22
20
18
16
14
12
10

8

22
20
18
16
14
12
10

8

20

18

16

14

12

10

8

8.1
8.0
7.9
7.8
7.7
7.6
7.5
7.4

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

0 500 1000 1500 2000 2500 3000
Number of iterations

AGMPSO
TSLPSO
HFPSO

MPEPSO
PSO

F1 F3 F4

F5 F6 F7

F8 F9 F10

F11 F12 F13

F14 F15 F16

Figure 6: Convergence curves of comparison algorithms on F1–F16.

Scientific Programming 11

to achieve the satisfactory results on F18. Despite with the 4
outstanding achievements and the improvement in 30-di-
mensional experiment results, due to the rapid convergence
rate at the early stage, the exploration capability of proposed
algorithm in solving hybrid functions should be promoted.

)e results presented in F21 to F30 depict that exploi-
tation capability of AGMPSO is higher than most of the
peers.)e gradual convergence process on F21, F24, F26,
F28, and F30 can be seen, which reflects the balance of
exploration and exploitation of our algorithm.

)e conscious summary can be drawn that AGMPSO
performs well on most of functions. Meanwhile, the proposed
algorithm does not yield satisfactory performances on hybrid
functions, so do the other PSO variants, which suggests much
room for improvement in solving these functions. It turns out
from the 30-dimensional comparison results that, despite the
low efficiency, increasing the number of iterations could be an
improvement insight worth discussing.

By contrast with the other competitors, a relatively slow
and gradual convergence curve presents in solving many

8.0

7.9

7.8

7.7

7.6

7.5

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

F17

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

24
22
20
18
16
14
12
10

8

F18

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

22
20
18
16
14
12
10

8

F19

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.0

7.9

7.8

7.7

7.6

F20

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

7.90

7.85

7.80

7.75

7.70

F21

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.5
8.4
8.3
8.2
8.1
8.0
7.9
7.8

F22

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.3

8.2

8.1

8.0

7.9

F23

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.10

8.05

8.00

7.95

7.90

7.85

F24

Fi
tn

es
s v

al
ue

/lo
g

e
0 500 1000 1500 2000 2500 3000

Number of iterations

8.4

8.3

8.2

8.1

8.0

F25

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.6
8.5
8.4
8.3
8.2
8.1
8.0

F26

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.5

8.4

8.3

8.2

8.1

F27

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

10.5

10.0

9.5

9.0

8.5

8.0

F29

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

20

18

16

14

12

10

8

F30

Fi
tn

es
s v

al
ue

/lo
g

e

0 500 1000 1500 2000 2500 3000
Number of iterations

8.40
8.35
8.30
8.25
8.20
8.15
8.10
8.05

F28

Figure 7: Convergence curves of comparison algorithms on F17–F30.

12 Scientific Programming

functions, which exactly portrays the algorithm’s intent of
finding out more promising solutions.

4. Conclusion

Adaptive particle swarm optimization with Gaussian per-
turbation and mutation is proposed to address the existing
drawback of standard PSO. To prevent trapping into local
optimum, Gaussian perturbation is implemented to global
optima, further increasing the exploitation capability. For
the nonoptimal particles that fall into the evolutionary
stagnation, the mutation is leveraged to promote the par-
ticles’ diversity and utilization to improve the exploration
ability. Simultaneously, the adaptive strategy regulates the
interference level of Gaussian perturbation and mutation
during different evolutional stages in order to balance the
searching ability and accuracy.)e visual result of aggre-
gation analysis validates this dynamic process.)e perfor-
mance on benchmark functions of CEC 2017 test suits
manifests that AGMPSO outperforms its competitors by a
big margin in terms of searching accuracy, searching reli-
ability, and searching efficiency.

In future works, considering the powerful global search
ability of the particle swarm algorithm, it can be considered
to optimize the topology, connection weights, and thresh-
olds of the neural networks or combine the global opti-
mization ability of PSO with the local optimization ability of
the BPNN to improve the generalization and learning
performance of the neural network.

Data Availability

No data were used to support this study.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China under grants 71371181 and 71672193
and by the Research Foundation of Xian International
Studies University under grant BSZA2019003.

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, IEEE, Pretoria, South Africa,
June 2002.

[2] W. Han, P. Yang, H. Ren, and J. Sun, “Comparison study of
several kinds of inertia weights for PSO,” in Proceedings of the
2010 IEEE International Conference on Progress in Informatics
and Computing, vol. 1, pp. 280–284, IEEE, Beijing, China,
December 2010.

