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Energy control strategy is a key technology of hybrid electric vehicle, and its control effect directly affects the overall performance
of the vehicle. +e current control strategy has some shortcomings such as poor adaptability and poor real-time performance.
+erefore, a transient energy control strategy based on terminal neural network is proposed. Firstly, based on the definition of
instantaneous control strategy, the equivalent fuel consumption of power battery was calculated, and the objective function of the
minimum instantaneous equivalent fuel consumption control strategy was established. +en, for solving the time-varying
nonlinear equations used to control the torque output, a terminal recursive neural network calculation method using BARRIER
functions is designed.+e convergence characteristic is analyzed according to the activation function graph, and then the stability
of the model is analyzed and the time efficiency of the error converging to zero is deduced. Using ADVISOR software, the hybrid
power system model is simulated under two typical operating conditions. Simulation results show that the hybrid electric vehicle
using the proposed instantaneous energy control strategy can not only ensure fuel economy but also shorten the control reaction
time and effectively improve the real-time performance.

1. Introduction

Energy crisis and environmental pollution are two major
problems that need to be solved in today’s social develop-
ment. With the development of society, environmental
pollution has become increasingly prominent, especially the
recent haze weather, seriously affecting people’s daily life
and even threatening life and health, and automobile ex-
haust emission is one of the main sources of this severe
weather. Traditional fuel vehicles have been difficult to meet
increasingly demanding energy saving standards and en-
vironmental protection indicators, while new energy vehi-
cles such as fuel cell vehicles have encountered bottlenecks
due to constraints of technology, cost, or infrastructure
[1–5]. In addition, the power battery technology of pure
electric vehicle is not mature enough to meet the require-
ments of long-distance continuous driving. In contrast,
hybrid electric vehicle technology is advancing steadily.

From the current situation, it is necessary and feasible to take
hybrid electric vehicle as a transitional model to relieve
energy and environmental pressure.

As hybrid electric vehicles have two energy sources,
engine and battery, it is particularly important to make
reasonable use of the two energy sources to provide the
vehicle with good fuel economy and emission performance
[6–9]. +erefore, the energy control of the vehicle becomes a
crucial part of the hybrid power system. Hybrid electric
vehicles can be divided into series, parallel, and hybrid
according to the type, quantity, and connection relationship
of parts [10–13]. Parallel hybrid power system can reduce
fuel consumption and pollutant emission of the vehicle
without greatly increasing the cost and the complexity of the
vehicle structure. +erefore, the research focus of this paper
is on parallel hybrid electric vehicle (HEV).

Energy control strategy refers to the torque distribution
and coordination control strategy between the engine and
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motor. At present, there are four basic types of energy
control strategies [14,15]: (1) logic threshold control strategy;
(2) instantaneous control strategy; (3) global optimal control
strategy; (4) fuzzy control strategy. +e full name of in-
stantaneous control strategy is instantaneous equivalent
minimum fuel consumption control strategy. In each con-
trol cycle of the hybrid power system, the optimal power
output of the engine and motor is calculated with the goal of
obtaining the lowest fuel consumption. Instantaneous
control strategies can also combine fuel economy and
emission performance. Instantaneous control strategy can
achieve the minimum equivalent fuel consumption within
each control cycle, but it requires a lot of calculation and is
difficult to achieve. In addition, according to the optimi-
zation theory, the sum of minimum values is not equal to the
minimum value of sum, so the instantaneous control
strategy cannot achieve global optimization. +e global
optimal control strategy [16] can theoretically obtain the
lowest fuel consumption in the real sense, but the out-
standing disadvantage is that the driving condition of the
vehicle must be known during the whole operation process,
which is obviously inconsistent with the reality. At present,
this control strategy can only be used to evaluate other
control effects, and it is difficult to be applied in real-time
vehicle control.

2. Literature Review

In view of the problems of the above control strategies, many
scholars have improved and optimized the energy control
strategy of HEV by using different research methods.

In the existing research results, Yin et al. [17] introduced
the condition recognition technology into the fuzzy control
strategy to solve the shortcoming that it could not adapt to
different working conditions and expand the application
scope of fuzzy control. However, the paper did not give a
clear conclusion about which working conditions it was
applicable to. Han et al. [18] used the stochastic dynamic
programming theory to solve the problem that the global
optimal control strategy requires to know future driving
conditions in advance. +e simulation results show that the
control method can achieve good results in a variety of
driving conditions, but the calculation is large and the
simulation time is long. Calafiore et al. [19] proposed a
stochastic model predictive control method to try to solve
the problem that future driving conditions of hybrid electric
vehicles are difficult to predict. Ming et al. [20] established an
intelligent control strategy of hybrid electric vehicle con-
sidering the influence of driving conditions by using fuzzy
neural network. +e actual vehicle verification results show
that the established control strategy reduces the influence of
driving condition fluctuation on the performance of electric
vehicles. However, this method takes too long to obtain
recognition results.+ese research results have improved the
existing energy control strategies to a certain extent and
improved the performance of hybrid power system, but so
far there is no optimal control scheme that can be used for
practical control. +e optimization and improvement of
HEV energy control strategy need further research.

+e terminal neural network is a kind of neural network
model with bounded convergence error in finite time. +e
effectiveness of the network solving model usually includes
two aspects, that is, higher solving accuracy of the model (for
example, in the field of chaotic system control) and faster
solving speed (for example, in the field of terminal sliding
mode control). +e finite-time convergent dynamic char-
acteristics of the terminal state greatly improve the con-
vergence efficiency of the dynamic system and, at the same
time, obtain higher system convergence accuracy. Chai et al.
[21] proposed a class of terminal system with dynamic
convergence, which has the dynamic property of finite-time
convergence and was applied to the solution of time-varying
equations and the repetitive motion planning of redundant
manipulator, both of which achieved high convergence
accuracy. Different from the finite-time convergent dynamic
network, the finite-state convergent neural network pro-
posed by Yuan et al. [22] can adopt any form of nonlinear
activation function, which is applicable to a wider range and
more in line with actual needs.

+erefore, a terminal neural network model for con-
trolling torque output is established in this paper. Firstly, the
objective function of the instantaneous control strategy is
defined, and the nonlinear equations used to control the
torque output are solved by using terminal neural network
models. +en, an example is given based on the neural
network model, and the simulation results are obtained. +e
simulation results show that the terminal network controller
can achieve good fuel economy and improve the real-time
control performance.

3. Principle of Instantaneous Control Strategy

3.1. Transient Control Policy Definition. +e full name of
instantaneous control strategy is instantaneous equivalent
fuel consumption minimum control strategy [23,24], so it
can be seen that this control rule mainly includes two
aspects:

(1) Equivalent fuel consumption: for a general hybrid
electric vehicle, its power battery electric energy
needs to bemaintained within a certain range, that is,
the power battery electric energy consumed in a
certain stage (except the recovered braking energy)
needs to be supplemented by a certain amount of fuel
consumed by the engine in the future operation of
the hybrid electric system. +erefore, an equivalence
relationship between the energy consumed by the
power battery and the fuel required to replenish it is
needed.

(2) Instantaneous optimization: in each control period,
according to the power requirements of the hybrid
power system, the optimal power output of the
motor and engine is calculated in real time with the
minimum equivalent fuel consumption as the
standard, and the two are controlled based on this
rule.

+e minimum control strategy of instantaneous equiv-
alent fuel consumption of HEV can be simply expressed as
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M � 􏽘Min mfc Tfc(t),ωfc(t)􏽨 􏽩Δt + mmc eq Tmc(t),ωmc(t)􏼂 􏼃Δt􏽮 􏽯.

(1)

At the same time, the following constraints should also
be met:

0<Tfc(t)<Tfc−max,

0<ωmc(t)<ωmc−max,

SOCfinal − SOCinitial � 0,

(2)

where ωfc is the engine speed, ωmc is the motor speed,
ωmc−max is the maximum motor speed, Tfc−max is the max-
imum engine torque, mfc is the engine fuel consumption at
every instant, mmc eq is the equivalent fuel consumption of
power battery, Tfc is the engine torque, Tmc the is motor
torque, SOCinitial is the initial state of charge of power
battery, and SOCfinal is the state of charge at the end of
power battery.

3.2. Calculation Method of Equivalent Fuel Consumption of
Power Battery. +is paper establishes the relationship be-
tween power battery and fuel energy consumed by engine.
Specific methods are as follows:

(1) Establish the relationship between engine fuel con-
sumption rate and motor output torque:

b � f Tmc( 􏼁. (3)

When the total demand torque is known, the relation
curve between the motor output torque and engine
fuel consumption rate can be established according
to engine universal characteristic curve. As shown in
Figure 1, points A, B, C, and D correspond to the
working conditions of engine driving alone and
charging for power battery, engine driving alone and
not charging for power battery, engine and motor
codriving vehicle, and motor driving alone.