[3] J. C. Xu, T. H. Xu, L. Sun, and J. Y. Ren, “Feature selection for
cancer classification based on neighborhood rough set and
particle swarm optimization,” Journal of Chinese Computer
Systems, vol. 35, no. 11, pp. 2528–2532, 2014.

[4] R. Mendes, J. Kennedy, and J. Neves, “)e fully informed
particle swarm: simpler, maybe better,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 204–210, 2004.

[5] Z. H. Zhan, J. Zhang, Y. Li, and S. H. Chung, “Adaptive
particle swarm optimization,” IEEE Transactions on Systems
Man & Cybernetics Part B Cybernetics, vol. 39, no. 6,
pp. 1362–1381, 2009.

[6] R. Cheng and Y. Jin, “A social learning particle swarm op-
timization algorithm for scalable optimization,” Information
Sciences, vol. 291, pp. 43–60, 2015.

[7] B. Alatas, E. Akin, and A. B. Ozer, “Chaos embedded particle
swarm optimization algorithms,” Chaos, Solitons & Fractals,
vol. 40, no. 4, pp. 1715–1734, 2009.

[8] X. C. Zhao, G. L. Liu, H. Q. Liu, and G. S. Zhao, “Particle
swarm optimization algorithm based on non-uniform mu-
tation and multiple stages perturbation,” Chinese Journal of
Computers, vol. 60, pp. 1–20, 2014.

[9] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[10] W.-N. Chen, J. Zhang, Y. Lin et al., “Particle swarm opti-
mization with an aging leader and challengers,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 2,
pp. 241–258, 2013.

[11] X. U. Xiao-Bo, K. F. Zheng, L. I. Dan, W. U. Bin, and
Y. X. Yang, “New chaos-particle swarm optimization algo-
rithm,” Journal on Communications, vol. 33, no. 1, pp. 24–16,
2012.

[12] V. D. B. Frans and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 8, no. 3, pp. 225–239, 2004.

[13] D. Tian, “Particle swarm optimization with chaos-based
initialization for numerical optimization,” Intelligent Auto-
mation & Soft Computing, vol. 24, no. 2, pp. 331–342, 2017.

[14] W. B. Du, W. Ying, G. Yan, Y. B. Zhu, and X. B. Cao,
“Heterogeneous strategy particle swarm optimization,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 64,
no. 4, pp. 467–471, 2016.

[15] M. Munlin and M. Anantathanavit, “Hybrid radius particle
swarm optimization,” in Proceedings of the 2016 IEEE Region
10 Conference (TENCON), pp. 2180–2184, IEEE, Singapore,
November 2016.

[16] M. S. Kiran, “Particle swarm optimization with a new update
mechanism,” Applied Soft Computing, vol. 60, pp. 670–678,
2017.

[17] K. Elumalai, M. Elumalai, K. Eluri et al., “Facile synthesis,
spectral characterization, antimicrobial and in vitro cyto-
toxicity of novel N3, N5-diisonicotinyl-2, 6-dimethyl-4-
phenyl-1, 4-dihydropyridine-3, 5-dicarbohydrazide deriva-
tives,” Bulletin of Faculty of Pharmacy, Cairo University, vol. 1,
no. 54, pp. 77–86, 2016.

[18] S. Rastegar, R. Araújo, and J. Mendes, “Online identification
of Takagi-Sugeno fuzzy models based on self-adaptive hier-
archical particle swarm optimization algorithm,” Applied
Mathematical Modelling, vol. 45, pp. 606–620, 2017.

[19] A. A. Nagra, F. Han, and Q. H. Ling, “An improved hybrid
self-inertia weight adaptive particle swarm optimization al-
gorithm with local search,” Engineering Optimization, vol. 51,
no. 7, pp. 1115–1132, 2019.

[20] A. A. Nagra, F. Han, Q. H. Ling et al., “Hybrid self-inertia
weight adaptive particle swarm optimisation with local search
using C4.5 decision tree classifier for feature selection
problems,” Connection Science, vol. 32, no. 1, pp. 16–36, 2020.

Scientific Programming 13

[21] Y. Xue, B. Xue, and M. Zhang, “Self-adaptive particle swarm
optimization for large-scale feature selection in classification,”
ACMTransactions on Knowledge Discovery from Data, vol. 13,
no. 5, pp. 1–27, 2019.