(2) Establish the corresponding relationship between
power battery variation and motor output torque:
+e qualitative relation curve between the variation
of power battery and the output torque of the motor
is shown in Figure 2, where three points A, B, and C,
respectively, represent the working conditions in
which the engine drives the motor to charge the
power battery, the engine drives the system without
the power battery participating in the operation, and
the engine and the power battery jointly drive the
hybrid power system.
According to the relation curve between the state of
charge and voltage of the power battery and the
relation curve between the current of the motor and
the output torque, the power battery variation cor-
responding to the output torque of each motor can
be calculated, and the relation between the variation
of the power battery and the output torque of the
motor can be established.

ΔSOC � f Tmc( 􏼁. (4)

(3) Establish the corresponding relationship between
engine fuel consumption rate and actual variation of
power battery:

b � f ΔSOCact( 􏼁, (5)

where ΔSOCact is the actual change of the power
battery.

(4) Calculate the fuel energy corresponding to the actual
change of power battery:

According to the relationship between the actual change
of power battery obtained in Step 3 and the engine fuel
consumption rate, the corresponding relationship between
the actual change of power battery and the fuel energy
consumed by the engine can be established, as shown in
Figure 3.

+e above method makes use of the equal relationship
between the electric energy consumed by the power battery
and the electric energy replenished by the power battery to
establish the relationship between the actual change of the
power battery and the fuel energy consumed by the engine.
+e disadvantage of this approach is that it does not take into
account that the operating state of the hybrid system is
changing from moment to moment. +e above method is
based on the assumption that the demand speed of vehicles
at the future moment is the same as that at present, which is
contrary to the actual situation. Based on the analysis of the
energy flow of parallel hybrid electric vehicle, the instan-
taneous control strategy is calculated.

D Tmc

b

B

A

C

Figure 1: Qualitative relation curve between engine fuel con-
sumption rate and motor output torque.

ΔSOC

TmcB

A

C

Figure 2: Qualitative relation curve between power battery vari-
ation and motor output torque.
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3.3. Calculation of Instantaneous Equivalent Fuel Con-
sumption of Power Battery. +e working mechanism of the
instantaneous control strategy can be briefly described as
follows: in order to achieve the lowest fuel consumption of
the normal running of the vehicle, the distribution ratio of
the power required by the vehicle between the engine and
the motor is optimized in real time in each control cycle.
+erefore, a transient optimal objective function which can
accurately reflect the actual operation characteristics of HEV
should be established.+e energy flow diagram of the hybrid
power system is shown in Figure 4.

+e engine power, the power allocated by the engine to
the motor for charging the power battery, and the total
required power of the system satisfy the following relational
expression:

PfcN � PfcY − Pmc chg � Preq, (6)

where Preq is the driving power required by the vehicle at a
certain time, Pmc chg is the charging power of the motor, and
PfcY is the engine power.

+erefore, the fuel consumption rate of the engine
charging the power battery at a certain time in the future can
be expressed by the fuel consumption rate when the engine
only participates in driving the vehicle. +e equivalent fuel
consumption is

mmc−qq �
bchgPmc−chg

ηmcηchgηdischg
, (7)

where bchg is the fuel consumption rate of the engine for
charging the power battery, ηmc is the motor efficiency, ηchg
is the charging efficiency of the power battery, and ηdischg is
the discharging efficiency of the power battery.

3.4. Objective Function of Instantaneous Control Strategy.
According to the objective function of the minimum control
strategy for instantaneous fuel consumption given previ-
ously, equation (1) can be rewritten as

M � 􏽘Min mfc Pfc(t)􏽨 􏽩Δt􏽮

+mmc−q Pmc(t)􏼂 􏼃Δt􏽯,
(8)

mmc eq Pmc(t)􏼂 􏼃 � feq dischgPmc. (9)

In order to explain the different functions of the motor at
different times in the process of deriving instantaneous fuel

consumption, charge and discharge can be unified when the
objective function is expressed. +erefore, equation (8) can
be rewritten as

M � 􏽘Min mfc Pfc(t)􏽨 􏽩Δt + λfeq dischg +(1 − λ)feq chg􏽨 􏽩PmcΔt􏽮 􏽯,

(10)

where λ � [1 + sign(Tmc)]/2.
According to equation (10), the control effect of the

instantaneous control strategy depends on the size of the two
variables. +ese two variables are respectively called the
equivalent fuel consumption coefficient of the power battery
under the discharge condition and the charging condition,
and their specific values are determined by the hybrid
electric vehicle configuration, efficiency characteristics, and
driving conditions.

4. Instantaneous Control Strategy Based on
Terminal Neural Network

+e control rule of instantaneous control strategy can be
regarded as the nonlinear mapping of single output, and the
power battery output refers to the motor output torque.
Consider the following dynamic characteristic equation to
construct the recursive neural network model [25]:

_E � −ρS(E), (11)

where E is the n× n dimensional error matrix, ρ> 0 is the
adjustable gain coefficient, and S(E) is the activation function,
which is strictly monotonically increasing odd function.

It is known that the recursive neural network is as-
ymptotically stable by the properties of activation function.
+e asymptotic convergence performance is analyzed below.
According to equation (11),

dE

dt
� −ρE⟹

1
E

dE � −ρ dt , (12)

􏽚
E

E0

1
E
dE � 􏽚

t

0
−ρdt⟹ ln E − ln E0 � −ρt, (13)

where E0 is a constant. According to equation (13), when
E� 0, t⟶∞, so the error converges to zero in infinite
time; the recursive neural network model characterized by
the dynamic characteristics of asymptotic stability is called
asymptotic convergence network.

In order to realize the finite-time convergence of
energy control of parallel hybrid electric vehicles, the
control rules of instantaneous control strategy are
regarded as the solution of time-varying nonlinear
equations of single output (motor output torque), and the
optimization objective function is equation (12), which
can be expressed as follows:

f1 x1, x2, . . . , xn( 􏼁 � 0,

f2 x1, x2, . . . , xn( 􏼁 � 0,

⋮,

fn x1, x2, . . . , xn( 􏼁 � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

ΔSOC
ΔSOCactΔSOCact

Efc

Figure 3: Qualitative relation curve between actual variation of
power battery and engine energy consumption.
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where xn is the n-th unknown variable and fn is a smooth
differentiable nonlinear function.

To solve the nonlinear equations, the error equation is
defined as follows:

e(t) � f(x) − 0. (15)

+e time needed to obtain the solution of nonlinear
equations by using the terminal neural network is finite, but
the asymptotic network needs enough time. In order to
simplify the analysis, the time-varying nonlinear equations
are set as follows:

ln x1(t) − 1
(t − 1) � 0

,

1(t)x2(t) − exp
1

(t + 1)
􏼠 􏼡sin(t) � 0,

x
2
1(t) − sin(t)x2(t) + x3(t) − 2 � 0,

x
2
1(t) + x

2
2(t)x3(t) + x4(t) − t � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

+en, the test calculation result is

X
∗
(t) �

x
∗
1

x
∗
2

x
∗
3

x
∗
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

exp
1

(t + 1)
􏼠 􏼡

sin(t)

2 − exp
2

(t + 1)
􏼠 􏼡 + sin(t)

t − 2 − 2 sin2(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

+e initial value can be any value, and
X(0) � 1 1 1 1􏼂 􏼃

T in this paper.
A recursive neural network model is constructed to solve

the time-varying nonlinear equations. +e convergence
characteristics are analyzed according to the activation
function graph, and then the stability of the model is an-
alyzed respectively and the time of error convergence to zero
is deduced.

5. Terminal Neural Network Calculation

+e terminal neural network based on BARRIER function is
used to calculate the solution of nonlinear equations. +e
neural network equation is as follows:

_e � −εBar(e, δ). (18)

BARRIER excitation function [26] is

S(e) � Bar(e, δ) �

�������
|e|

|e| + 1/δ

􏽳

sgn(e). (19)

+e parameters in the terminal neural network are ε� 5
and δ � 0.5. +e calculation results are shown in Figure 5,
and the calculate value X(t) converges to the ideal value
X∗(t).

Figure 6 shows the comparison between the two norms
of f(x) in the terminal network and the asymptotic net-
work. It can be seen from the figure that ‖f(x)‖2 obtained by
using the terminal network has a faster convergence speed
and converges to zero in finite time.

6. Simulation Experiment and Result Analysis

6.1. Simulation Software and Parameters. In this paper, the
hybrid electric vehicle simulation software ADVISOR is
used as a test platform to test whether the neural network
controller can improve the response speed of instantaneous
control. ADVISOR, which stands for advanced vehicle
simulator, was developed by the U.S. National Renewable
Energy Laboratory. ADVISOR adopts modular program-
ming idea and MATLAB/Simulink programming language,
and the code is completely free to the public so that it has
good secondary development and cosimulation with other
software functions. +e simulation process of ADVISOR is
shown in Figure 7. First, the actual speed and fuel con-
sumption rate of the vehicle are calculated according to the
model data and component data, and then simulation ex-
periments are carried out. Finally, simulation graphics and
data are output.