[22] R. S. Kumar, K. Kondapaneni, V. Dixit, A. Goswami,
L. S.)akur, and M. K. Tiwari, “Multi-objective modeling of
production and pollution routing problem with time window:
a self-learning particle swarm optimization approach,”
Computers & Industrial Engineering, vol. 99, pp. 29–40, 2016.

[23] M.-C. Chen, Y.-H. Hsiao, R. Himadeep Reddy, and
M. K. Tiwari, “)e self-learning particle swarm optimization
approach for routing pickup and delivery of multiple products
with material handling in multiple cross-docks,” Trans-
portation Research Part E: Logistics and Transportation Re-
view, vol. 91, pp. 208–226, 2016.

[24] M. Hu, T. Wu, and J. D. Weir, “An adaptive particle swarm
optimization with multiple adaptive methods,” IEEE Trans-
actions on Evolutionary Computation, vol. 17, no. 5,
pp. 705–720, 2012.

[25] F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, and X.-L. Shen, “A
hybrid particle swarm optimization algorithm using adaptive
learning strategy,” Information Sciences, vol. 436-437,
pp. 162–177, 2018.

[26] S.-F. Li and C.-Y. Cheng, “Particle swarm optimization with
fitness adjustment parameters,” Computers & Industrial En-
gineering, vol. 113, pp. 831–841, 2017.

[27] X. Hu and R. C. Eberhart, “Adaptive particle swarm opti-
mization: detection and response to dynamic systems,” in
Proceedings of the 2002 Congress on Evolutionary Computa-
tion CEC’02, vol. 2, pp. 1666–1670, Honolulu, HI, USA, May
2002.

[28] X. F. Xie, W. J. Zhang, and Z. L. Yang, “Adaptive particle
swarm optimization on individual level,”vol. 2, pp. 1215–1218,
in Proceedings of the 6th International Conference on Signal
Processing, vol. 2, pp. 1215–1218, IEEE, Beijing, China, August
2002.

[29] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca,
“Enhancing particle swarm optimization using generalized
opposition-based learning,” Information Sciences, vol. 181,
no. 20, pp. 4699–4714, 2011.

[30] M. J. Mahmoodabadi, Z. Salahshoor Mottaghi, and
A. Bagheri, “Hepso: high exploration particle swarm opti-
mization,” Information Sciences, vol. 273, no. 18, pp. 101–111,
2014.

[31] H. Wang, H. Sun, C. Li, S. Rahnamayan, and J.-S. Pan,
“Diversity enhanced particle swarm optimization with
neighborhood search,” Information Sciences, vol. 223,
pp. 119–135, 2013.

[32] Y. V. Pehlivanoglu, “A new particle swarm optimization
method enhanced with a periodic mutation strategy and
neural networks,” IEEE Transactions on Evolutionary Com-
putation, vol. 17, no. 3, pp. 436–452, 2012.

[33] S. Shao, Y. Peng, C. He, and Y. Du, “Efficient path planning for
UAV formation via comprehensively improved particle
swarm optimization,” ISA Transactions, vol. 97, pp. 415–430,
2020.

[34] X. Tao, W. Guo, Q. Li, C. Ren, and R. Liu, “Multiple scale self-
adaptive cooperation mutation strategy-based particle swarm
optimization,” Applied Soft Computing, vol. 89, pp. 106–124,
2020.

[35] G. Xu, Q. Cui, X. Shi et al., “Particle swarm optimization based
on dimensional learning strategy,” Swarm and Evolutionary
Computation, vol. 45, pp. 33–51, 2019.

[36] İ. B. Aydilek, “A hybrid firefly and particle swarm optimi-
zation algorithm for computationally expensive numerical
problems,” Applied Soft Computing, vol. 66, pp. 232–249,
2018.

[37] Z. Liu and T. Nishi, “Multipopulation ensemble particle
swarm optimizer for engineering design problems,” Mathe-
matical Problems in Engineering, vol. 2020, Article ID
1450985, 30 pages, 2020.

[38] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and
P. N. Suganthan, Problem Definitions and Evaluation Criteria
for the CEC 2017 Special Session and Competition on Single
Objective Bound Constrained Teal-Parameter Numerical op-
timization, Nan- yang Technological University, Singapore,
2016.

14 Scientific Programming