In order to increase the authenticity of the simulation
experiment, the parameters of the vehicle in this simulation
experiment were formulated according to the data of a listed
hybrid model. +e main parameters are shown in Table 1.

Power transistor

Driving wheel

Electrical
machineryPower battery

Electrical
machinery Fuel tankEngine

Figure 4: Energy flow diagram of hybrid power system.
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+e choice of driving conditions will have a great impact
on the performance of the test vehicle. +e new European
Urban Driving Cycle (NEDC) and Highway Fuel Economy
Test (HWFET) were selected to carry out simulation tests.
Table 2 shows the relevant parameters of the two commonly
used driving conditions.

6.2. Comparison and Analysis of Simulation Results. After all
the simulation work is completed, the simulation results of
traditional instantaneous control, fuzzy neural network
control, and terminal neural network control are compared.
+e three control strategies are compared in SOC, fuel
consumption, and simulation time.

In Figure 8, NEDC_mdf, NEDC_fnn, and NEDC_tnn,
respectively, represent the simulation results corresponding
to the three schemes of traditional instantaneous control,
fuzzy neural network control, and terminal neural network
control of the hybrid electric vehicle model under NEDC
conditions. HWFET_mdf, HWFET_fnn, and HWFET_tnn,
respectively, represent the simulation results corresponding
to the traditional instantaneous control, fuzzy neural net-
work control, and terminal neural network control schemes
of the hybrid electric vehicle model under HWFET condi-
tions. As can be seen from Figure 8, the terminal neural
network controller can approximately simulate the tradi-
tional instantaneous control rules, and the SOC value is
maintained in the high efficiency range.

As can be seen from Table 3, the terminal neural network
controller realizes the advantages of low fuel consumption of
the fuzzy neural network control strategy and can bring
good economy to the vehicle. As can be seen from Table 4,
the simulation time of the terminal neural controller is
significantly shortened compared with the other two control
strategies, thus improving the real-time performance of the
control.
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Figure 5: Comparison between the true result and resultant values of nonlinear equations.
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Table 1: Parameters of HEV for simulation.

Automobile key module Parameter Value

Full vehicle Mass 1605 kg
http://dict.youdao.com/w/drag%20coefficient/ 0.32

http://dict.youdao.com/w/engine/ http://dict.youdao.com/w/displacement/ 2.5 L
http://dict.youdao.com/w/maximum%20power/ 118 kW

http://dict.youdao.com/w/battery%20pack/

Type Hydrogen ballast
Number of modules 34

Capacity 6.5 Ah
http://dict.youdao.com/w/nominal%20voltage/ 244.8/650V

Motor Type Permanent magnet synchronous
http://dict.youdao.com/w/maximum%20power/ 105 kW

Table 2: Two typical driving conditions.

Parameter NEDC HWFET
Cycle time (s) 1184 765
Maximum speed (km·h−1) 10.93 16.51
http://dict.youdao.com/w/operating%20range/ (km) 120 96.4
Average velocity (km·h-1) 33.21 77.58
http://dict.youdao.com/w/maximum%20acceleration/ (m·s−2) 1.06 1.43
Maximum deceleration (m·s−2) −1.39 −1.48
Idle time (s) 298 6
Number of stopping 13 1
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Figure 8: Comparison of power battery SOC. (a) NEDC. (b) HWFET.

Table 3: Fuel consumption per 100 kilometers.

Conventional instantaneous control Fuzzy neural network control Terminal neural network control
NEDC (L·100 km−1) 10.1 9.8 9.8
HWFET (L·100 km−1) 9.2 7.8 8.0
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7. Conclusions

In view of the shortcomings of traditional instantaneous
control strategy, such as slow response and weak real-time
performance, this paper uses neural network controller as
torque control device to seek for more reasonable control of
engine and motor output power of parallel strong hybrid
electric vehicle. Under two typical operating conditions,
ADVISOR software was used to simulate the hybrid electric
vehicle model embedded with traditional instantaneous
control, fuzzy neural network control, and terminal neural
network control, respectively. +e results show that the
reaction time of the instantaneous control can be greatly
reduced by the control strategy of the terminal neural
network under the premise of ensuring the fuel economy
and emission performance of the vehicle [27–30].
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